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With the improvement of enterprise services, location-routing-inventory problem with 

time window constraint (LRIPTW) has become an essential problem in cold chain logistics 

network (CCLN). This paper aims to optimize the location cost, inventory cost, 

transportation cost, and penalty cost in CCLN simultaneously. Firstly, an optimization 

model was established for the LRIP with soft time window constraint (STW). Then, the 

multi-objective ant colony optimization (MACO) was improved to solve the model. 

Simulation results show that the improved MACO can solve the LRIPSTW effectively and 

efficiently. The research findings provide a reference for enterprises to reduce total cost 

and improve service quality. 
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1. INTRODUCTION

Cold chain is a special supply chain with strict temperature 

requirements in the handling, holding, and transportation of 

products. Owing to the time-sensitivity of the quality of 

perishable products, it is important for cold chain logistics to 

meet the requirement on service time. To reduce supply chain 

cost, the cold chain logistics enterprise must satisfy the service 

time requirement by optimizing its location, routing, and 

inventory strategy. The service time can be divided into fuzzy 

time window (FTW), hard time window (HTW), and soft time 

window (STW).  

Taking STW for example, every cold chain logistics 

enterprise must deliver the products in the STW required by 

customers. Early or late arrival will be penalized by customers 

according to the violation time, pushing up the total cost. To 

meet customer demand, perishable products need to be 

distributed within the prescribed time window constraint (TW). 

This helps to reduce the corruption rate of perishable products, 

and guarantee product quality. 

This paper models the location-inventory-routing problem 

(LIRP) of cold chain logistics network (CCLN) under soft time 

window constraint (STW). In the model, customers have the 

right to penalize the cold chain logistics enterprise according 

to the length of violation time, forcing the enterprise to provide 

cold chain logistics services within the STW specified by 

customers.  

Since the quality of perishable products declines with time, 

the corruption cost was considered to optimize the service cost. 

Then, the multi-objective ant colony optimization (MACO) 

was improved to solve the LIRPSTW. Simulation results show 

that the improved MACO can effectively minimize the total 

cost of the cold chain logistics enterprise in LIRPSTW. 

2. LITERATURE REVIEW

The optimization of LRIPTW is a hot topic in supply chain 

management. Zarandi et al. [1] introduced FTW into location-

routing problem (LRP), creating the LRPTW model which 

considers customer demand and FTW constraint under 

uncertain environment. Goncalves et al. [2] tackled vehicle 

routing problem with time window (VRPTW) and fuzzy 

customer demand, and solved the opportunity-constrained 

compensation model with a heuristic algorithm. Gong et al. [3] 

constructed a nonlinear integer programming model for the 

VRPTW, and developed a two-generation ant colony 

algorithm (ACA) to solve the problem. Saint-Guillain et al. [4] 

constructed a multi-objective dynamic programming model 

for dynamic VRP with TW and stochastic customers (DS-

VRPTW), and solved the model with a novel global stochastic 

assessment (GSA) rule. Iqbal et al. [5] proposed the bee colony 

algorithm to solve the VRP with STW. Many scholars have 

noticed the difference between STW and HTW in solving the 

optimization model [6, 7]. Assuming that customers adopt (T, 

S) inventory strategy, Liu and Lee [8] presented the inventory-

routing problem (IRP) with stochastic demand, constructed a

mixed integer programming model for the problem with HTW,

and solved the model through decomposition.

With the growing demand for perishable food, the 

optimization problems with TW has become a major concern 

in CCLN. Govindan et al. [9] proposed a multi-objective 

optimization model for a perishable food supply chain network 

(SCN), which aims to solve the two-echelon multiple-vehicle 

LRP with time-windows (2E-LRPTW) for sustainable SCN, 

and designed a novel multi-objective hybrid approach called 

MHPV to solve the model. Wei et al. [10-13] investigated an 

extension of IRP with route time limit in the cold chain, and 

developed a genetic algorithm (GA) to solve the formal mixed-

integer linear program (MILP) model. Ma et al. [14-16] 

combined order selection and time-dependent vehicle routing 

problem with time windows into a new model for perishable 

product delivery, and solved the model with a hybrid ACA 

comprising local search operators. To maximize the profit of 

selling perishable products, Vahdani et al. [17] integrated 
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production scheduling with VRP, and solved the integrated 

problem with two heuristic and meta-heuristic algorithms, 

thereby fulfilling customer satisfaction and the TW. 

