
Modelling of Agent-Based Vehicle Routing Problem Using Unified Modelling Language

Nour Abdullatif1*, Sally Kassem1,2

1 Smart Engineering Systems Center, Industrial Engineering, Nile University, Giza 12613, Egypt
2 Faculty of Computers and Artificial Intelligence, Cairo University, Giza 12588, Egypt

Corresponding Author Email: n.sameh@nu.edu.eg

https://doi.org/10.18280/jesa.530604 ABSTRACT

Received: 8 June 2020

Accepted: 26 November 2020

The Vehicle Routing Problem (VRP) is among the most studied optimization problems in

the field of supply chain management. Typically, VRP requires dispatching a fleet of

vehicles from a central depot to deliver demand to pre-determined spatially dispersed

customers, with the objective of minimizing the total routing cost, and the constraint of

not exceeding vehicles’ capacities. Agent Based Modelling (ABM) assists industries in the

use of technology to support their decision-making process. This paper proposes a model

of an Agent Based Vehicle Routing Problem System. The system under study is modelled

using the Unified Modelling Language 2.0 (UML 2.0). The aim of the proposed model is

to exploit the clear visualization provided by UML and the detailed view of the Agent-

based modelling, in order to propose a new modeling perspective for the classic VRP. The

paper covers the System initiation phase, in addition to, the functional, behavioral, and

structural models.

Keywords:

agent-based modelling, UML modelling, VRP

1. INTRODUCTION

The Unified Modeling Language (UML) has a remarkable

impact on how software systems are constructed since its

standardization in 1997 [1, 2]. The role of modeling in

specifying and documenting complicated software systems is

currently recognized, and software engineering's industrial

strategy is on its course to becoming reality. With the adoption

of UML, a fresh generation of methods have also appeared.

Those methods use UML to illustrate the system’s architecture

and requirements engineering. UML is being used to aid

various industries in modelling. For instance, returned goods

has commonly been seen for years as a burden for both

vendors and customers. Many organizations and companies

recognize reverse logistics; the motion of products back up the

supply chain. Major environmental concerns have been the

motive to launch the reverse logistics domain. Moreover,

companies have found that reverse logistics plays a major role

in attaining “green supply chains” [3]. Building a practical

reverse logistics management system is expected to realize

high efficiency reverse logistics operations. In addition, it can

also create a modern alternative for information management.

UML has been helpful in developing the information system

for reverse logistics, for example, UML modeling of capacity

for life-cycle of products [4, 5].

The classical Vehicle Routing Problem (VRP) is the

problem of determining several routes for a fleet of vehicles

that are placed at one or several depots. The vehicles are

required to serve pre-determined customers that are

geographically dispersed. The objective of the VRP is to

deliver to all customers with minimum cost. Dantzig et al. [6]

proposed the first mathematical programming formulation and

algorithmic approach to represent and solve the problem. They

also described VRP with a real-world application concerning

the delivery of gasoline to service stations. Clarke and Wright

proposed an effective greedy heuristic that improved on the

Dantzig-Ramser approach [7]. After these two papers, many

models and algorithms are proposed for the optimal and

approximate solutions of different variants of the VRP [8-12].

VRP has several applications in various industries. VRP is

used to aid the ambulance service, disaster relief, and the blood

program to efficiently respond in the shortest time to critical

situations [13, 14]. A survey on the applications of the problem

on the different elements of the “transport chain” within and

outside the port is introduced [15]. Moreover, the paper depicts

the increasing need to a heightened efficiency at the different

portals. This is to be done while taking into consideration the

complexity of managing a terminal’s logistics operations.

Terminal’s interactions with other terminals and ports are

noted as well.

Agent-based Modeling (ABM) is an important technique of

modeling systems composed of independent communicating

agents [16]. An increasing number of Agent-based

applications in diverse areas have been made possible through

computer developments. Applications greatly vary. For

instance, ABM is used in modelling stock market mapping [16,

17] and supply chains [18-20]. In addition, anticipating the

spread of disease outbreaks [21] and the danger of using

biological beings as weapons in wars [22]. Agent-Based

concepts are also typically implemented in microscopic

modeling of systems where common activities are represented

by independent decision-makers, mostly humans [23]. An

Agent-based model for sustainable logistic ideas in courier

services is provided by Meyer [24].

