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Finding the optimal iteration of Gaussian quadrature rule is one of the important 

problems in the computational methods. In this study, we apply the CESTAC (Controle 

et Estimation Stochastique des Arrondis de Calculs) method and the CADNA (Control 

of Accuracy and Debugging for Numerical Applications) library to find the optimal 

iteration and optimal approximation of the Gauss-Legendre integration rule (G-LIR). A 

theorem is proved to show the validation of the presented method based on the concept 

of the common significant digits. Applying this method, an improper integral in the 

solution of the model of the osmosis system is evaluated and the optimal results are 

obtained. Moreover, the accuracy of method is demonstrated by evaluating other 

definite integrals. The results of examples illustrate the importance of using the 

stochastic arithmetic in discrete case in comparison with the common computer 

arithmetic. 
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1. INTRODUCTION

Numerical solution of mathematical models are one of the 

important subjects of applied mathematics. There are many 

mathematical models that their importance in the real life can 

not be hidden. Some of these models are the model of 

computer viruses [1-3], model of HIV infection [4-7], model 

of smoking habit [8], model of energy supply-demand system 

[9, 10], nervous stomach mathematical model [11], 

susceptible-infected-recovered epidemic model [12] and many 

other models [13]. 

The reverse osmosis system is a famous technique of water 

purification. Based on this model, semi-penetrable covers can 

be applied to the process of isolating and eliminating dissolved 

particles from water [14]. In converse osmosis, this is done by 

applying high pressure to the centralized cover so that by 

applying pressure, pure water flows through the semi-

penetrable membrane to the other side at low condensation 

[15]. This phenomenon can be formulated as an advection-

diffusion equation and we can apply it to simulate water and 

engineering problems such as the model of converse osmosis 

system [16-18]. In this paper, one of numerical integration 

rules is applied to find the approximate solution of the osmosis 

model. 

Numerical integrations or quadrature rules are well known 

schemes to approximate the definite or improper integrals. The 

general form of a quadrature rule is formed as: 

𝑄 = ∫
𝛽

𝛼

𝜈(𝑟)𝑆(𝑟)𝑑𝑟 ≃ 𝑄𝐽 =∑

𝐽

ℓ=0

𝑤ℓ𝑆(𝑟ℓ), (1) 

where, 𝜈(𝑟)  is a weight function, 𝑤ℓ, ℓ = 0,1, . . . , 𝐽  are

coefficients (weights) , 𝑟ℓ are points of the rule and S is a given

function integrable on the interval [𝛼, 𝛽]  with the weight 

function v. 

The Gaussian integration rule has been applied to estimate 

the different kinds of functions [19-22]. Deloff [23] applied 

the G-LIR to approximate the singular integrals and Verlinden 

[24] used this rule for a definite integral with an endpoint

singularity. Also, Lian and Guo [25] worked on interpolation

by combining the Gauss-Legendre and the Lobatto-Birkhoff

integration rules. Furthermore Elliott and Johnston [26]

applied this rule to evaluate the integrals involving the Hankel

function.

In order to apply the G-LIR, the floating-point arithmetic 

(FPA) and the stochastic arithmetic (SA) can be applied. But 

what are the differences between the FPA and the SA? What 

are the advantages of the SA? Why do we want to apply the 

SA instead of the FPA? 

In all of the mentioned papers, the authors used the FPA to 

find the approximate solution without considering optimal 

iteration, optimal approximation and the validation of 

numerical results. In these works, the numerical results are 

obtained for fixed and determined step size. In the FPA, the 

results may be false or with low accuracy without awareness 

of the user. The usual termination criterion based on the FPA 

is in form:  

|𝑄 − 𝑄𝐽| ≤ 휀, 𝑜𝑟|𝑄𝐽 −𝑄𝐽−1| ≤ 휀, (2) 

where, 휀  is an arbitrary positive value and 𝑄𝐽  is the 

approximate of Q. This criterion may not be acceptable. 

Because for large value of 휀  the process will be stopped 

quickly and the suitable approximation can not be produced 

and for small 휀  many iterations can be generated without 

progressing the accuracy of the results. Also, the first criterion 

in (2) is traditional absolute error to be less or equal to 휀 that 
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depends on the exact solution. 

In the SA, in place of (2), the following criterion is applied, 

 
|𝑄𝐽 − 𝑄𝐽−1| = @. 0, (3) 

 

which depends on two successive approximations 𝑄
𝐽
 and 𝑄

𝐽−1
. 

Also, sign @. 0 is called the informatical zero as it includes the 

mathematical zero. It means that the difference between these 

two numerical results has not any significant digits and 

therefore the number of common significant digits (NCSDs) 

of 𝑄
𝐽
 and 𝑄

𝐽−1
 is the same. 

The aim of this work is to find the optimal iteration, error 

and approximation of G-LIR for solving the reverse osmosis 

model using the CESTAC method. La Porte and Vignes [27, 

28] described about applications of the SA for reliable 

scientific computation and error analysis in computing, 

Chesneaux [29, 30] presented the equality relations in 

scientific computing and also properties of the SA and he [31] 

described the CADNA library as an ADA tool for round-off 

errors analysis and for numerical debugging, Lamotte et al. 

