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 This paper mainly explores the collaborative distribution to multiple customers at the 

terminal of agricultural-means supply chain (AMSC). Firstly, a cost optimization model 

for collaborative distribution constrained by time window was constructed based on fuzzy 

appointment time function. Next, the proposed model was solved by simulated annealing-

genetic algorithm (SA-GA). Through a case study, the cost optimization model 

constrained by customer satisfaction was compared with that not constrained by customer 

satisfaction. The results show that the cost optimization model constrained by customer 

satisfaction made the customers more satisfied without greatly elevating the distribution 

cost. The research results shed new light on the collaborative distribution of time-sensitive 

agricultural-means (AM) products, and the management of the AMSC.  
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1. INTRODUCTION 

 

The current studies on collaborative distribution mainly 

tackle three issues: the selection of distribution method, the 

selection, assembling, and loading of vehicles, and vehicle 

routing problem (VRP). Among them, the VRP has attracted 

much attention from the academia, owing to its complexity 

and wide application. Many mathematical models and solving 

algorithms have been established for this problem, providing 

an important guidance for distributors to improve the 

distribution efficiency [1]. 

In terms of model construction, Goodarzi and Zegordi [2] 

established a nonlinear mixed-integer programming (MIP) 

model to optimize the distribution network, consisting of parts 

suppliers, cross terminals, and assembly factories. Guedria et 

al. [3] optimized the urban vehicle routing and vehicle loading 

planning. To minimize the total cost of the collaborative 

multiple centers VRP (CMCVRP), Wang et al. [4] designed 

an integer programming model that considers the effective 

transport cost in distribution centers (DC) and that of vehicles 

from each DC, and solved the model with a self-designed 

multi-phase hybrid algorithm, which combines the merits of 

clustering, dynamic planning, and heuristic algorithms. 

Considering vehicle synchronization and grey zone customers, 

Alexandra et al. [5] constructed a multi-objective optimization 

model for two-level VRP in the context of urban freight 

deliveries. 

Through practical applications and academic research, 

various forms of the VRP have emerged, such as the VRP with 

loading constraints [6, 7], the multi-VRP [8], the VRP with 

best service time [9, 10], the VRP with random or dynamic 

demand [11], and the green VRP [10, 12, 13]. In recent 

decades, there is a growing awareness of punctuality and 

customer satisfaction. As a result, more and more scholars 

begin to discuss the VRP with time constraints and the 

objective of customer satisfaction [13-15]. With the increase 

of model complexity, the solving algorithms of the VRP 

become increasingly diverse. The algorithms roughly fall into 

three categories: precise algorithms, traditional heuristic 

algorithms, and modern heuristic algorithms [16-18]. For 

instance, Hanafi et al. [19] presented a sweep algorithm to 

optimize the distribution routes in the capacitated VRP 

(CVRP). 

To overcome the limitations of precise algorithms and 

traditional heuristic algorithms, modern heuristic algorithms 

have gained immense popularity, namely, genetic algorithm 

(GA), simulated annealing (SA) algorithm, tabu search (TS), 

and bionic algorithms [20-23]. To satisfy the time window, 

capacity limit, and order-vehicle compatibility, Sicilia et al. 

[24] put forward a meta-heuristic process algorithm that 

minimizes the distance and cost and optimizes the service 

quality. To minimize total cost and maximize freshness, Wang 

et al. [25] presented a multi-objective VRP with time window 

for perishable food (MO-VRPTW-P), and solved the problem 

with a two-stage heuristic algorithm: the GA based on Pareto 

variable neighborhood search considering time and space 

(STVNS-GA). Aibinu et al. [1] and Singh et al. [26] came up 

with a cluster-based GA for VRP. Li et al. [10] built up a 

mixed integer linear programming (MILP) model with 

simultaneous pickups and deliveries and time windows, and 

designed an intelligent water drop algorithm to solve the 

model. 

To sum up, the long-term in-depth research into the VRP 

has created fruitful results on multi-objective models and 

solving algorithms, providing valuable reference for the 

terminal distribution of agricultural-means supply chain 

(AMSC). Agricultural-means (AM) products like fertilizers 

and pesticides are functional products with strong seasonality. 