Agent-based VRP has been addressed by Komenda et al.

[25]. The authors illustrate Contract-Net Protocol (CNP) based

approach. For every task, the best Vehicle Agent is selected

according to insertion estimation satisfying capacity

constraints. This strategy contains no backtracking and in case

of allocation failure, due to capacity constraint of Vehicle

Journal Européen des Systèmes Automatisés
Vol. 53, No. 6, December, 2020, pp. 781-789

Journal homepage: http://iieta.org/journals/jesa

781

https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.530604&domain=pdf

Agents, the whole process restarts with a higher number of

Vehicles. Moreover, capacity backtracking strategy is based

on the CNP strategy, but with backtracking in case of

allocation failure. In case no Vehicle Agent can undertake a

new task because of the capacity constraint, the best Vehicle

Agent is selected regardless of capacity limitations.

Several research articles discuss UML Modelling within the

context of supply chain management. Other research articles

address Agent-Based VRP. However, to the best of our

knowledge, no research has been done to investigate modeling

VRP using UML. Furthermore, no research has been done on

modelling Agent-based VRP using UML. Due to the

importance of Agent-based VRP and UML visualization

capabilities, this work presents UML diagrams to model

Agent-based VRP. The aim of the paper is to aid in the

visualization of VRP from an Agent-based perspective,

instead of the optimization of the solution. Hence, the

modeling approach adopted to represent the problem defined

in this work is the UML approach, and not the classical

mathematical programing modelling approach.

The rest of the paper is organized as follows; Section 2

provides problem statement, Section 3 illustrates the different

UML models, while Section 4 concludes the paper.

2. PROBLEM STATEMENT

The vehicle routing problem modeled in this work is defined

as the problem of finding the minimum distance to travel using

a fleet of identical vehicles to satisfy demands of a group of

customers. The fleet of vehicles is located at a central depot,

where customers’ demands are available. A vehicle starts its

trip from the central depot, visits its assigned customers for

delivery of demands, and end the trip back at the depot. Each

vehicle has a limited capacity that cannot be violated. The

objective is to minimize the total distance travelled by all

vehicles while serving all customers.

The VRP falls into the class of NP-hard problems as

mentioned by Kassem et al. [9]. As a result, it is challenging

to find a solution for practical size VRP instances in

reasonable time.

The Agent-based VRP concept relies on dividing the

problem into sections and having an agent responsible of each

section. In this paper, there are four sections to the problem.

The “demand points location and demand collection” section,

where an agent called “Demand Points Agent” is responsible

for. The “sortation and evaluation of different tasks”, i.e.,

deliveries, and this is the responsibility of the “Task Agent”.

The “allocation of different demand points to clusters, or

partitions” is another section and the “Allocation Agent” is

responsible for. Finally, the “Vehicle Agent” is responsible for

the section “determining the optimum route”. The paper does

not rely on a mathematical representation of the problem. This

is because the objective of this work is to model VRP from a

different perspective that relies on visualization. The aim is to

aid in software implementation rather than the typical route

optimization associated with VRP.

Figure 1 shows an Integration Definition0 (IDEF0) to

illustrate the problem and depict a clearer view of the purpose

of the model. The inputs are the quantity of Demand Points

locations and their corresponding Demand and the minimum

Number of Vehicles that can be utilized. On the other hand,

the Dynamic Route is the output. The route is considered

dynamic because it might change according to the route

congestion. The controls that direct the activities in the process

are the maximum vehicles’ capacity, Tasks Sorting Strategies,

and Allocations Strategies. The Vehicles’ capacity is

determined by the vehicles, while the Tasks Sorting Strategies,

and Allocations Strategies are determined according to the

depot’s strategy, which is one of the following: Most Demand

First (MDF), Least Demand First (LDF), or First in First Out

(FIFO). Finally, the mechanisms required to complete the

process are Equipment and Technology.

