
 

 
 
 

 
 
1. INTRODUCTION 

The forced convective heat transfer past a moving surface 
has applications in chemical processes, biochemical 
processes, solar receivers exposed to wind currents, cooling 
of reactors, heat exchangers, geothermal energy, oil 
extraction, oil exploration, plastic extrusion and continuous 
casting. Researchers are motivated towards its study because 
of the need to improve the efficiency of thermal conductivity 
and enhancing heat transfer which led to the utilization of 
nanoparticles in the fluid. The effect of temperature 
dependent viscosity on laminar mixed convective flow and 
heat transfer for a continuously moving vertical isothermal 
surface was studied by Ali [1], who obtained local similarity 
solutions. Klemp and Acrivos [2] investigated a method for 
integrating the boundary layer flow equations through a 
region of reverse flow past a parallel flat plate. Similar 
problems were studied by Ishak et al [3]. Magyari [4] studied 
the moving plate thermometer with uniform velocity for a 
series solution of the problem using the Merkin 
transformation method. The similarity solution for steady 
laminar boundary layer equations governing MHD flow near 
the forward stagnation point of two dimensional moving 
axisymmetric bodies was given by Hoernel [5].  

Also it is very well known fact that the nanofluids can 
tremendously enhance the heat transfer characteristic of the 
base fluid. Therefore, nanofluids have great importance in the 
industry as coolants, lubricants and micro channel heat sinks. 
Choi [6] introduced the concept of the nanofluid. Choi et al. 
[7] proved that the addition of a very small amount that is one 

per-cent by volume of nanoparticles to pure fluids increases 
the thermal conductivity of the fluid by up to two. Bachok et 
al. [8] studied nanofluid forced convection boundary layer 
flow over a moving plate numerically and concluded that dual 
solutions exist when the plate and the free stream move in 
opposite directions. Hamad [9] presented an analytical 
solution for convection flow of a nanofluid over a stretching 
plate. Rajput et al. [10] derived similarity solution of MHD 
boundary layer flow of an electrically conducting, viscous 
incompressible nanofluid over a moving surface in the 
presence of a uniform magnetic field with thermal radiation. 
Khan and Pop [11] investigated the boundary layer flow and 
heat transfer of nanofluid over a stretching surface. AbdEl- 
Gaied and Hamad [12] studied the problem of heat transfer in 
MHD forced convection flow of alumina-water nanofluid 
over moving permeable vertical flat plate with convective 
surface boundary condition. They found that alumina 
nanoparticles when suspended in a fluid are capable of 
increasing the heat transfer capability and the shear stress of 
the base fluid. In addition they found that the heat transfer 
rate increases with nanoparticle volume fraction. Hamad et al. 
[13] presented the effect of magnetic field on free convection 
flow of a nanofluid past a vertical semi-infinite flat plate and 
they showed that copper and mercury nanoparticles give 
better cooling performance compared with titanium oxide 
(TiO2) and aluminum oxide (Al2O3) particles, the advantage 
is not impressive enough. They also found that the thickness 
of thermal boundary layer increases with both the solid 
volume fraction of nanofluid and the magnetic parameter. 
Makinde and Aziz [14] studied nanofluid boundary layer 
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flow over a stretching sheet with a convective boundary 
condition. 

The aim of the the present study is to analyse, steady two-
dimensional laminar MHD forced convection flow of a 
nanofluid past a moving surface with convective surface 
boundary condition. The similarity solution is obtained by 
one parameter group of transformation.  

2. PROBLEM FORMULATION 

Consider two-dimensional forced convective flow of 
nanofluid over a moving flat plate. A rectangular coordinate 
frame is selected in which the x -axis is vertical and y -axis 

is horizontal. It is assumed that the plate moves with the 
constant velocity. The flow is takes place at 0y where y is 

the coordinate measured normal to the moving surface. A 
uniform transverse magnetic field is applied at y -axis. Also 

assumed that, at the surface, temperature T and the 

nanoparticles fraction C take constant values Tw and 

Cw respectively whereas the values of T and C when y tends 

to infinity are denoted by T and C respectively.  

The governing equations of the flow under consideration 
are given by,  
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Corresponding to the boundary conditions 
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where u and v are the velocity components along x and 

y axes,  p is the pressure,  is the electrical conductivity, T 

is the temperature of the nanofluid,  U xe is the potential 

velocity,  u xw is the velocity of the moving plate, 
nf

 the 

density of base fluid, 
nf

is the nanofluid viscosity, 
nf

 is 

the nanofluid thermal diffusivity and Dm is mass diffusivity 

and   is the constant moving wedge parameter with 0   

corresponds to a moving wedge in the same direction and 

0   corresponds to  a moving wedge in the opposite 

directions to the free stream respectively, while 

0  corresponds to a static wedge.  

In stream function  u U xe  so the equation (2) becomes 
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Eliminating the pressure gradient term
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 from equation 
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Introducing the following dimensionless boundary layer 

variables 
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where L is the characteristic length, u is the reference 

velocity,  
 2




B x
S x

nf

 is the magnetic parameter, 

Re 
u L

v
nf

is the Reynolds number. 

Introducing the stream function  , x y  defined by 

,  
  

  
 

u v
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 so that it reduces the number of 

dependent variables as well as the number of equations. With 
this, equation (1) is satisfied automatically and equations (3), 
(4) and (7) become 
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and boundary conditions are  
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3. SOLUTION OF THE PROBLEM 

We use a method of solution which depends on the 
application of one parameter continuous deductive group of 
transformation to the system of partial differential equations 
(9)-(12). Under this class, we initially form the subgroup of 
transformations, after which the two independent variables 
will reduce by one variable and the system of non-linear 
partial differential equations (9)-(12) will transform into 
ordinary differential equations in terms of the similarity 
variable . 