The market demand for such products is greatly affected by 

the season and climate conditions, e.g., precipitation and 

temperature. The time-sensitivity demand fluctuates 

irregularly with the elapse of time. On the supply side, AM 

circulation enterprises pursue small profits but quick returns, 

due to the heavy investment, high logistics cost, and narrow 
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profit margin of AM product circulation. 

The supply and demand features of China’s AM pose a great 

challenge to the traditional stockpiling profit model of AM 

distributors and retailers. With the weakening effect of 

inventory, more and more enterprises have turned to 

improving transport and distribution abilities to cope with 

fluctuations in market demand. Nowadays, the AM 

distribution service becomes the key to the competition among 

AM circulation enterprises, for the social transport and 

distribution abilities have been enhanced by the improved 

transport infrastructure in rural areas and the leapfrog 

development of logistics across China. 

So far, China has rolled out standards for AM products, and 

the AM producers have developed mature technologies, 

making AM products increasingly homogeneous. For most 

AM circulation enterprises, the only simulant of the farmers’ 

willingness to buy is services, especially logistics service. 

After all, their products are of similar quality and functions. 

Therefore, the service-oriented collaborative distribution with 

the objective of improving customer satisfaction has become 

an important aspect of AMSC management. 

Considering the features of AM demand, this paper probes 

deep into the multi-retailer, multi-customer VRP of AMSC 

terminal distribution. Specifically, a cost optimization model 

was established for collaborative distribution constrained by 

time window, based on the fuzzy appointment time function. 

The model aims to minimize the distribution cost, while 

ensuring customer satisfaction. It is in line with the practice of 

AMSC management in China. The research results provide a 

reference for China’s AM circulation enterprises to enhance 

distribution ability, lower distribution cost, and improve 

customer satisfaction. 

 

 

2. COST OPTIMIZATION MODEL FOR 

COLLABORATIVE DISTRIBUTION 

 

The distribution of AM products needs to satisfy the 

material and time demands of customers. In modern times, it 

is particularly important to distribute AM products on time. To 

solve the VRP for AM distribution, consideration should be 

given to the distribution cost, and the time window set by 

customers. Based on the actual situation of AM collaborative 

distribution, this paper decides to explore the VRP constrained 

by time window. 

 

2.1 Time window and penalty function 

 

During the design of distribution plan, the distribution 

enterprise can choose vehicles and routes with the least 

distribution cost, if customers have no requirements on 

distribution time, or the products are not time-sensitive. But 

time is a critical consideration in actual distribution. For 

example, the value of some products changes greatly with time. 

Many customers would set a specific distribution time for such 

products. Thus, the VRP is often turned into the VRP with time 

window (VRPTW). 

Let Ti be the distribution time for the completion of task i. 

Then, the start time of task i must fall into the time window 

(ETi, LTi), where ETi and LTi are the earliest allowable start 

time and latest allowable start time of task i, respectively. If a 

vehicle is available before ETi, the vehicle must wait until ETi 

to execute task i; if no vehicle is available before LTi, task i 

must be postponed. That is, the time ti that a vehicle starts to 

execute task i must satisfy: ETi ≤ti ≤LT. 

There are three kinds of time windows in the VRPTW: hard 

time window (HTW), soft time window (STW), and mixed 

time window (MTW). The HTW means the products in each 

task must be delivered to customers within a time range. 

Neither early nor late delivery is acceptable. If a task is 

completed outside the range, a huge penalty will be imposed 

on the distribution enterprise. In this case, the solution is not 

feasible [1]. The STW means, if a vehicle fails to complete 

task i, the distribution enterprise will face a penalty, which is 

positively correlated with the length of time violation. For 

example, if a vehicle completes task i after LTi, the penalty will 

be incurred by the service delay. Finally, the MTW means the 

distribution system is constrained by HTW and STW 

simultaneously. 