The system begins with the Demand Points Agent

determining customers’ locations and their corresponding

demands. The Task Agent (TA) sorts demand points according

to the depot’s strategy, namely, Most Demand First (MDF),

Least Demand First (LDF), or First in First Out (FIFO). Then,

the Allocation Agent (AA) clusters the demand points into

independent clusters according to depot’s strategy, as well,

such that each cluster is served with one vehicle. The

Allocation Agent clusters orders through two phases. In the

first phase, a feasible solution is obtained using one of two

strategies, which are Contract-Net Protocol (CNP) or Capacity

Backtracking (CB). Then, the AA starts improving the feasible

solution using one of three strategies. Delegate Worst (DW),

Delegate All (DA), or Reallocate All (RA), the Vehicle Agent

determines the optimal dynamic routes, or the sequence of

visiting customers per cluster with the associated vehicle.

After vehicles are dispatched from the depot, feedback from

drivers may require routes change to avoid traffic congestions.

The Task Agent determines the orders that will be served

(delivered) immediately, using the strategy Iterative

Processing (ITER), and the other orders that will wait until

consolidated with other orders, later, using the Batch

Processing (NORM) strategy. This decision is taken by the

source depot according to the customer’s request, such that,

immediate service implies additional cost to customers. If the

order has the privilege of immediate shipping, then the depot

serves the corresponding demand point immediately,

otherwise, the order is collected and sorted according to the

depot’s strategy through the Task Agent. Then, the order is

sent to an Allocation Agent (AA) that will cluster orders.

Finally, the Vehicle Agent (VA) will output the optimal route

per vehicle. More details about agents and associated roles are

available in the paper [25].

Figure 2 illustrates a context diagram to identify and explain

the system boundaries, sometimes called a level 0 data-flow

diagram. The diagram defines data flows between the system

and outside entities. The figure shows a shipping company that

operates a fleet of vehicles. The shipping company sends data

of the available capacities of vehicles to the Agent Based VRP

System (ABVRPS). The ABVRPS has information regarding

the amount of demand to be delivered. Accordingly, the

ABVRPS determines the minimum number of vehicles

required to satisfy the available demand. A Geographic

Information System, referred to as Maps, receives demand

point locations and their corresponding demand amounts.

Accordingly, Maps provides ABVRPS with real time

geographic data about possible routes to reach demand points;

this includes distances, traffic congestion conditions, and

alternative routes. Project Manager is the end user of ABVRPS.

The project Manager is provided with a summary report of the

input of concern and the system output. Input included in the

report are demand point locations with the corresponding

demand. Output included in the report are the optimal routes

for vehicles and the total distance travelled. Reports generated

for the Project Manager might be in the form of tables or

782

illustrative figures where demand points are shown on a map

along with the routes traversed. These reports have managerial

implications in regards with control and improvement.

Figure 1. IDEF0 diagram

Figure 2. Context diagram

3. UML MODELS

3.1 Functional modelling

3.1.1 Use case model

A use case shows the interactions between users and the

Agent-based VRP system and describes functionalities of a

VRP system. A use case diagram is illustrated in Figure 3. The

diagram consists of a set of use cases, actors, and relationships

between actors and use cases.

The purpose of use case diagram is to show a context of an

Agent-based VRP (ABVRP) system. There are three types of

Agents: Task Agent (TA), Allocation Agent (AA), and

Vehicle Agent (VA). All three agents have an inheritance

relationship with the actor Agents. Demand Points actor

represents the customers with their location and demanded

quantity. The actors represent the external systems related with

ABVRP.

Use Cases are functions in the system. For example,

Demand Points use the Report an Order use case to place an

order. The use case includes a use case called Collect Demand

which is responsible for adding the order to a list of orders for

processing. Collect Demand has two use cases that extends it:

Order Tasks and Process Demand. Order Tasks use case is

triggered when the system is set to order tasks, or orders,

according to a certain priority rule. Otherwise, Process

Demand use case is triggered.

Identifying business actors is a crucial step to properly

define the system and build the use case model. Table 1

summarizes and documents the actors in the system. Some

Actors have a synonym that illustrates what that actor

represents in the proposed model. Other actors do not have a

synonym as they do not represent other entities in the system

and are part of the novel proposed system.