The research on the LRIPTW of CCLN generally focuses 

on a single or two problems, and transforms the LRIP into a 

single-objective problem. However, there is little report on the 

integrated multi-objectives LRIP with STW in CCLN. 

Compared with the existing literature, our research makes the 

following innovations: the impact of service time on cold 

chain logistics cost was thoroughly analysed; the STW was 

incorporated into the LRIP model of CCLN; the multi-

objective problem was solved by an improved MACO. The 

research findings provide theoretical evidence and practical 

basis for cold chain logistics enterprise to improve service 

efficiency and customer satisfaction. 

 

 

3. LIRPSTW OPTIMIZATION MODEL 

 

3.1 Problem description 

 

To meet the STW required by customers, the penalty cost 

was introduced to the LRIPSTW optimization model. As 

shown in Figure 1, the two-echelon CCLN consists of a 

manufacturer, several retailers, and multiple distribution 

centers (DCs). 

 

Manufacturer

Distribution 

Center

Retailer

First echelon 

transportation

Second echelon 

transportation

 
 

Figure 1. The structure of the CCLN 

 

This paper aims to fulfil three objectives: select the best 

DCs to minimize the location cost; determine the inventory 

quantity based on the quantity of ordered perishable products 

to minimize the inventory cost; optimize the distribution route 

to meet the STW of retailers to minimize the transportation 

cost and penalty cost. 

 

3.2 Assumptions 

 

(1) The CCLN has only one manufacturer, and each retailer 

is only served by on DC. 

(2) The customer demand obeys random distribution. 

(3) Each vehicle must leave from and return to the same DC, 

and serve only one retailer. 

(4) All vehicles are of the same type with the same capacity. 

(5) The loss of perishable products in the producing area is 

not considered. 

(6) The temperature throughout the distribution process 

meets the quality and safety standards for perishable products. 

(7) The corruption rate of perishable products remains 

constant. 

(8) The penalty cost is imposed whenever a vehicle exceeds 

the STW.  

 

3.3 Notations 

 

(1) Sets  

I is the set of DCs;  

J is the set of retailers; 

K is the set of vehicles. 

(2) Parameters 

Dj is the annual demand of retailer J; 

Qi is the order quantity of DCi; 

fi is the fixed construction cost of DCi; 

Oi is the cost for DCi to order products from the 

manufacturer; 

hi is the unit inventory holding cost of DCi; 

Li is the lead time of DCi; 

α is the service level of DC; 

P is the unit price of products; 

θ is the corruption rate of products during transportation; 

di is the travel distance from the manufacturer to DCi; 

dgi is the travel distance from node (customer) g to node 

(customer) i; 

pt is the transportation cost per unit distance of each product; 

Vi is the mean vehicle speed from the manufacturer to DCi; 

Vgj is the mean vehicle speed from node g to node j; 

Ni is the maximum capacity of DCi; 

b is the maximum capacity of each vehicle. 

(3) Decision variables 

Xi is the quantity of products transported the manufacturer 

to DCi; 

Yij is the quantity of products transported from node i to 

node j; 
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Objective function (1) aims to minimize the location cost of 

DC in CCLN. Objective function (2) aims to minimize the 

transportation cost. Objective function (3) aims to minimize 

the inventory cost. Objective function (4) aims to minimize the 

penalty cost for the violation of the STW. Constraint (5) limits 

the capacity of each DC. Constraint (6) limits the capacity of 

each vehicle. Constraint (7) means each retailer is only served 

by one DC. Constraint (8) means each vehicle only serves one 

DC. Constraint (9) means no vehicle can remain on any node. 

Constraint (10) means the quantity of products transported to 

DCs is greater than that transported to the retailers. Constraint 

(11) means the demand of each retailer can be fulfilled. 