Practices show that a large amount of distribution cost can 

be saved, if some customers accept service delay. For 

universality, this sub-section mainly studies the VRP with 

STW (VRPSTW). The penalty incurred by time violation was 

described by a cost function. In reality, the penalty curve may 

take different forms, such as exponential growth, and curvy 

growth. To simplify the problem, it is assumed that the penalty 

increases linearly. Hence, the cost function can be expressed 

as: 
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where, Ci(ti) is the penalty imposed by customer i; ti is the 

arrival time of a vehicle at customer i; c1 the opportunity cost 

incurred by early arrival; c2 is the penalty incurred by late 

arrival. Figure 1 shows the penalty Ci(ti) curve. 

 

 
 

Figure 1. The penalty Ci(ti) curve 

 

Then, the total penalty Ci(ti) imposed by n customers can be 

calculated as: 𝐶(𝑡𝑖) = 𝑐1 ∑ 𝑀𝑎𝑥𝑛
𝑖=1 [(𝐸𝑇𝑖 − 𝑡𝑖), 0] +

𝑐2 ∑ 𝑀𝑎𝑥[(𝑡𝑖 − 𝐿𝑇𝑖), 0]𝑛
𝑖=1 . 

 

2.2 Customer satisfaction based on fuzzy time 

 

The distribution beyond the time window set by customers 

will bring a certain loss, including opportunity cost and 

penalty. To reduce the distribution cost, the distribution 

enterprise must arrange service time and distribution decisions 

in strict accordance with the time window. 

The purpose of meeting the time window is to enhance 

customer satisfaction. To understand the changing customer 

demands, it is important to correctly evaluate the satisfaction 
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level of customers. In general, customer satisfaction can be 

assessed by the following indices: the satisfaction rate of 

orders, the satisfaction of distribution price, and the 

satisfaction of service time. 

Considering the features of customer demands for AM 

products, this sub-section mainly explores the collaborative 

distribution in the light of the satisfaction of service time. The 

fierce competition among AM suppliers provides farmers a 

dazzling array of choices. These customers pay attention to 

both distribution price and delivery timeliness. 

Crop planting is sensitive to season and climate. For many 

farmers, the AM products need to be supplied within the short 

time window of planting. To grasp sales opportunities, the AM 

suppliers must strive to improve the timeliness and reliability 

of distribution service. 

To reflect the supply-demand relationship in AM market, 

this sub-section discusses the collaborative distribution of AM 

products under the constraint of time window. As shown in 

Figure 2, customers are theoretically fully satisfied with 

services between ETi and LTi, and completely dissatisfied if 

the delivery is outside the time window. 

 

 
 

Figure 2. The theoretical relationship between customer 

satisfaction and delivery time 

 

In reality, however, the customer satisfaction varies with the 

specific time of delivery in the time window. Some customers 

might only be satisfied with the service provided in a short 

period within the time window. If the service is provided in 

other periods, the customer satisfaction could decrease as the 

delivery time moves away from the short period of full 

satisfaction. 

Let [ETi, LTi] be the time window set by a customer, and 

[ETi
*, LTi

*] be the period of full satisfaction. As shown in 

Figure 3, the customer satisfaction increases in (ETi, ETi
*), and 

decreases in (LTi
*, LTi). 

 

 
 

Figure 3. The actual relationship between customer 

satisfaction and delivery time 

 

Therefore, the satisfaction of customer i with the service 

time ti can be described by a fuzzy appointment time function 

fi(ti): 
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where, ti is the arrival time of a vehicle at customer i; [ETi, LTi] 

is the time window required by customer i; [ETi
*, LTi

*] is the 

period of full satisfaction of customer i; α is the sensitivity of 

customer i to the time window and the period of full 

satisfaction.  

 

2.3 Model construction 

 

To reduce distribution cost and enhance customer 

satisfaction, the AM products should be delivered within the 

time window and in the quantity required by customers. 