In the use case diagram, relationships between use cases are

represented by using stereotypical <<include>> and

<<extend>>. For example, Most Demand First (MDF), Least

Demand First (LDF), and First in First Out (FIFO) use cases

and Collect Demand use cases share the functionality of the

Process Demand use case. After an order is requested, Collect

Demand use case can be extended to the Order Tasks use case

as the Demand Point may ask for tasks ordering or not. All use

cases of the system are documented in Table 2.

The activity diagram in Figure 4 illustrates the sequence of

activities and the participating actors. The system is initiated

when a demand point sends a notification with its demand to a

Task Agent (TA). The TA receives orders from different

demand points, then checks the orders to be consolidated, and

783

the orders that to be served immediately. This is decided by

the owner of the ABVRP system who is the source depot. In

case of needing to batch for consolidation, the order is

collected and sorted according to the depot strategy. Then the

order is sent to an Allocation Agent (AA). The AA will start

allocating demand points to partitions in a cost-efficient

manner. The Vehicle Agent (VA) will then conduct a plan

based on the orders sorted by the TA and the partition made

by the VA.

The processing and ordering of orders are done by the Task

Agent. There are two processing strategies. First, to batch the

orders together to consolidate the demand. The orders can be

processed once received by the Task Agent as well. In case of

batching the orders, a priority rule can be set for their sequence

of processing. They could be processed by giving a priority to

the orders with least demanded quantity, most demand, or first

order in will be processed first.

The Allocation Agent (AA) clusters the orders into

partitions. There are two strategies for clustering: Contract-

Net Protocol (CNP) and Capacity Backtracking (CB).

Contract-Net Protocol strategy assigns orders to vehicles

based on the insertion estimation in accordance with the

vehicles’ maximum capacity. However, if the vehicles’

capacity constraint hindered the allocation process, additional

vehicle would be added to increase the total vehicles’ capacity.

The process of CNP is then re-initialized.

Capacity Backtracking allows re-allocation of orders before

adding additional vehicles. The AA will keep on re-allocating

orders in different vehicles aiming to fit all orders with the

initial number of vehicles. CB is stopped after a predefined

maximum number of iterations. The AA starts the

improvement stage based on one of three strategies:

Delegating the worst tasks to different partition, Delegating

All tasks in a partition to other partitions, or re-allocating all

partitions. The decision of delegation or re-allocation is made

if the savings are higher than the insertion costs.

3.1.2 Structural modeling

Class diagrams describe a static view of any system in terms

of classes and relationships among them [26]. Figure 5 shows

a class diagram of the system under study.

The model consists of two abstract classes: Agents and

Vehicle. In Figure 5, Task Agent, Allocation Agent, and

Vehicle Agent are classes that inherit from Agents Class.

While only Vehicle Agent inherits from Vehicles as well.

There are other concrete classes like Demand Points, Tasks,

and Partitions. A Partition is composed of several Tasks.

Figure 3. Use case diagram

Table 1. Business actors glossary

Actor Synonym Description

Task Agent (TA)
A system that is Responsible for collecting Demand from the demand points,

sorting, and sending them.

Allocation Agent (AA)
A system that is Responsible for allocating the demand points to partitions in

the most cost-efficient way possible.

Vehicle Agent (VA) Vehicle A system that is Represents a vehicle and responsible for the routes ordering.

Demand Points Customers A system that notifies the task agent with the demand needed at which point

784

Table 2. Use cases glossary

Use-Case

Name

Use-Case

Description
Actors (roles)

Most

Demand

First (MDF)

This use case describes the event of a sorting the demand based on MFD, where the tasks are ordered in a

descending order

Tasks Agent

(Primary actor)

Least

Demand

First (LDF)

This use case describes the event of a sorting the demand based on LDF, so the tasks are ordered in an

ascending order

Tasks Agent

(Primary actor)

First in First

Out (FIFO)

This use case describes the event of a sorting the demand based on FIFO where tasks’ sequence

corresponds to the order of arrival.

Tasks Agent

(Primary actor)

Batch

Processing

(NORM)

This use case describes the event of a Processing the demand-based Batch processing, where all available

tasks are sent as one batch

Tasks Agent

(Primary actor)

Iterative

Processing

(ITER)

This use case describes the event of a Processing the demand Iterative processing, where tasks are sent

one by one.