[32] presented a version of the CADNA for use with C or C++ 

programs and Alt et al. applied this technique to validate the 

results of collocation methods for ODEs [33]. Jézéquel et al. 

studied the infinite integrals using Romberg’s method [34] and 

a dynamical strategy for approximation methods [35]. Also, 

they illustrated the CADNA library for estimating round-off 

error propagation in the paper [36]. Scott et al. [37] presented 

the numerical study of ’health check’ for scientific codes using 

the CADNA approach. Graillat et al. [38, 39] studied the SA 

in multi precision, dynamical control of Newton’s method for 

multiple roots of polynomials and numerical validation of 

compensated summation algorithms with SA. Eberhart et al. 

[40] presented a high performance numerical validation using 

the SA. In recent years, the CESTAC method was applied to 

validate the results of several numerical methods such as 

estimating the value of interpolation polynomials [41], 

improper and definite integrals [42, 43], dynamical control on 

Gauss-Laguerre integration rule [44], evaluating the fuzzy 

definite integrals [45], numerical validation of the Sinc-

collocation method to solve linear integral equations [46], 

finding optimal iteration of the power and inverse iteration 

methods, solving linear systems, fuzzy Newton-Cotes 

integration rules [47], finding the optimal parameter of the 

homotopy analysis method for solving integral equations [48], 

solving fuzzy integral equations [49], validating Taylor-

collocation method for solving Volterra integral equations 

with discontinuous kernels [50] and load leveling problem 

[51]. 

The CESTAC method applies the SA in its computations 

and it is more useful than the FPA. Also, in order to implement 

the CESTAC method, the CADNA library (http://cadna.lip6.fr) 

must be used instead of the common mathematical packages 

such as Matlab or Maple. In this library we prepare the 

programs using C/C++ or FORTRAN and they are performed 

on the LINUX operating system. This method is able to 

eliminate the unessential iterations but the FPA does not have 

this ability. 
  
 

2. PRELEMINARIES 

 

2.1 Mathematical osmosis model 

 

The following model is presented to forecast the 

condensation of salt solutions in semi-penetrable covers in the 

converse osmosis model as [17]:  

 

𝑦
∂Φ

∂𝑥
= 𝛼

∂2Φ

∂2𝑦
, (4) 

 

with 𝛼 =
𝐷ℎ

𝑣0
 and the boundary conditions are: 

 

Φ(0, 𝑦) = 𝜙0, Φ(𝑥,∞) = 𝜙1, (5) 

 

and  

 

−𝐷
∂Φ

∂𝑦
(𝑥, 0) = 𝑞Φ(𝑥, 0), (6) 

 

where, space variables are demonstrated by 𝑥 and 𝑦 and Φ =
Φ(𝑥, 𝑦)  shows the condensation of salt solutions in semi-

penetrable covers at point (x, y). q is the velocity of water flow 

in semi-permeable distribution, D is the salt diffusion in water, 

h is the distance from semi-permeable boundary to canal 

center and finally 𝜙
0
 and 𝑣0 are the concentration away from 

semi-permeable membranes and horizontal velocity at 

distance h from semi-boundary. Also, we should note that q, 

D, h and 𝑣0 are constant values. 

  

2.2 Gauss-Legendre integration rule 

 

The quadrature integration formula (1) for 𝜈(𝑟) = 1  and 

[𝛼, 𝛽] = [−1,1] is called the G-LIR as follows: 

 

𝑄 = ∫
1

−1

𝑆(𝑟)𝑑𝑟 ≃ 𝑄𝐽 =∑

𝐽

ℓ=0

𝑤ℓ𝑆(𝑟ℓ), (7) 

 

where, the nodes {𝑟ℓ}ℓ=0
𝑛 , are zeros of the Legendre 

polynomial. 

 

𝑃𝐽(𝑟) =
1

2𝐽𝐽!

𝑑𝐽

𝑑𝑟𝐽
[(𝑟2 − 1)𝐽]. 

 

The polynomials 𝑃𝐽(𝑟) satisfy in the following recurrence 

relation:  

 

{
 
 

 
 
𝑃0(𝑟) = 1,

𝑃1(𝑟) = 𝑟,

𝐽𝑃𝐽(𝑟) = (2𝐽 − 1)𝑟𝑃𝐽−1(𝑟) − (𝐽 − 1)𝑃𝐽−2(𝑟), 𝐽 ≥ 2.

 (8) 

 

Theorem 1. The solution of G-LIR on [−1,1] with 𝐽 points 

for polynomials of degree ≤ 2𝐽 − 1 is exact.  

Proof: see the papers [52, 53]. 