Considering the dispersion and limited demand of each 

customer in rural market, both vehicle and route should be 

optimized to complete the distribution tasks in the 

corresponding time windows. Thus, this paper sets up a 

VRPSTW model, with customer satisfaction fi(ti) as the 

constraint, and the distribution cost DC, which is composed of 

effective transport cost FC and penalty C(ti), as the objective 

function: 
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Objective function (1) aims to minimize the distribution 

cost, including the effective transport cost and penalty; 

Constraint (2) means the mean customer satisfaction must be 

greater than or equal to the given value of β; Constraint (3) 

means the number of vehicles leaving the distribution center 

should not surpass k; Constraint (4) means all vehicles leaving 

the distribution center must return to the center; Constraints (5) 

and (6) mean that each vehicle can only serve each customer 

once; Constraint (7) means the quantity of products loaded 

onto a vehicle should not surpass the loading capacity of the 

vehicle; Constraint (8) means the time window required by 

each customer; Constraint (9) means the value range of xijk; 

Constraint (10) means the travel time from customer i to 

customer j; Constraint (11) means the travel time from the 

distribution center to customer i; Constraint (12) means the 

penalty for the delivery beyond the time window; Constraint 

(13) means the degree of satisfaction of customer i with 

different arrival times ti. 

The symbols and meanings of each parameter in the model 

are given in Table 1. 

 

 

3. MODEL OPTIMIZATION BY SA-GA 

 

The VRP is a special case of traveling salesman problem 

(TSP), which is a typical nondeterministic polynomial time 

(NP)-complete problem. The complexity of the TSP increases 

exponentially with the problem scale. Despite extensive 

research into optimization algorithms, there is no effective 

algorithm to solve such an NP-complete problem. Despite 

their simplicity and feasibility, the traditional precise 

algorithms and heuristic algorithms can only solve small-scale 

problems or problems with a certain feature. As a result, many 

scholars have shifted their attention to modern heuristic 

algorithms. 

Currently, the TSP is mainly solved by GA, SA algorithm, 

ant colony algorithm (ACA), and particle swarm optimization 

(PSO). Each algorithm has its unique merits and defects. 

Therefore, these algorithms have been combined into hybrid 

algorithms to fully exert their complementary advantages. The 

hybrid algorithms include SA-GA, GA-PSO, ACA-PSO, etc 

[5-7]. This sub-section selects the SA-GA to solve the 

established VRPSTW model, in view of the features of the 

problem and the strengths of this hybrid algorithm. 

The algorithm research for the TSP provides a good 

reference to the solution of VRP. Of course, there are some 

differences between VRP and TSP. The VRP is more complex 

than the TSP, and thus more difficult to solve. For instance, 

the sheer number of customers makes it impossible to meet the 

demands of all customers with one vehicle or one route alone. 

Multiple vehicles and routes must be designed to optimize the 

problem. However, the VRP is closer to the actual situation 

than the TSP. Solving the VRP with SA-GA could avoid the 

local optimum trap and boost convergence. The SA-GA firstly 

randomly initializes a population. Then, the global optimal 

solution is searched for iteratively by the improved GA. After 

that, the SA operation is introduced to configure the 

parameters of temperature decrease, and control the global 

search of the GA. The iterations continue until the termination 

condition is satisfied. The workflow of the SA-GA is 

illustrated in Figure 4. 

 

Table 1. The symbols and meanings of each parameter in the model 

 
Symbol Meaning 

i,j The serial number of customers, i,j=1…n; i,j=0 stands for the distribution center. 

k The serial number of vehicles, k=1…m 

dij The shortest distance between customers i and j 

ti The arrival time of a vehicle at customer i 

vij The mean travel speed from customer i to customer j 

Tij The travel time between customers i and j 

Cij The distribution cost per mile per vehicle from customer i to customer j 

qi The number of products delivered to customer i 

Q The loading capacity of vehicle k 

ETi, LTi The time window required by customer i 

ETi
*, LTi

* The period of full satisfaction of customer i 

STi The service time to complete the task of customer i 

β The mean customer satisfaction 
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Figure 4. The workflow of the SA-GA 

 

The specific steps of solving the VRP by the SA-GA are 

summarized below. 