Tasks Agent

(Primary actor)

Contract-Net

Protocol

(CNP)

This use case describes the event of allocating the demand to partitions based on Contract-Net Protocol.

For every task, the best Vehicle Agent is selected according to insertion estimation satisfying capacity

constraints. This strategy contains no backtracking and in case of allocation failure (because of capacity

constraint of Vehicle Agents) the whole process is restarted with an added vehicle

Allocation

Agent

Capacity

Backtracking

(CB)

strategy

This use case describes the event of allocating the demand to partitions based on CNP, but with

backtracking in case of allocation failure. In case when no Vehicle Agent can undertake a new task

because of the capacity constraint, the best Vehicle Agent is selected regardless of capacity limitations.

This agent removes the worst tasks until the new task fits the increased free space. After that, the removed

tasks are allocated again. The reallocation counter controls the number of reallocations and when it

reaches the pre-defined maximum, the number of Vehicle Agents is increased, and the process is restarted.

Allocation

Agent

Delegate

Worst (DW)

This use case describes the event of improving the allocated partitions by delegating the worst tasks if the

savings are higher than the insertion cost.

Allocation

Agent

Delegate All

(DA)

This use case describes the event of improving the allocated partitions by delegating all tasks if the

savings are higher than the insertion cost.

Allocation

Agent

Reallocate

All (RA)

This use case describes the event of improving the allocated partitions as each Vehicle Agent successively

removes all its tasks from the plan and allocates it again using the CNP strategy.

Allocation

Agent

785

Figure 4. Activity diagram

Figure 5. Class diagram

3.1.3 Behavioral modelling

The sate-machine diagram given in Figure 6 illustrates the

state of the Allocation Agent (AA). The AA is chosen to be

illustrated by a state machine diagram as it is the actor with the

largest number of states and is the most complex one.

As shown in Figure 6, AA’s “Staring Allocation phase”

state is triggered when it receives tasks from the Task Agent.

The allocation next state is based on the allocation strategy. If

the allocation strategy of the tasks is to utilize CNP, then AA

state will be “Allocating Using CNP”. However, if the

allocation strategy is CB, then the AA’s state will be

“Allocating Using CB”. This concludes the allocation phase.

The improvement phase is then triggered to improve the initial

allocation, making the state of the AA “Starting Improvement

Phase”. The next state is determined by the improvement

strategy adopted. If it is Delegate Worst, AA’s state will be

“Improving using DW”. While if the strategy is to Delegate

All, AA’s state will be “Improving using DA”. If the strategy

786

is to Re-allocate All, AA’s state will be “Improving using RA”.

The next state would be “Reaching Best Allocation for a

partition”. When the improvement phase is done and the best

allocation is reached, the state would be “Sending the

partitions to VA”. This means that each partition is to be sent

to its allocated vehicle.

The sequence diagram in Figure 7, illustrates how objects

interact with each other. The diagram emphasizes how

messages are sent and received between objects [26, 27]. To

represent the example of a sequence diagram, “Delegate Worst”

is chosen among use cases of the system to show its sequence.

This specific sequence is chosen due to its complexity. Many

scenarios can occur in a single use case and each scenario is

related to a sequence diagram. Thus, a use case can have many

sequence diagrams. Since sequence of the primary scenario is

complex enough, for ease of readability, the sequence diagram

of the primary scenario is given in Figure 7.

Figure 7 illustrates the improvement of the allocation

strategy, ignoring any error due to allocation infeasibility. For

example, the Allocation Agent starts by inquiring about the

worst task from Class “Partition: Partitions” to find the task

with the highest cost in the “Tasks” class. The worst task’s

Insertion Cost (IC) in various vehicles is computed then the

vehicle having the minimum IC is called the winner. Next, the

IC of the winner is compared to the savings (Sv) of keeping

the task at its delegated vehicle. If ICs is less than Sv, the task

is to be transferred. Otherwise, nothing changes.

