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Compressive sensing (CS) is a novel paradigm to recover a sparse signal in compressed 

domain. In some overcomplete dictionaries, most practical signals are sparse rather than 

orthonormal. Signal space greedy method can derive the optimal or near-optimal 

projections, making it possible to identify a few most relevant dictionary atoms of an 

arbitrary signal. More practically, such projections can be processed by standard CS 

recovery algorithms. This paper proposes a signal space subspace pursuit (SSSP) method to 

compute spare signal representations with overcomplete dictionaries, whenever the sensing 

matrix satisfies the restricted isometry property adapted to dictionary (D-RIP). Specifically, 

theoretical guarantees were provided to recover the signals from their measurements with 

overwhelming probability, as long as the sensing matrix satisfies the D-RIP. In addition, a 

thorough analysis was performed to minimize the number of measurements required for 

such guarantees. Simulation results demonstrate the validity of our hypothetical theory, as 

well as the superiority of the proposed approach. 
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1. INTRODUCTION

Compressive sensing (CS) [1, 2] is a novel paradigm that 

recovers signals that are sparse in a certain domain, from a 

small set of compressed measurements. This paradigm has 

been widely applied in various signal processing applications 

[3-8], ranging from image [9, 10], audio [11-13], to video [14-

19].  

The CS aims to sample a sparse signal xRn from a limited 

number m of compressed measurements: 

𝑦 = 𝐴𝑥 + 𝑒 (1) 

where, yRm is the measurement vector; ARm×n is an m×n 

sensing matrix whose entries are random Gaussian variables; 

e is the vector of the measurement error induced by the signal 

structure.  

It is assumed that that x is sparse in some bases, such that 

x=ψa with a has at most k nonzero entries, i.e., ∥ 𝑥 ∥0=
|𝑠𝑢𝑝𝑝(𝑥)| ⩽ 𝑘 ≪ 𝑛. In the CS framework, such an unknown 

signal can be correctly recovered from y and A, only if 

m=O(klogn). The recovery has a low cost and limited 

computing load. 

It is a highly nonlinear process to find a sparse signal from 

linear measurements, that is, a random linear projection 

acquisition. A naive approach is to mathematically capture the 

sparse solution via the l1-minimization optimization: 

�̂� = arg min‖𝑥‖1  𝑠. 𝑡. ‖𝑦 = 𝐴𝑥‖2 ≤ 휀 (2) 

where, ∥ 𝑥 ∥1= ∑|𝑥𝑖| is the l1-norm; ∥⋅∥2 is the standard

Euclidean norm; ε>0 is decided by the upper bound of ∥ 𝑒 ∥2.

In Problem (2), the accurate recovery of signal x, which is not 

entirely but nearly sparse, from observation y requires the 

sufficient condition of restricted isometry property (RIP). 

Definition 1 [20]: The sensing matrix ARm×n follows the 

RIP of order k if the smallest restricted isometry constant (RIC) 

δk(0, 1), that is, 

(1 − 𝛿𝑘) ∥ 𝑥 ∥2
2≤∥ 𝐴𝑥 ∥2

2≤ (1 + 𝛿𝑘) ∥ 𝑥 ∥2
2 (3) 

holds for all k sparse signals with ∥ 𝑥 ∥0⩽ 𝑘. Note that, when

m is reasonably large, many kinds of matrices, whose entries 

are random Gaussian variables, are highly likely to have very 

small RICs.  

Let us denote the RIP by A. Then, Problem (2) can be solved 

stably and robustly based on noisy measurements y=Ax+e. 

Then the solution xˆ to Problem (2) can be expressed as: 

∥ 𝑥
^

− 𝑥 ∥2⩽ 𝑐1

∥ 𝑥 − 𝑥𝑘 ∥1

√𝑘
+ 𝑐2휀 (4) 

where, 𝑐1 =
2+(2√2−2)𝛿2𝑘

1−(√2+1)𝛿2𝑘
,  and 𝑐2 =

4√1+𝛿2𝑘

1−(√2+1)𝛿2𝑘
 are positive 

constants; xk is an approximation to x with k largest nonzero 

entries, i.e., x-xk; δ2k is the 2k-order RIC of A.  

Formula (4) illustrates that the recovery error is proportional 

to the noise level and the signal tail, that is, the coefficients of 

the compressible signals follow a power-law decay. It is safe 
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to say that 𝑥
^
 is approximately x. 

Following this train of thought, several 

conventional/heuristic methods have been proposed to address 

the non-deterministic polynomial-time (NP)-hard problem 

depending on A and y, which is computationally infeasible 

with the growing dimension of signals. These methods include 

linear programming [2], convex optimization [21, 22], 

gradient descent [23], and greedy algorithms [24-29]. Among 

them, the most popular approaches are based on basis pursuit 

(BP) or matching pursuit (MP). 