Theorem 2. If 𝑆 ∈ 𝐶2𝐽[−1,1], the 𝐽-the order error term of the 

G-LIR is in the following form: 

 

𝐸𝐽(𝑆) = 𝑄
𝐽
− 𝑄 =

22𝐽+1(𝐽!)4

(2𝐽 + 1)((2𝐽)!)2

𝑆(2𝐽)(𝜂)

(2𝐽)!

= 𝑒𝐽
𝑆(2𝐽)(𝜂)

(2𝐽)!
, 

(9) 
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where, 𝑒𝐽 =
22𝐽+1(𝐽!)4

(2𝐽+1)((2𝐽)!)2
 and −1 < 𝜂 < 1. 

Proof: see the references [52, 53]. 

Now, for finding the order of error term in Eq. (9) at first 

we define:  

 

𝑀ℏ = max
−1≤𝑟≤1

|𝑆(ℏ)(𝑟)|

ℏ!
, ℏ ≥ 0. (10) 

 

For a large class of infinitely differentiable functions 𝑆 on 

[−1,1], we have 𝑀ℏ < ∞, ℏ ≥ 0. By combining Eqns. (9) and 

(10), we obtain: 

 

|𝐸𝐽(𝑆)| ≤ 𝑒𝐽𝑀2𝐽, 𝐽 ≥ 1, (11) 

 

and the size of 𝑒𝐽  is essential in examining the rate of 

convergence. The term 𝑒𝐽 can be made more understandable 

by estimating it using Stirling’s formula [54],  

 

𝐽! ≃ 𝑒−𝐽𝐽𝐽√2𝜋𝐽, (12) 

 

which is true in a relative error sense as 𝐽 → ∞ . Then we 

obtain: 

 

𝑒𝐽 ≃
𝜋

4𝐽
𝑎𝑠𝐽 → ∞. (13) 

 

Now, we can write  

 

𝐸𝐽(𝑆) = 𝒪(4−𝐽). (14) 

 

The details of the G-LIR can be found in the papers [52, 53, 

55, 56]. 

For integrals on other finite intervals, the following formula 

can be applied  

 

∫
𝛽

𝛼

𝑆(𝑡)𝑑𝑡

= (
𝛽 − 𝛼

2
)∫

1

−1

𝑆 (
𝛼 + 𝛽 + 𝑟(𝛽 − 𝛼)

2
) 𝑑𝑟, 

(15) 

 

reducing the integral to the standard interval [−1,1]. 
  

2.3 CESTAC method-CADNA library 

 

In this section, the CESTAC method is described and the 

algorithm of this method is presented. Also, a sample program 

of the CADNA library is demonstrated and finally advantages 

of the presented method based on the SA in discrete case are 

investigated in comparison with the traditional FPA [32, 34-

37, 40]. 

Assume that some representable values are produced by 

computer and they are collected in set 𝐴. Then 𝑊 ∈ 𝐴 can be 

produced for 𝑤 ∈ ℝ with ℛ mantissa bits of the binary FPA in 

the following form: 

 

𝑊 = 𝑤 − 𝜒2𝐸−ℛ𝜉, (16) 

 

where, sign of w showed by x, missing segment of the mantissa 

presented by 2−ℛ𝜉  and the binary exponent of the result 

characterized by E. Moreover, in single and double precisions 

ℛ = 24,53 respectively. 

Assume 𝜉 is the casual variable that uniformly distributed 

on [−1,1]. After making perturbation on the final mantissa bit 

of 𝑤 we will have (𝜇) and (𝜎) as mean and standard deviation 

for results of W which have important role in accuracy of W. 

Repeating this process 𝐽 times for 𝑊𝑖 , 𝑖 = 1, . . . , 𝐽 we will have 

quasi Gaussian distribution for results. It means that 𝜇  for 

these data equals to the exact 𝑤. It is clear that we should find 

𝜇 and 𝜎 based on 𝑊𝑖 , 𝑖 = 1, . . . , 𝐽. For more consideration, the 

following algorithm [28] is presented where 𝜏𝛿  is the value of 

𝑇 distribution as the confidence interval is 1 − 𝛿 with 𝐽 − 1 

freedom degree. 

 

Algorithm 1: 

Step 1- Make the perturbation of the last bit of mantissa to 

produce 𝐽 samples of 𝑊 as Φ = {𝑊1,𝑊2, . . . ,𝑊𝐽}. 

Step 2- Find 𝑊𝑎𝑣𝑒 =
∑
𝐽
𝑖=1𝑊𝑖

𝐽
. 

Step 3- Compute 𝜎2 =
∑𝐽𝑖=1 (𝑊𝑖−𝑊𝑎𝑣𝑒)

2

𝐽−1
.  

Step 4- Find the estimation of NCSDs of 𝑤 and 𝑊𝑎𝑣𝑒  applying 

𝐶𝑊𝑎𝑣𝑒,𝑤 = log10
√𝐽|𝑊𝑎𝑣𝑒|

𝜏𝛿𝜎
. 

Step 5- Print 𝑊 = @. 0 if 𝑊𝑎𝑣𝑒 = 0, or 𝐶𝑊𝑎𝑣𝑒,𝑊 ≤ 0. 