Constraint (12) means the arrival time of vehicle k at retailer j. 

Constraints (13)-(15) defines the possible values. 

 

 

4. IMPROVED MACO 

 

The LRIPSTW, as an extension of LRIP with capacity 

constraints, is non-deterministic polynomial-time (NP) hard. 

Heuristic algorithms can achieve good performance and 

results on such problems with a small number of computations. 

As a classical heuristic algorithm, ant colony optimization 

(ACO) is inspired by the foraging behavior of ant colonies. 

With excellence in solving combinatorial optimization 

problems in discrete space [18], the ACO has been widely 

adopted to solve traveling salesman problem (TSP), 0-1 

knapsack, resource/vehicle scheduling problems [19-20].  

The basic principle of the ACO is to simulate the foraging 

process of real ant colonies in nature: the ants in the same 

colony look for the optimal route by sharing special 

information to determine the distance and direction between 

them. However, slow convergence may occur if the ants have 

difficulty in finding the right route due to the lack of 

pheromones. Besides, the ACO might fall into the local 

optimum if the pheromone is not updated smoothly [21-23]. 

To overcome these defects, this paper improves the MACO 

with GA. To solve the LRIPSTW, the improved MACO 

incorporates the STW and product loss cost in ant state 

transition rules. The ant state transition rules, plus the 

uniformity of individual distribution, were improved to avoid 

the local optimum trap. In addition, the crossover operator A 

was introduced to diversify population distribution, enhancing 

the global search ability of the MACO. 

 

4.1 MACO encoding 

 

In the MACO, chromosomes are randomly generated as n-

dimensional vectors [m1, m2, ..., mn], mi <{1, 2,..., n}, where mi 

is retailer i. The optional DCs are numbered with 0. The 

vehicle load of each retailer is calculated when the vehicle 

leaves the DC 0. If the vehicle load exceeds the capacity 

constraint, the vehicle must return to DC 0. Then, the first sub-

route will be generated. Starting from DC 0, the vehicle arrives 

at the next retailer, and repeats the above steps until the all 

retailers are served. Suppose there are 3 optional DCs and 6 

retailers in the CCLN. The optional DCs are number from 1-3, 

and the retailers from 4-9, respectively. Figure 2 shows the 

chromosome generated from the CCLN. The three sub-routes 

are 0-6-4-0, 0-8-5-7-0, and 0-9-0.  
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Figure 2. An example of chromosome coding 

 

In the improved MACO, DCs are selected for each sub-

route by the following rules: (1) For each sub-route, the closest 

DCs to each retailer are computed separately; (2) The retailers 

are ranked by proximity to each DC; (3) The DC with the 

greatest number of closest retailers is selected. If all DC has 

the same number of closest retailers, the final DC is randomly 

chosen. By these rules, the final sub-routes are 2-6-4-2, 1-8-5-

7-1, and 1-9-1. 

 

4.2 State transition rules 

 

The selection probability of each ant K moving from node i 

to node j can be expressed as: 
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(16) 

 

where, γj is the time difference between the arrival time of 

vehicles from node i to node j and the upper limit of the STW; 

ε is the relative importance of the time difference; ωj is the 

waiting time of vehicles at node j; λ is the relative importance 

of the waiting time; q is a random variable uniformly 

distributed in [0, 1]; q0[0, 1] is a parameter that controls the 

transition rule. Under the state transition rules of the improved 

MACO, the node with relatively smaller time difference and 

short waiting time is highly likely to be selected.  