Figure 6. Sate-machine diagram

Figure 7. Sequence diagram

787

4. CONCLUSION

UML modeling is a powerful tool of visualization for

complex systems. The vehicle routing problem (VRP) is

among the most studied problems in the field of supply chain

management. Agent-based methodology have proven efficient

in representing many real-life problems. It provides a clear

representation of problems in a flexible manner that facilitates

the decision-making process. In this paper, the Agent Based

VRP was addressed from the modeling viewpoint of UML

modeling paradigm. The objective was to provide a clearly

visualized representation of the problem, which serves as an

input for software engineers who will design and implement

the necessary software to solve the VRP problem. Through

building functional, structural, and behavioral models of an

Agent Based VRP system, this paper proposed a novel

perspective for modeling and visualizing the classical VRP.

The approach could extend to include several variants of the

problem to assist in the decision-making process in one of the

known challenges in supply chain management, namely, the

vehicle routing problem and its variants.

REFERENCES

[1] Eriksson, H.E., Penker, M. (2000). Business Modeling

with UML: Business Patterns. New York: Wiley.

[2] Janis, O., Uldis, D. (2017). Topological UML Modeling:

An Improved Approach for Domain Modeling and

Software Development. Elsevier Science Publishers B.

V., PO Box 211 1000 AE Amsterdam, Netherlands.

[3] Kassem, S., Chen, M. (2013). Solving reverse logistics

vehicle routing problems with time windows. The

International Journal of Advanced Manufacturing

Technology, 68: 57-68.

http://dx.doi.org/10.1007/s00170-012-4708-9

[4] Asma, B., Mourad, A. (2017). Object-oriented modeling

and design of reverse logistics management system using

UML. 5th International Conference on Smart Cities and

Green ICT Systems (SMARTGREENS), Rome, Italy, pp.

1-8.

[5] Manuel, R., Claudius, S., Ralf, S., Stephan, R., Markus,

T. (2017). Digital representation in multicopter design

along the product life-cycle. Conference on Intelligent

Computation in Manufacturing Engineering, pp. 559-564.

https://doi.org/10.1016/j.procir.2016.06.008

[6] Dantzig, G.B., Ramser, J.H. (1959). The truck

dispatching problem. Management Science, 6(1): 80-91.

https://doi.org/10.1287/mnsc.6.1.80

[7] Clarke, G., Wright, J.W. (1964). Scheduling of vehicles

from a central depot to a number of delivery points.

Operations Research Journal, 12(4): 519-543.

https://doi.org/10.1287/opre.12.4.568

[8] Toth, P., Vigo, D. (2002). An overview of vehicle routing

problems. The Vehicle Routing Problem, 1-26.

https://doi.org/10.1137/1.9780898718515.ch1

[9] Kassem, S., Korayem, L., Khorshid, M., Tharwat, A.

(2019). A hybrid bat algorithm to solve the capacitated

vehicle routing problem. 2019 Novel Intelligent and

Leading Emerging Sciences Conference (NILES), Giza,

pp. 222-225.

https://doi.org/10.1109/NILES.2019.8909300

[10] Fabien, L., Olivier, P., Fabien, T. (2020). A

lexicographic minimax approach to the vehicle routing

problem with route balancing. European Journal of

Operational Research, 282(1): 129-147.

https://doi.org/10.1016/j.ejor.2019.09.010
[11] Sandra, Z., Sandra, H. (2020). Objectives and methods in

multi-objective routing problems: A survey and

classification scheme. European Journal of Operational

Research. https://doi.org/10.1016/j.ejor.2020.07.005

[12] Korayem, L., Khourshid, M., Kassem, S. (2015). A

hybrid k-means metaheuristic algorithm to solve a class

of vehicle routing problems. Advanced Science Letters,

21(12): 3720-3722.

https://doi.org/10.1166/asl.2015.6555

[13] Doerner, K.F., Hartl, R.F. (2008). Health care logistics,

emergency preparedness, and disaster relief: New

challenges for routing problems with a focus on the

Austrian situation. Operations Research/Computer

Science Interfaces the Vehicle Routing, 43: 527-550.

https://doi.org/10.1007/978-0-387-77778-8_24

[14] Shaopeng, Z., Rong, C., Yu, J., Zhong, W., Allan, L.,

Otto, A.N. (2020). Risk-averse optimization of disaster

relief facility location and vehicle routing under

stochastic demand. Transportation Research Part E:

Logistics and Transportation Review, 141: 102015.