 

In general form, in order to find the numerical results we 

need to apply the usual packages like Mathematica and Matlab. 

Here, instead of them we introduce the CADNA library as a 

new tool to implement the CESTAC method [31, 43]. 

There are important advantages to applying the CESTAC 

method and the CADNA library instead of traditional 

packages which are based on the FPA. In this method, instead 

of applying Eq. (2) we present a criterion independence of 

absolute error and tolerance value like 휀 [34, 35, 37]. Applying 

the CADNA library, we can find the optimal iteration, best 

approximation in the point of computational view and 

estimation of the accuracy of numerical methods. Moreover, 

the numerical instabilities can be identified. A sample program 

of the CADNA library is presented as: 

 #include <cadna.h> 

cadna −init(-1); 

 main() 

 {  

double −st Parameter;  

do 

{ 

Write the main program here; 

printf(" %s ",strp(Parameter)); 

} 

 while(Q[J]-Q[J-1]!=0); 

 cadna −end(); 

 } 

The details of the SA, CESTAC method and CADNA 

library can be found in the paper [40]. 

 

 

3. MAIN IDEA 

 

In order to estimate the roots 𝑟ℓ  and weights 𝑤ℓ, ℓ =
0,1, . . . , 𝐽 of G-LIR the following Newton-Raphson iteration 

formula [52] is applied. 
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𝑟ℓ+1 = 𝑟ℓ −
𝑆(𝑟ℓ)

𝑆′(𝑟ℓ)
= 𝑟ℓ −

𝑃𝐽(𝑟ℓ)

𝑃′𝐽(𝑟ℓ)
, (17) 

 

where, the following relation is used to find the first guess 𝑟0 

for the ℓ-th root of 𝑃𝐽. 

 

𝑟0,ℓ = cos(
𝜋(ℓ −

1

4
)

𝐽 +
1

2

), (18) 

 

and the recursive relation for derivative of 𝑃𝐽  is in the 

following form: 

 

𝑃′𝐽(𝑟) =
𝐽

𝑟2 − 1
(𝑟𝑃𝐽(𝑟) − 𝑃𝐽−1(𝑟)). (19) 

 

Also, the appropriate weights 𝑤ℓ , ℓ = 0,1, . . . , 𝐽 is given by:  

 

𝑤ℓ =
2

(1 − 𝑟ℓ
2)[𝑃′𝐽(𝑟ℓ)]

2
. (20) 

 

Now, by substituting the obtained roots and weights in Eq. 

(7), the approximate solution can be estimated. For example, 

the nodes and weights for 𝐽 = 1,2,3,4,5 are presented in Table 

1. 

 

Table 1. The nodes and weights of the G-LIR  

   
𝑱 𝒓𝓵 𝒘𝓵 

1 ±0.5773502692 1.0000000000 

2 
0.0000000000 

±0.7745966692 

0.8888888889 

0.5555555556 

3 
±0.3399810436 

±0.8611363116 

0.6521451549 

0.3478548451 

4 

±0.0000000000 

±0.5384693101 

±0.9061798459 

0.5688888889 

0.4786286705 

0.2369268851 

5 

±0.2386191861 

±0.6612093865 

±0.9324695142 

0.4679139346 

0.3607615730 

0.1713244924 

 

Definition 1. [57] For 𝜌
1
, 𝜌

2
∈ ℝ, the NCSDs is estimated as: 

(1) for 𝜌
1
≠ 𝜌

2
,  

 

𝐶𝜌1,𝜌2
= log

10
|
𝜌
1
+ 𝜌

2

2(𝜌
1
− 𝜌

2
)
|

= log
10
|

𝜌
1

𝜌
1
− 𝜌

2

−
1

2
|. 

(21) 

 

(2) 𝐶𝜌1,𝜌1
= +∞. 

Theorem 3. Let 𝑆(𝑟) ∈ 𝐶2𝐽+2[−1,1] and 𝑄
𝐽
 be the numerical 

solution of 𝑄 by using the G-LIR (7), then  

 

𝐶𝑄𝐽,𝑄𝐽+1
≃ 𝐶𝑄𝐽,𝑄

. (22) 

 

Proof: Using Definition 1 we get: 

 

𝐶𝑄𝑛,𝑄𝑛+1 = log10 |
𝑄𝑛

𝑄𝑛 − 𝑄𝑛+1
−
1

2
|

= log10 |
𝑄𝑛

𝑄𝑛 − 𝑄𝑛+1
| + log10 |1 −

1

2𝑄𝑛
(𝑄𝑛 − 𝑄𝑛+1)|

= log10 |
𝑄𝑛

𝑄𝑛 − 𝑄𝑛+1
| + 𝒪(𝑄𝑛 − 𝑄𝑛+1)

= log10 |
𝑄𝑛

(𝑄𝑛 − 𝑄) − (𝑄𝑛+1 − 𝑄)
| + 𝒪[(𝑄𝑛 − 𝑄) − (𝑄𝑛+1 − 𝑄)]

= log10 |
𝑄𝑛

(𝑄𝑛 −𝑄) [1 −
𝑄𝑛+1 − 𝑄
𝑄𝑛 − 𝑄

]
| + 𝒪(𝐸𝑛) + 𝒪(𝐸𝑛+1),

 (23) 

 

and using Eq. (14) we get: 

 

𝐶𝑄𝐽,𝑄𝐽+1
= log

10
|

𝑄
𝐽

𝑄
𝐽
− 𝑄

| − log
10
|1 −

𝑄
𝐽+1

− 𝑄

𝑄
𝐽
− 𝑄

|

+ 𝒪(4−𝐽). 