 

4.3 Pheromone updating  

 

When ant k selects node j from node i, the pheromone on 

edge (i, j) should be reduced to increase the probability of 

choosing other nodes. The local pheromone intensity can be 

updated by: 

 

( , ) (1 ) ( , ) ( , )m m mi j i j i j    = − +  (17) 

 

where ζ(0, 1) is a constant; (1 − 𝜁)𝜏𝑚(𝑖, 𝑗)  is the 

volatilization of pheromones. Let Qm be the pheromones size 

(usually a constant), and fm be the value of the multi-objective 

function. After all ants complete a round of search, the global 

pheromone intensity can be updated by: 

 

( , ) (1 ) ( , ) ( , )m m mi j i j i j    = − +  (18) 

 

where, Gm is the pheromone size; min(fm) is the minimum 

value of the objective function m in the current Pareto frontier; 

𝛥𝜏𝑚(𝑖, 𝑗) =
𝐺𝑚

𝑚𝑖𝑛(𝑓𝑚)
. Then, the current solution is evaluated to 

update the Pareto frontier. If it is a non-dominant solution, the 

solution will be stored in the Pareto frontier; otherwise, the 

solution will be discarded. 

 

4.4 Crossover 
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Figure 3. An example of crossover operation 
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Based on the rules of the ACO, the crossover operator A 

was introduced to the improved MACO. To reduce the 

generation of illegal solution and improve the operation 

efficiency, this operator synthesizes the rules of traditional 

crossover operators like partial matched crossover (PMX), 

order crossover (OX), cycle crossover (CX) in the GA. The 

crossover operator A is generated in the following steps: 

Step 1. Select two parent chromosomes 1 and 2 randomly. 

Step 2. Select two cross points in parent chromosome 1 

randomly, and save the part between the two points as a cross 

gene segment in the temporary record T. 

Step 3. Identify and record the same gene in T from the other 

parent chromosome 2, and replace the vacant position in 

parent chromosome 1 with the same gene, producing offspring 

chromosome 1. 

Step 4. Replace the vacant position in parent chromosome 2 

with the gene segment recorded in T in sequence, producing 

offspring chromosome 2.  

Figure 3 gives an example of crossover operation. 

 

4.5 Mutation 

 

Let p1(0,1) be the mutation probability. Then, a random 

number is generated between 0 and 1. If the random number is 

smaller than the mutation probability, the mutation operation 

will be executed. During the operation, two retailers are 

randomly selected from the CCLN. Then, the positions of the 

two retailers are swapped. Next, the new fitness values are 

calculated based on the optimization model. If the fitness 

values of the mutated chromosomes are better than those of the 

current chromosomes, the mutated ones will be retained. 

 

 
 

Figure 4. Flow chart of the improved MACO 

 

The mutation of the improved MACO is implemented in the 

following steps:  

Step 1. Initialize the parameters and place m ants on n 

optional DCs. 

Step 2. Place the initial start point of each ant in the current 

solution set. Each ant K moves to the next retailer j at the 

probability calculated by formula (16). A chromosome is 

generated when each ant chooses all the nodes. The 

chromosomes produced by all the ants form the initial 

population. 

Step 3. Calculate values of m objective functions for each 

ant, and update the Pareto frontier and Pareto optimal solution 

set. 

Step 4. Perform crossover using the crossover operator A, 

followed by the mutation operation. 

Step 5. Perform local update of pheromones by formula (17). 

Step 6. Perform global update of pheromones by formula 

(18). 

Step 7. If the number of iterations is smaller than the 

maximum number of iterations, return to Step 2. 

Step 8. Terminate the algorithm. 

Figure 4 illustrates the workflow of the improved MACO. 

 

 

5. SIMULATION 

 

The improved MACO was verified through a simulation on 

a cold chain logistics enterprise for fresh agricultural products 

in Hangzhou, China. All the data were collected from the 

enterprise, and some parameter values were estimated based 

on the actual situation. The enterprise needs to select between 

three optional DCs to deliver perishable products to 18 

supermarkets (retailers). The STWs required by the retailers 

are listed in Table 1. 

The fixed construction costs of the DCs were generated 

randomly within [100, 200]. The penalty coefficient for time 

violation was set to 5. The setting of other relevant parameters 

is listed in Table 2. The parameters of the improved MACO 

were configured as α=1, β=5, ε=2, λ=3, ρ=0.1, ζ=100, and 

q0=0.7. The maximum number of iterations MAXGEN, 

crossover probability, and mutation probability were set to 150, 

0.9, and 0.1, respectively. 