Step 1. Set the initial population size NP, and generate the 

initial population.  

According to the features of the VRP, generate a 

chromosome by ordinal number. First, represent the 

distribution set as zero, and each customer as a natural number 

1-n, creating a random sequence with n numbers. Then, 

accumulate the customer demand from left to right. If the total 

demand of the first i customers exceeds the loading capacity 

of the vehicle, set i-1 as a breakpoint. Next, accumulate the 

customer demand from customer i, and set the next breakpoint. 

Repeat the accumulation process until reaching customer n. 

After that, generate a matrix of breakpoints, and add a zero at 

each breakpoint, the start of the sequence, and the end of the 

sequence. Repeat the above process of chromosome 

generation until the number of chromosomes reaches the 

population size, marking the completion of population 

initialization. 

Step 2. Judge if the termination condition g≥G is satisfied. 

If yes, save the optimal solution and end the program; 

otherwise, go to Step 3. 

Step 3. Judge if the SA operates. If g≥2, go to Step 9; 

otherwise, go to Step 4. 

Step 4. Calculate the fitness 𝑭(𝑿𝒊), and save the current 

optimal chromosome Xmax. If F(Xi)<F(Xi-1), go to Step (5); 

otherwise, go to Step (8). 

Calculate fitness in the same way as traditional GA. Since 

the individual fitness equals the value of the objective function 

and the model aims to minimize the objective function, take 

the individual with the minimum reciprocal of fitness as the 

new solution to replace the optimal solution. 

Step 5. Perform roulette wheel selection.  

Determine the selection probability of each individual 𝑃𝑖 =
𝐹𝑖/ ∑ 𝐹𝑖

𝑁𝑃
𝑖=1  according to the ratio of individual fitness to global 

fitness. Then, generate a random number 𝜉𝑘 ∈ 𝑈(0,1) . If 

𝑃𝑃𝑖−1 ≤ 𝜉𝑘 ≤ 𝑃𝑃𝑖  (𝑃𝑃𝑖 = ∑ 𝑃𝑃𝑗
𝑖
𝑗=1 ), select individual i. 

Step 6. Perform crossover and mutation to prevent illegal 

coding by traditional GA. 

Use single parent GA to transpose one chromosome at 

multiple points at a preset probability Pe before crossover and 

mutation. Configure the transposition probability according to 

the number of iterations: If that number iteration time g<G/3, 

set the transposition probability to 0.8; if G/3≤g<2G/3, set the 

probability to 1-g/G; if g>2G/3, set the probability to 0.05. 

Then, obtain a transposition log u, which is a position in 

chromosome. After that, perform crossover and mutation as 

per the transposition probability. 

Step 7. Update the population by computing individual 

fitness and saving the current optimal chromosome Xmax. Then, 

go to Step 2. 

Step 8. Set the initial temperature T0 and the minimum 

temperature Tmin. 

Step 9. If T>Tmin, repeat Steps 4-6 and then go to Step 10; 

otherwise, go to Step 2. 

Step 10. Update the population by computing individual 

fitness and saving the current optimal chromosome Xmax. Then, 

go to Step 2. Randomly generate 𝛿𝑖 ∈ 𝑈(0,1) by evaluating 

the new solution ∆𝑓 = 𝐹(𝑋𝑖) − 𝐹(𝑋𝑖−1) > 0 . If ∆ℎ =
exp (∆𝑓/𝑇) ≤ 𝛿𝑖 , accept the new solution Xi; otherwise, 

accept a new solution at a certain probability, and save the 

current solution to Min. 

Step 11. Reduce the temperature Ti+1=Ti*a, and go to Step 

9. 

 

 

4. EXAMPLE ANALYSIS 

 

To verify its effectiveness, the VRPSTW model optimized 

by SA-GA is applied to describe the collaborative distribution 

by three AM retailers in the downstream of the AMSC, and 

compared with a model not constrained by customer 

satisfaction. In the example, the coordinates of the three 

retailers are [x01,𝑦01]=[4,11] , [x02,𝑦02]=[7,12] , and 
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[x03,𝑦03]=[8,9], respectively; retailer 1 serves customers 1, 2, 

5, 7, and 10; retailer 2 serves customers 3, 9, 12, 13, 14, and 

16; retailer 3 serves customers 4, 6, 8, 11, 15, 17, and 18. 