https://doi.org/10.1016/j.tre.2020.102015

[15] Stahlbock, R., Voβ, S. (2008). Vehicle routing problems

and container terminal operations – An update of

research. In: Golden B., Raghavan S., Wasil E. (eds) The

Vehicle Routing Problem: Latest Advances and New

Challenges. Operations Research/Computer Science

Interfaces, vol 43. Springer, Boston, MA.

https://doi.org/10.1007/978-0-387-77778-8_25

[16] Macal, C., North, M. (2005). Tutorial on agent-based

modeling and simulation. Winter Simulation Conference,

Orlando, FL, USA.

https://doi.org/10.1109/wsc.2005.1574234

[17] LeBaron, B. (2002). Short-memory traders and their

impact on group learning in financial markets.

Proceedings of the National Academy of Sciences of the

United States of America, 99(3): 7201-7206.

https://doi.org/10.1073/pnas.072079699

[18] Jacob, L., Niels, B., Rainer, L. (2020). Analysis of

resilience strategies and ripple effect in blockchain-

coordinated supply chains: An agent-based simulation

study. International Journal of Production Economics,

228: 10782. https://doi.org/10.1016/j.ijpe.2020.107882

[19] Caihong, L. (2020). Multi-agent modeling of the

collaborative operation of the producer service supply

chain under the intelligent manufacturing clusters in the

Yangtze River Delta. Journal Européen des Systèmes

Automatisés, 53(4): 487-492.

https://doi.org/10.18280/jesa.530406

[20] Wei, D.F. (2020). Modeling and simulation of a multi-

agent green supply chain management system for

retailers. Journal Européen des Systèmes Automatisés,

53(4): 549-557. https://doi.org/10.18280/jesa.530414

[21] Erik, C. (2020). An agent-based model to evaluate the

COVID-19 transmission risks in facilities. Computers in

Biology and Medicine, 121: 103827.

https://doi.org/10.1016/j.compbiomed.2020.103827

[22] Carley, K.M., Fridsma, D.B., Casman, E., Yahja, A.,

Altman, N., Chen, L.C., Nave, D. (2006). BioWar:

scalable agent-based model of bioattacks. IEEE

Transactions on Systems, Man, and Cybernetics, 36(2):

252-265. https://doi.org/10.1109/TSMCA.2005.851291

788

[23] Page, B., Knaak, N., Kruse, A. (2007). A discrete event

simulation framework for agent-based modelling of

logistic systems. INFORMATIK 2007: Informatik trifft

Logistik. Band 1. Beiträge der 37. Jahrestagung der

Gesellschaft für Informatik e.V. (GI), 24-27. September

2007 in Bremen, pp. 397-404.

[24] Meyer, R. (2015). Event-driven multi-agent simulation.

Paris, France: Springer, pp. 3-16.

http://dx.doi.org/10.1007/978-3-319-14627-0_1

[25] Vokˇrínek, J., Komenda, A., Pěchouček, M. (2010).

Agents towards vehicle routing problems. 9th Int. Conf.

on Autonomous Agents and Multiagent Systems

(AAMAS 2010). Toronto, Canada, 1: 773-780.

[26] Jacobson, I., Booch, G., Rumbaugh, J. (1999). The

Unified Modeling Language User Guide. Addison

Wesley.

[27] Kande, M., Mazaher, S., Prnjat, O., Sacks, L., Wittig, M.

(1998). Applying UML to design an inter-domain service

management application. The Unified Modeling

Language, «UML»'98: Beyond the Notation, First

International Workshop, Mulhouse, France, June 3-4,

1998, Selected Papers, pp. 200-214, 199.

https://doi.org/10.1007/978-3-540-48480-6_16

NOMENCLATURE

VRP Vehicle Routing Problem

ABMS Agent Based Modelling

UML Unified Modelling Language

CNP Contract-Net Protocol

IDEF0 Integration Definition0

MDF Most Demand First

LDF Least Demand First

FIFO First in First Out

TA Task Agent

VA Vehicle Agent

AA Allocation Agent

CB Capacity Backtracking

DW Delegate Worst

DA Delegate All

RA Re-allocate All

ITER Iterative Processing

NORM Batch Processing

ABVRP Agent Based Vehicle Routing Problem

IC Insertion Cost

Sv Savings

789