(24) 

 

Also,  

 

𝐶𝑄𝐽,𝑄 = log10 |
𝑄𝐽

𝑄𝐽 −𝑄
−
1

2
|

= log10 |
𝑄𝐽

𝑄𝐽 −𝑄
| + 𝒪(𝐸𝐽)

= log10 |
𝑄𝐽

𝑄𝐽 −𝑄
| + 𝒪(4−𝐽).

 (25) 

 

Applying Eqns. (24) and (25) we have: 

 

𝐶𝑄𝐽,𝑄𝐽+1
= 𝐶𝑄𝐽,𝑄

− log
10
|1 −

𝑄
𝐽+1

− 𝑄

𝑄
𝐽
− 𝑄

| + 𝒪(4−𝐽). 

 

Consequently, based on Eq. (9) we have 
𝑄𝐽+1−𝑄

𝑄𝐽−𝑄
=

𝒪((2𝐽+3)(2𝐽+1))

𝒪(2𝐽(𝐽+1)2)
 and we can find that for 𝐽 enough large this term 

tends to zero and 𝑂(4−𝐽) << 1 thus we get: 

 

𝐶𝑄𝐽 ,𝑄𝐽+1
≃ 𝐶𝑄𝐽,𝑄

. 

 

Theorem 3 shows that, for enough large value of 𝐽 , the 

NCSDs between 𝑄𝐽 and 𝑄𝐽+1 are almost equal to the NCSDs 

between 𝑄 and 𝑄𝐽. Therefore, if we use the CESTAC method, 

the computations of 𝑄𝐽 ’s sequence will be stopped when 

𝑄𝐽+1 − 𝑄𝐽 = @. 0. In this case, the values 𝐽 + 1 and 𝑄𝐽+1 are 

the optimal iteration and approximation of the G-LIR 

respectively which are shown by by 𝐽𝑜𝑝𝑡 and 𝑄𝐽𝑜𝑝𝑡 . 

 

 

4. NUMERICAL ILLUSTRATIONS  

 

In this section, the G-LIR is validated by applying the 

CESTAC method to estimate some definite integrals. The 

approximate solution is produced until |𝑄𝐽+1 − 𝑄𝐽| ≠ @. 0. If 

this condition equals to @. 0, the presented algorithm will be 

stopped. It means that the values 𝑄𝐽  and 𝑄𝐽+1  are equal 

stochastically and the number of iteration will be the optimal 

iteration of G-LIR and shows by 𝐽𝑜𝑝𝑡. In some of examples, 
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the numerical results are obtained based on two arithmetics; 

the FPA and the SA. By comparing the results, it can be shown 

the SA is more applicable and reliable than the FPA. 

In order to perform the proposed algorithm, the CADNA 

library is presented. All codes are provided by C++ and 

implement on Linux with double precision. 

Algorithm 2: 

Step 1- Let 𝐽 = 0 and 𝑄
0
= 0. 

Step 2- Do the following steps while |𝑄𝐽+1 − 𝑄𝐽| ≠ @. 0  

{ 

Step 2-1- Construct 𝑃𝐽(𝑟) and 𝑃′𝐽(𝑟) by using Eqns. (8) and 

(19).  

Step 2-2- Calculate the first guess 𝑟0,ℓ based on Eq. (18). 

Step 2-3- Produce roots 𝑟ℓ by using Newton-Raphson iteration 

formula (17). 

Step 2-4- Compute the weights 𝑤ℓ by applying Eq. (20).  

Step 2-5- Calculate the approximate solution 𝑄
𝐽+1

 by means 

of Eq. (4). 

Step 2-6- Print 𝑄
𝐽+1

, |𝑄
𝐽+1

− 𝑄
𝐽
| and |𝑄

𝐽+1
− 𝑄|.  

Step 2-7- 𝐽 = 𝐽 + 1.  