 

3.1 The group systematic formulation 

The procedure is initiated with group G, a class of one 
parameter ‘a’ of the form  
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where
Rh  and 

R
K are real valued and at least differentiable 

in their real argument ‘a’ 
 

3.2 Invariance analysis 

To transform the differential equation, transformations of 
the derivatives are obtained from G via chain-rule operations 
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where, p stands for , , , ,  Ue S . 

Now equation (9) is invariantly transformed for some 

function  1H a  whenever, 
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Substitution from (13) and (14) into (15) yields, 
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Now equation (10) is invariantly transformed for some 

function  2H a  whenever, 
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Substitution from (13) and (14) into (18) yields, 
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Also equation (11) is invariantly transformed for some 

function  3H a  whenever, 
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Substitution from (13) and (14) into (19) yields,
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The invariance of equations (16), (19) and (21) together 

with boundary conditions (12), implies that 
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These gives  
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Finally we summarize in a subgroup G of the form 
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This group transforms invariantly the differential equations 

(9) – (11) and the initial and boundary conditions (12). 
 

3.3 The complete set of invariants 

The complete set of absolute invariants are: 
(i) The absolute invariants of the dependent variables 

( , )x y are  ,  x y . 

(ii)The absolute invariants of the dependent 

variables  , U , , ,  Se  

 

    , : ,U , , , , ,  1,2,3,4,5.    g x y S F x y jej j      

 
Using the application of a basic theorem in group theory, 

(See Moran and Gaggioli [15]; Morgan [16]), i.e.  A 

function  , : , U , , ,  eg x y S  is an absolute invariant of a 

one-parameter group if it satisfies the following first-order 
linear partial differential equation,  
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where 0a denotes the value of parameter ‘a’ which yield the 

identity element of the group. 

3.4 Absolute invariants of the independent variables 

Since 0
U yS ek k k k k


     which gives 

2 4 5 6 7        and from equation (25) we get the 

following relations 
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The absolute invariant  , x y  of the independent variables 

 ,x y  is determined using equation (24) if it will satisfy the 

first order linear partial differential equation 
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Dividing 1 by we get, 

 

  1

1

0,    where =
3

 
 



 
  

 

y
x

x y
                    (27) 

 
Now, equation (27) can be written in the form 
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Further, for the absolute invariants of dependent variables 

owing the equation (24) are given by 
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Since  U xe  and  S x  are functions x  of only and   

depends on x  and y then  2
 and  3

 must be constants, 

say c and M. 
Thus, finally we get the complete set of absolute invariants 

for the group G which transforms the partial differential 
equations (9)-(11) into ordinary differential equation with 
boundary conditions (12) as 
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3.5 Reduction to an ordinary differential equation 

Use above transformations (30) into equations (9)-(11), 
yields to nonlinear ordinary differential equations 
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Now, to transform the boundary conditions into constant 

form, the free stream velocity must be of the 

form  
1

3u xw   . Then the transformed boundary 

conditions are 
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Here prime denotes the differentiation with respect to . 

The parameters Pr and Sc are defined as: 
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It is very interesting to note the following deductions: 

Taking the magnetic parameter 0M  and the constant 

1c  in the differential equation (31)-(34) and by omitting 

equation (19), setting 0S  ,
1

3
m , 0Nt   in equations (16)-

(20)   will reduce to that of obtained by [17]. 

Taking the magnetic parameter 0M , 1   and the 

constant 0c   in the differential equation (31)-(34) and 

setting 0  , 1b  , 0m and 0fw   (the plate is 

impermeable) in equations (25)-(27) will reduce to that of 
obtained by [18]. 

 
 

7. CONCLUSION 

Similarity solution of MHD forced convection laminar 
boundary layer flow of a nanofluid over a moving surface is 
studied by using one parameter group of transformation. The 
application of one parameter transformation group reduces 
the number of independent variables, by one, and 
consequently, the system of governing partial differential 
equations with boundary and initial conditions transforms 
into a system of ordinary differential equations with 
appropriate boundary and initial conditions.  
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NOMENCLATURE 

B 
M 
T 
u 
v 

T  

variable magnetic field 
dimensionless magnetic number 
temperature of the fluid 
velocity component along x-axis 
velocity component along y-axis 
temperature of the fluid in the free 
stream 

Tw  temperature of the fluid at surface 

C 

Cw  

C  

 
c 
Pr 
Re 
Dm 

 u xw  

nanoparticle volume fraction 
nanoparticle volume fraction at the 
surface 
nanoparticle volume fraction in the free 
stream 
constant 
Prandtl number 
Reynolds number 
mass diffusivity 
velocity of moving plate 

p pressure 

 

Greek symbols 

 

 

  dimensionless similarity variable 
  electrical conductivity 

  dimensionless temperature 

  dimensionless nanoparticle volume 
fraction 


nf

 

nf
  


nf

 

  
  

nanofluid viscosity 
 
density of the base fluid  
 
nanofluid thermal conductivity 
constant moving wedge parameter 
stream function 

 

Subscripts 

 

 

  condition at free steam 
w 
 

Superscripts 

 

'  

condition at the surface 
 
 
 
differentiantion with respect to   
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