The other parameters are configured as follows: Cij = 5 yuan 

per vehicle per mile; 𝑣0𝑖 = 𝑣𝑖𝑗 = 60 miles/hour; Q=5; k=1; 

α=0.6, and β=70%; c1=10 yuan/hour; c2=5 yuan/hour; t0=8 am; 

𝑑𝑖𝑗 = 1.2√(𝑥𝑗 − 𝑥𝑖)
2 + (𝑦𝑗 − 𝑦𝑖)2 . The location, demand, 

and time window of each customer are listed in Table 2. 

 

Table 2. The locations, demands, and time windows of 

customers 

 
Customers i, j 1 2 3 4 5 6 

Coodinate [xi,yi] [5,18] [0,17] [8,10] [7,15] [2,6] [10,4] 

Distribution 

quantity  
1.2 1.9 0.8 1.5 1.2 0.8 

[ETi,LTi] [8,12] [8,12] [8,15] [10,15] [7,14] [10,16] 

[ETi
*,LTi

*] [9,11] [10,11] [8,12] [10,11] [10,14] [12,15] 

Service time 0.3 0.5 0.2 0.4 0.3 0.2 

Customers i, j 7 8 9 10 11 12 

Coordinates [3,11] [12,6] [13,11] [5,9] [3,2] [15,16] 

Distribution 

quantity 
1.6 1 1.4 0.8 1.3 1.4 

[ETi,LTi] [7,12] [12,18] [12,18] [8,12] [12,18] [10,18] 

[ETi
*,LTi

*] [8,9] [12,14] [14,18] [8,9] [12,16] [13,17] 

Service time 0.3 0.5 0.2 0.2 0.3 0.3 

Customers i, j 13 14 15 16 17 18 

Coordinates [4,14] [11,15] [9,1] [12,9] [6,3] [1,10] 

Distribution 

quantity 
1.5 1.3 1.2 0.9 1.1 0.8 

[ETi,LTi] [8,12] [8,12] [12,18] [12,17] [12,18] [8,11] 

[ETi
*,LTi

*] [8,11] [9,11] [12,15] [12,16] [12,16] [8,9] 

Service time 0.4 0.3 0.4 0.3 0.4 0.2 

 

To realize collaborative distribution, the three retailers need 

to set up a distribution center. The center could be a retail store 

or a public warehouse. The site selection must fully consider 

various factors, such as geographical location, traffic 

conditions, and inventory capacity. For simplicity, one of the 

three retailers was chosen as the distribution center. After 

comprehensive evaluation, retailer 2 was selected as the 

distribution center, which manages the inventory for the three 

retailers and serves as the starting point of all distribution tasks. 

Under the above parameter setting, the optimization result 

and final objective function value of each route were obtained 

by the SA-GA. To demonstrate the algorithm performance and 

model reliability, a model constrained by customer satisfaction 

was compared with a model without that constraint. 

 

4.1 Algorithm effectiveness 

 

As shown in Figures 5 and 6, the optimal individual fitness 

decreased rapidly whether the model is constrained by 

customer satisfaction or not. The fitness values of the two 

models dropped from the initial value of 800 to 400 through 

about 150 iterations, and eventually converged at 436.32 and 

427.67, respectively. The results demonstrate the optimization 

ability, optimization speed, and stability of the SA-GA. 

 

 
 

Figure 5. The fitness curve of the model constrained by 

customer satisfaction 

 

 
 

Figure 6. The fitness curve of the model not constrained by 

customer satisfaction 

 

4.2 Final value of objective function 

 

As shown in Table 3, the model constrained by customer 

satisfaction had a total distribution cost of 663.5 yuan, a total 

travel distance of 129.6 miles, and an effective transport cost 

of 420.90 yuan. The cost incurred by the model was slightly 

higher than that by the model without being constrained by 

customer satisfaction. However, the consideration customer 

satisfaction reduced the penalty by 60%, and improved 

customer satisfaction by 49%. It is worthwhile to greatly 

enhance customer satisfaction at the expense of a slight growth 

in distribution cost. Hence, the model constrained by customer 

satisfaction is very effective in actual distribution. 