 } 

Table 2. Numerical results of Example 1 
 

𝑱 𝑸𝑱+𝟏 |𝑸𝑱+𝟏 − 𝑸𝑱| |𝑸𝑱+𝟏 − 𝑸| 

0 0.84200591794852E-003 0.84200591794852E-003 0.450530640557518E+000 

1 0.748058884321424E+000 0.747216878403476E+000 0.29668623784595E+000 

2 0.86409516325659E+000 0.11603627893516E+000 0.41272251678112E+000 

3 0.50123463565037E+000 0.36286052760621E+000 0.4986198917490E-001 

4 0.30198192671927E+000 0.19925270893109E+000 0.14939071975619E+000 

5 0.37081909274923E+000 0.68837166029966E-001 0.80553553726227E-001 

6 0.49496778905600E+000 0.12414869630676E+000 0.4359514258053E-001 

7 0.493059958255680E+000 0.190783080032E-002 0.41687311780213E-001 

8 0.44280099467176E+000 0.5025896358391E-001 0.8571651803703E-002 

9 0.43418145795721E+000 0.8619536714545E-002 0.1719118851824E-001 

10 0.45248079593407E+000 0.182993379768E-001 0.11081494586E-002 

11 0.457637149034123E+000 0.515635310004E-002 0.6264502558657E-002 

12 0.45135438319577E+000 0.628276583834E-002 0.1826327968E-004 

13 0.44922625662707E+000 0.212812656870E-002 0.214638984838E-002 

14 0.45136405761603E+000 0.213780098895E-002 0.8588859428E-005 

15 0.452078451409432E+000 0.71439379339E-003 0.705804933966E-003 

16 0.45134806353781E+000 0.73038787161E-003 0.2458293764E-004 

17 0.45115062558794E+000 0.19743794987E-003 0.22202088752E-003 

18 0.451397794645076E+000 0.24716905713E-003 0.2514816960E-004 

19 0.451438116342501E+000 0.40321697425E-004 0.65469867034E-004 

20 0.451357582657320E+000 0.80533685181E-004 0.15063818146E-004 

21 0.451355225400271E+000 0.235725704E-005 0.1742107519E-004 

22 0.45137959305346E+000 0.2436765318E-004 0.6946577994E-005 

23 0.45137653311710E+000 0.305993635E-005 0.388664163E-005 

24 0.451369996731362E+000 0.6536385742E-005 0.26497441042E-005 

25 0.451372061091343E+000 0.2064359980E-005 0.585384123E-006 

26 0.451373494695151E+000 0.143360380E-005 0.848219684E-006 

27 0.45137262420657E+000 0.870488577E-006 0.2226889E-007 

28 0.451372423846007E+000 0.20036056E-006 0.222629458E-006 

29 0.451372705102738E+000 0.28125673E-006 0.58627271E-007 

30 0.45137269022487E+000 0.1487786E-007 0.4374940E-007 

31 0.45137262003629E+000 0.7018858E-007 0.2643917E-007 

32 0.45137264237891E+000 0.2234262E-007 0.409655E-008 

33 0.451372654286528E+000 0.1190761E-007 0.78110617E-008 

34 0.451372645260884E+000 0.9025644E-008 0.121458E-008 

35 0.451372644906413E+000 0.35447E-009 0.156905E-008 

36 0.45137264724825E+000 0.234184E-008 0.772790E-009 

37 0.451372646613299E+000 0.63495E-009 0.13783E-009 

38 0.451372646246873E+000 0.366426E-009 0.22859E-009 

39 0.451372646517676E+000 0.270803E-009 0.42209E-010 

40 0.45137264651480E+000 0.2875E-011 0.3933E-010 

41 0.451372646452266E+000 0.6253E-010 0.2320E-010 

42 0.451372646474531E+000 0.22265E-010 0.934E-012 

43 0.451372646481058E+000 0.6526E-011 0.5592E-011 

44 0.451372646473655E+000 0.7403E-011 0.181E-011 

45 0.45137264647488E+000 0.123E-011 0.580E-012 

46 0.45137264647608E+000 0.1194E-011 0.613E-012 

47 0.45137264647535E+000 0.72E-012 0.10E-012 

48 0.45137264647537E+000 0.1E-013 0.93E-013 

49 0.451372646475524E+000 0.15E-012 0.57E-013 

50 0.45137264647546E+000 0.6E-013 @.0 

51 0.451372646475454E+000 @.0 @.0 
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Table 3. Applying the CESTAC method for solving Example 2 
 

𝑱 𝑸𝑱+𝟏 |𝑸𝑱+𝟏 − 𝑸𝑱| |𝑸𝑱+𝟏 − 𝑸| 

0 0.558607885129995E+000 0.558607885129995E+000 0.80340631273229E-001 

1 0.476468795302816E+000 0.82139089827178E-001 0.179845855394E-002 

2 0.478282274977675E+000 0.181395447393E-002 0.1549591998E-004 

⋮ ⋮ ⋮ ⋮ 
5 0.47826725385638E+000 0.19885E-009 0.37E-012 

6 0.478267253856765E+000 0.7E-012 @.0 

7 0.478267253856765E+000 @.0 @.0 
 

Example 1. According to the Ref. [17], solution of osmosis 

model (4) is in the following form: 

 

Φ(𝑥, 0) =
3−

1
3𝑞𝜙0
𝐷𝐼

(
𝐷ℎ

𝑣0
)

1
3

𝑥
1
3 + 𝜙0, 

(26) 

 

where, 𝐼 = ∫
∞

0
𝑒−𝑣

3
𝑣𝑑𝑣  and Eq. (26) is used to predict the 

condensation of salt solutions in semi-penetrable covers in the 

converse osmosis model. Solving the improper integral I by 

using analytical methods is difficult, so we need to solve this 

integral numerically. 