 

Table 1. The STWs required by the retailers 

 
Retailers 4 5 6 7 8 9 

STW (20,60] (15,55] (65,120] (50,100] (55,120] (60,120] 

Retailers 10 11 12 13 14 15 

STW (20,50] (25,60] (20,55] (65,100] (10,40] (15,55] 

Retailers 16 17 18 19 20 21 

STW (20,45] (50,105] (45,95] (18,50] (15,60] (55,96] 

 

Table 2. The parameter setting 

 
Parameter Value Parameter Value 

σj
2 20 P 5yuan 

hi 0.5yuan/kg Vi 40km/h 

Oi 20yuan per delivery Vgj 40km/h 

Li 7 pt 0.03yuan/kg/km 

α0 97.5% Ni 1,400kg 

θ 0.05 b 700kg 

 

The improved MACO was implemented in MATLAB 

R2014b and simulated on a laptop with Intel(R) Core (TM) i7-

4610M 3.00GHz CPU, 8GB memory, and Windows 7 

operating system. The simulation results are recorded in Table 

3. As shown in Table 3, five routes were optimized when DCs 

1, 2, and 3 were selected in turn. The penalty cost of the two 

routes from DC 3 was 126yuan, greater than that of any other 

routes. But their transportation cost was smaller than that of 

other routes. The two routes from DC 2 had a smaller penalty 

cost (65 yuan), yet a larger transportation cost than those from 

DC 3. Only one route starts from DC 1, whose penalty cost 
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was 12yuan and transportation cost is 328yuan. In total, the 

cold chain logistics enterprise faced a location cost of 500yuan, 

an inventory cost of 331yuan, a transportation cost of 

1,696yuan, a penalty cost of 212yuan, and a total cost of 

2,739yuan. 

 

Table 3. The simulation results 

 
Selected DC Routes Location cost Inventory cost Transportation cost Penalty cost Total cost 

1 1-10-4-13-1 185 73 328 12 598 

2 
2-11-16-12-2 

2-18-7-8-2 
114 121 723 65 1023 

3 
3-20-19-14-21-3 

3-17-9-15-5-3 
201 137 645 135 1118 

 
 

Figure 5. The cost change with the number of iterations 

 

 
 

Figure 6. The comparison of convergence curves 

 

Figure 5 displays the variations in the minimum values of 

location cost, inventory cost, transportation cost, penalty cost 

and the total cost with the number of iterations. It can be seen 

that every cost item of the enterprise continued to decrease 

with the growing number of iterations, which demonstrates the 

effectiveness of the improved MACO. The minimum values 

of location cost and inventory cost fluctuated greatly between 

the 5th and 30th iterations, suggesting that the improved MACO 

converges to the global optimal solution at the expense of an 

increase in an objective function. Any cost reduction will push 

up other costs. Therefore, there is no unique solution to the 

multi-objective problem, which optimizes different objectives 

simultaneously. Instead, a Pareto optimal solution set was 

formed for the LRIPSWT. The cold chain logistics enterprise 

can choose the best solution from the set based on the actual 

situation and requirements. 

To verify its feasibility and effectiveness, the improved 

MACO was compared with the original MACO, using the 

same initial parameters. Figure 6 compares the convergence 

curves of the two algorithms. It can be seen that the improved 

MACO converged to the optimal solution in 62 iterations, 

while the original MACO converged in 130 iterations. Thus, 

the improved MACO clearly outperforms the original MACO 

in solving the LIRPSWT. 

 

 

6. CONCLUSIONS 

 

The paper proposes an LRIPSTW optimization model in 

CCLN, which considers the penalty cost of time violation. The 

model aims to optimize the location cost, inventory cost, 

transportation cost, and penalty cost simultaneously. Then, the 

original MACO was improved to solve the LRIPSTW 

optimization model. Specifically, the crossover operator A 

was introduced to diversify the population distribution and 

improve the global search ability; the ant state transition rules 

were improved to avoid the local optimum trap. Simulation 

results show that less violation of the STW can improve 

customer satisfaction at the expense of slightly increased 

transportation cost. Compared with the original MACO, the 

improved MACO can effectively optimize the LRIPSTW in 

CCLN. 
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