 

Table 3. The comparison of optimization results 

 
 Constrained by customer satisfaction Not constrained by customer satisfaction 

Total travel distance (mile) 129.60 109.80 

Effective transport cost (yuan) 420.90 387.77 

Penalty (yuan) 15.5 39.9 

Total distribution cost (yuan) 663.50 588.90 

Mean customer satisfaction 94.40% 45.40% 

Total service time (hour) 8.63 7.78 
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Table 4. The comparison between distribution plans 

 

Distribution route 
Constrained by customer satisfaction Not constrained by customer satisfaction 

Optimized route Carrying capacity Optimized route Carrying capacity 

1 
10⟶18⟶7⟶13 

4.7 
13⟶7⟶18 

3.9 
8:04 8:21 8:35 8:57 8:04 8:32 8:52 

2 
4⟶1⟶2 

4.6 
14⟶1 2⟶9⟶16 

5 
10:00 10:26 10:53 9:10 10:00 12:00 12:14 

3 
3⟶16⟶8⟶6 

3.5 
4⟶1⟶2 

4.6 
11:25 12:00 12:22 12:55 12:36 13:04 13:28  

4 
5⟶11⟶17⟶15 

4.8 
10⟶5⟶11⟶17 

4.4 
13:17 13:40 14:02 14:30 14:02 14:20 14:42 15:03 

5 
14⟶12⟶9 

4.1 
3⟶8⟶6⟶15 

3.8 
15:00 15:22 15:47 15:30 15:49 16:22 16:37 

In terms of total service time, the model constrained by 

customer satisfaction consumed nearly 1 more hour than the 

model without the constraint. The main reason is the low 

opportunity cost of the example, which extends the waiting 

time and reduces the travel distance.  

 

4.3 Optimization plan 

 

Table 4 and Figures 7-8 compare the optimized routes, and 

distribution plans obtained by the models with and without the 

constraint of customer satisfaction. It can be seen that more 

than 70% of the loading capacity of vehicles were occupied in 

both models, and the optimized routes of the two models were 

highly similar. However, the two models differed greatly in 

the sequence of visiting customers. Despite having similar 

travel distances, the consideration of customer satisfaction 

more than doubled the customer satisfaction.  

The crux of supply chain management is to put customers 

first, and maximize customer satisfaction. Otherwise, the 

demand market will not be stable or sustainable. In the short 

term, the model without being constrained by customer 

satisfaction can lower distribution cost in a certain extent. But 

the cost reduction is achieved against the principle and 

objective of supply chain management, creating a bottleneck 

in the long run. Thus, the model constrained by customer 

satisfaction is an effective way to strike a balance between cost 

and service. 
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Figure 7. The distribution plan constrained by customer 

satisfaction 
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Figure 8. The distribution plan not constrained by customer 

satisfaction 

 

4.4 Effect of collaborative distribution 

 

To further validate the application effect of our model, the 

results of collaborative distribution between the three retailers 

were compared with the results of separate distribution by each 

retailer. The results are compared in Figure 9 and Table 5. 
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Figure 9. The separate distribution plan constrained by 

customer satisfaction 
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Table 5. The comparison between optimization results 

 

 Collaborative distribution with 

constraint of customer satisfaction 

Separate distribution plan 

constrained by customer satisfaction 

Total travel distance (mile) 129.60 144.12 

Effective travel distance (mile) 84.18 101.6 

Effective transport cost (yuan)  420.90 508 

Penalty (yuan) 15.50 13.90 

Total distribution cost (yuan) 663.50 734.50 

Mean satisfaction (%) 94.40  96.40  

Number of vehicles (each) 1  3  

Total service time (hour) 8.63 9.04 

 

As shown in Figure 9, the routes of the three retailers were 

intersected and intricate. Some routes are not economical or 

reasonable. By contrast, there were basically no intersected 

routes in collaborative distribution plan. In addition, the 

products occupied over 70% and even 90% of the loading 

capacity of vehicles in collaborative distribution with 

constraint of customer satisfaction, while that proportion was 

merely around 60% in separate distribution with constraint of 

customer satisfaction. 