In order to evaluate I, we consider interval [0,𝑚] where 𝑚 

is a number enough large such that | ∫
∞

𝑚
𝑒−𝑣

3
𝑣𝑑𝑣| = @. 0 

which means this value has not any significant digits. By 

choosing m=10, we have:  

 

𝑄 = ∫
10

0

𝑒−𝑣
3
𝑣𝑑𝑣 = 0.4513726464754668. . ., 

 

and using Eq. (15), we can transform this integral to the 

following form:  

 

25∫
1

−1

𝑒−125(1+𝑧)
3
(1 + 𝑧)𝑑𝑧. 

 

Based on the presented results in Table 2, the optimal step 

of iteration is 𝐽𝑜𝑝𝑡 = 51  and the optimal result is 𝑄51 =

0.451372646475454𝐸 + 000  with optimal error 0.6𝐸 −
013. Thus the optimal solution of the osmosis model is: 

 

Φ(𝑥, 0)

𝜙0
= 1.5361171751(

𝑞

𝐷
) (
𝐷ℎ

𝑣0
)

1
3
𝑥
1
3 + 1, 

where, it is a mathematical formula to forecast the 

condensation of salt solutions in semi-penetrable covers in the 

converse osmosis model. 

 

Example 2. Let [53]  

 

𝑄 = ∫
1

−1

𝑟2cos𝑟𝑑𝑟 = 0.47826725385676605. . .. (27) 

According to obtained results which are presented in Table 

3 the optimal iteration of G-LIR to approximate integral (27) 

is 𝐽𝑜𝑝𝑡 = 7  and the approximate solution is 𝑄𝐽+1 =

0.478267253856765𝐸 + 000. 

 

Example 3. In this example, the integral  

 

𝑄 = ∫
1

0

𝑑𝑟

1 + 𝑟
= 0.6931471805599453. . ., (28) 

 

is evaluated [53]. In order to apply the G-LIR the interval [0,1] 
is transformed to [−1,1] as: 

 

∫
1

−1

𝑑𝑧

𝑧 + 3
. (29) 

 

In Table 4, the optimal step of G-LIR, approximate solution, 

absolute error and difference between two successive 

approximations are presented. In this case, 𝐽𝑜𝑝𝑡 = 9  is the 

optimal step of this rule. According to Table 4 the optimal 

value of integral is 𝑄𝐽+1 = 0.693147180559945𝐸 + 000. 

 

Example 4. Consider the following integral [53]  

 

𝑄 = ∫
2

0

𝑟2 + 2𝑟 + 1

𝑟2 + 2
𝑑𝑟 = 2.42310142981207. . .. (30) 

 

By using the transformation formula (15), the interval [0,2] 
should be changed to [−1,1] as: 

 

∫
1

−1

(𝑧 + 2)2

𝑧2 + 2𝑧 + 3
𝑑𝑧. (31) 

 

In Table 5, the numerical results and the accuracy of this 

method are shown. The optimal step of G-LIR is 𝐽𝑜𝑝𝑡 = 13 

and the optimal approximation is 𝑄𝐽+1 =

0.242310142981206𝐸 + 001. 

 

Table 4. Numerical results of Example 3 
 

𝑱 𝑸𝑱+𝟏 |𝑸𝑱+𝟏 −𝑸𝑱| |𝑸𝑱+𝟏 − 𝑸| 

0 0.692307692307692E+000 0.692307692307692E+000 0.839488252253E-003 

1 0.693121693121692E+000 0.814000814000E-003 0.25487438252E-004 

2 0.693146417445482E+000 0.2472432378E-004 0.763114462E-006 

⋮ ⋮ ⋮ ⋮ 
6 0.693147180559355E+000 0.1934E-010 0.589E-012 

7 0.693147180559927E+000 0.571E-012 0.1E-013 

8 0.693147180559944E+000 0.1E-013 @.0 

9 0.693147180559945E+000 @.0 @.0 
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Table 5. Applying the CESTAC method for solving Example 4  

  

𝑱 𝑸𝑱+𝟏 |𝑸𝑱+𝟏 − 𝑸𝑱| |𝑸𝑱+𝟏 − 𝑸| 

0 0.240909090909090E+001 0.240909090909090E+001 0.1401052072116E-001 

1 0.242255892255892E+001 0.1346801346801E-001 0.542507253148E-003 

2 0.242322960686387E+001 0.67068430495E-003 0.12817705180E-003 

⋮ ⋮ ⋮ ⋮ 
11 0.242310142981208E+001 0.1E-012 0.1E-013 

12 0.242310142981206E+001 0.1E-013 @0 

13 0.242310142981206E+001 @0 @0 

 

Example 5. Consider the following integral [53]. 