As shown in Table 5, the total distribution cost was 734.50 

yuan in separate distribution with constraint of customer 

satisfaction, much higher than that of collaborative 

distribution with constraint of customer satisfaction. This is 

because the separate distribution has a relative long total travel 

distance (144.12 miles), although its penalty is relatively low. 

Besides, the collaborative distribution only uses 1/3 the 

number of vehicles adopted by separate distribution, which 

offsets its slightly higher penalty. The advantage of 

collaborative distribution is even more obvious, if considering 

the depreciation, repair and maintenance costs of the vehicles, 

and the opportunity cost incurred by idling. 

In summary, the model constrained by customer satisfaction 

boasts a much higher customer satisfaction than the model 

without that constraint, despite a slightly higher total 

distribution cost. Moreover, the collaborative distribution of 

AMSC outshines separate distribution in cost, benefit, and 

time. Therefore, the collaborative distribution between 

retailers is an effective way to improve the efficiency of supply 

chain operations. 

 

 

5. CONCLUSIONS 

 

Targeting the collaborative distribution to multiple 

customers at the terminal of the AMSC, this paper sets up a 

collaborative distribution model, and optimizes the model with 

SA-GA. Then, the optimized routes of the models with and 

without the constraint of customer satisfaction were compared, 

revealing the key issues in the collaborative distribution of 

AMSC terminals. The main results of the research are as 

follows: 

(1) The authors established a cost optimization model for 

collaborative distribution based on time window. Considering 

the time sensitivity of AM demand, the objective function was 

defined in the light of transport cost, as well as the opportunity 

cost and penalty incurred when the arrival time falls outside 

the time window required by the customer. To reflect the 

degree of consumer satisfaction with service time in different 

periods of the time window, the relationship between time 

window and customer satisfaction was analyzed; then, a fuzzy 

appointment time function was built for each customer, and 

treated as a constraint. By introducing that function, the 

objective function of total distribution cost became more 

realistic. In this way, the established model helps to reduce the 

cost of distribution enterprises, realize the goal of 

collaborative distribution, grasp sales opportunities in the 

AMSC market, and improve customer satisfaction and 

customer loyalty. 

(2) The authors also designed a robust SA-GA. Based on the 

parameter features of the model, the ordinal coding method 

was adopted, and the single parent genetic operator was 

applied to perform crossover and mutation. During algorithm 

execution, genetic operations were implemented in the first 

iteration; SA operation was introduced since the second 

iteration. The temperature decrease was configured to control 

the global search and time of the GA, thereby speeding up the 

solving process, enhancing the convergence ability, and 

prevent falling into the local optimum trap.  

(3) Through empirical analysis, the results of the models 

with and without the constraint of customer satisfaction were 

compared, and the distribution plan of collaborative 

distribution was contrasted with that of separate distribution. 

The comparison shows that the collaborative distribution 

model constrained by customer satisfaction clearly 

outperforms that without the constraint, and also outshines the 

separate distribution. Overall, the collaborative distribution 

model constrained by customer satisfaction boasts a much 

higher customer satisfaction than that without the constraint, 

despite its slightly higher total distribution cost, total travel 

distance, and effective transport cost. It is worthwhile to 

greatly enhance customer satisfaction at the expense of a slight 

growth in distribution cost. The collaborative distribution 

model constrained by customer satisfaction is in line with the 

principle of supply chain management. In addition, the 

collaborative distribution of AMSC is superior to separate 

distribution in cost, benefit, and time. The collaborative 

distribution is the inevitable choice for AMSC and retailers in 

the future. 
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