 

𝑄 = ∫
1

−1

𝑑𝑟

log(𝑟2)
. 

 

We note that this integral is not convergent on [−1,1]. Table 

6, shows the results obtained by the FPA for 휀 = 10−5  and 

these results are not correct. Also, the number of iteration for 

different values of 휀 are presented in Table 7. The results of 

Algorithm 2 are demonstrated in Table 8. In the last iteration 

of Table 8 we have 𝑄𝐽+1 = @.0. Therefore CADNA library 

declares that the numerical results are not guaranteed and 

shows the report of numerical instabilities. The FPA has not 

these capabilities in comparison with the SA. 

 

Table 6. Numerical results of the FPA for Example 5 with 

휀 = 10−5 

  

𝑱 𝑸𝑱+𝟏 |𝑸𝑱+𝟏 −𝑸𝑱| 

0 -1.820478 1.820478 

1 -2.175128 0.354650 

2 -2.931223 0.756095 

⋮ ⋮ ⋮ 
28 -6.721456 0.081742 

29 -6.771934 0.050477 

30 -6.848311 0.076377 

⋮ ⋮ ⋮ 
66 -8.338342 0.034800 

67 -8.362105 0.023763 

68 -8.395876 0.033771 

⋮ ⋮ ⋮ 

 

Table 7. Number of iteration for different values of 휀 in Example 5 

   
휀 10−5 10−3 10−1 0.5 1 

𝑛 without stopping without stopping 13 1 1 

 

Table 8. Numerical results for Example 5 

  

𝑱 𝑸𝑱+𝟏 |𝑸𝑱+𝟏 − 𝑸𝑱| 

0 -0.182047E+001 0.182047E+001 

1 -.2175127E+001 0.354648E+000 

2 -0.293122E+001 0.75609E+000 

⋮ ⋮ ⋮ 
43 -1.000001E+001 0.100000E+001 

44 0.999976E+000 0.199996E+001 

45 @.0 @.0 

 

Example 6. Let [53]  

 

𝑄 = ∫
1

−1

tan(𝑟2 − 𝑟)𝑑𝑟. 

 

This integral is not convergent in [−1,1]. In Table 9, we 

show the numerical results which are obtained by FPA for 휀 =
10−5 . Also, in Table 11, number of iteration for different 

values of 휀 are presented. The results of CADNA library are 

reported in Table 10. In this Table 10, the approximate 

solution for 𝐽 = 47  is equal to the informatical zero @. 0 . 

Obtaining numerical noise (@. 0) for 𝐽 = 47 means that the 

result associated to 𝐽 = 47 has no correct digit. 

 

Table 9. Applying the FPA for solving Example 6 with 휀 =
10−5 

  
𝑱 𝑸𝑱+𝟏 |𝑸𝑱+𝟏 − 𝑸𝑱| 

0 1.039207 1.039207 

1 2.697160 1.657953 

2 -10.773429 13.470588 

⋮ ⋮ ⋮ 
48 -1.398668 37.830112 

49 -0.175755 1.222913 

50 0.505504 0.681259 

⋮ ⋮ ⋮ 
98 -9.852456 12.666245 

99 -1.113649 8.738807 

100 -0.061589 1.052060 

⋮ ⋮ ⋮ 

 

Table 10. Numerical results of Example 6 

 

𝑱 𝑸𝑱+𝟏 |𝑸𝑱+𝟏 − 𝑸𝑱| 

0 0.103920E+001 0.103920E+001 

1 0.269715E+001 0.165795E+001 

2 -0.10773E+002 0.13470E+002 

⋮ ⋮ ⋮ 
46 -0.5E+003 0.5E+003 

47 @.0 @.0 

 

Table 11. Number of iteration for different values of 휀 in Example 6 

    

휀 10−5 10−3 10−1 0.5 1 1.5 

𝑛 without stopping without stopping without stopping without stopping 5 0 
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5. CONCLUSION  

 

We have considered the CESTAC method based on the SA 

in discrete case to find the optimal iteration, the optimal 

approximation of the G-LIR. Also, by using this method the 

unnecessary iterations can be eliminated. They are the main 

novelties of the CESTAC method. The advantages of the SA 

in comparison with the FPA were discussed. The validation of 

the CESTAC method to implement the G-LIR was guaranteed 

by proving Theorem 3. Some examples specially the 

mathematical model of osmosis model were evaluated by the 

proposed algorithm via the CADNA library. Also, in order to 

show the flexibility of the CESTAC method in some of 

examples we compared the numerical results in both cases the 

SA and the FPA. Moreover, we found the number of iterations 

for different values of 휀 . The proposed scheme can be 

developed to evaluate the optimal value of high dimensional 

G-LIR, and other kinds of quadrature rules such as Gauss-

Hermit, Gauss-Rado and Gauss-Lobatto integration rules.  
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