The abovementioned methods applicable to signals with 

sparse representation under the standard coordinate basis or 

several suitable orthonormal bases. However, the actual 

signals are not necessarily sparse in an orthonormal basis [30-

36]. In particular, the results of the above methods do not hold 

when ψ is an orthonormal basis, but hold for an overcomplete 

dictionary. This means that signal fRn can be expressed as 

x=Da, where DRnd (d>n) is a given overcomplete dictionary 

serving as the sparsifying basis, with a Rd being the vector of 

sparse coefficient.  

Overcomplete dictionaries are widely used in many signal 

processing applications, namely, Gabor functions [37], 

algebraic coded systems [38], wavelets and sinusoids [39], as 

well as multiscale windowed ridgelet [40]. Although the 

classical greedy pursuit algorithm provides theoretical 

guarantees, the practical signals usually fail due to the over-

completeness of D. Hence, it is natural to extend the standard 

CS framework to the signals that are sparse over some 

overcomplete dictionaries. That is why the authors intended to 

find the signal directly instead of its coefficient vector 

provided by the D-RIP. 

This paper proposes a variant of MP called signal space 

subspace pursuit (SSSP), and presents its theoretical 

guarantees. Similar to MP, the SSSP is a hard thresholding 

pursuit algorithm that selects atoms from an arbitrary 

overcomplete dictionary instead of an orthonormal basis for 

signal representation, thereby minimizing the l1-norm of the 

sparse coefficient vector. By the SSSP, the sample vectors 

derived from the sparse dictionary signals can be recovered 

from a small set of linear measurements, which depend on the 

information level and noise level. Assuming that the sensing 

matrix satisfies the D-RIP, two relatively simple families of 

methods, namely, BP-and MP-based methods [41, 42], were 

adopted to calculate the required near-optimal projections 

within the preset number of iterations. In addition, the authors 

analyzed how the minimal number of measurements required 

for stable recovery of sparse dictionary signals is associated 

with the concentration inequalities derived from the D-RIP. 

Finally, the proposed method was proved to achieve much 

better recovery performance than standard CS recovery 

algorithms. 

 

 

2. PROBLEM FORMULATION 

 

Our problem is to recover sparse dictionary signals from a 

set of noisy measurements like the framework proposed by 

Zhang and Li [43]. Let xRn be a k sparse input vector, where 

k is the known level of sparsity. It is assumed that x can be 

sparsely expressed as the linear combination of atoms in an 

overcomplete dictionary: 

 

𝑥 = 𝐷𝑎, 𝑠. 𝑡. ‖𝑎‖0 ≤ 𝑘 (5) 

 

where, DRn×d is the sparsifying basis, namely, an 

overcomplete dictionary; l0-norm is all the nonzero entries in 

the sparse coefficient vector a. D is assumed to be a tight frame 

such that DDT=In, with T being the transpose operator. Similar 

to the traditional CS, the sampling of each component of the 

input signal x is realized using a linear-operator A. The process 

and domains of the CS is illustrated in Figure 1. 

 

 
 

Figure 1. The CS process and its domains 

 

As shown in Figure 1, the random linear projection can be 

expressed in the form of a matrix as 

 

𝑦 = 𝐴𝑥 + 𝑒 (6) 

 

where, yRm$ is the observations; ARm×n is a known linear 

function; eRm is a measurement error, whose entries are 

independent and identically distributed (I.I.D) Gaussian or 

sub-Gaussian random variables with zero mean and 

variance 𝛿2𝐼𝑚, i.e., 𝑒 ∼ 𝐍(0, 𝛿2𝐼𝑚).  

According to advanced hypotheses in the field of CS and 

recovery of sparse dictionary signals, the sensing matrix A 

must be extremely incoherent with overcomplete dictionary D, 

i.e., the dictionary should not have any uncorrelated columns, 

while preserving as much salient information as possible. 

Formally, mutual coherence can be defined as: 

 

𝜇(𝐴, 𝐷) =
|⟨𝐴𝑖 , 𝐷𝑗⟩|

∥ 𝐴𝑖 ∥2∥ 𝐷𝑗 ∥2

 (7) 

 

where, Ai and Dj are the columns of A and D, respectively. The 

coherence provides a fundamental way to measure the 

maximum magnitude of elements of the inner product AD. 

Their mutual coherence is proportional to the entries contained 

in A and D, which depends on µ. If µ is sufficiently large, a 

dictionary is coherent; otherwise, the dictionary is incoherent. 

If any pair of columns in D are highly coherent, mutual 

coherence might not be necessary for recovering the proper 

signal Da from the coefficient vector a. 

To the best of our knowledge, D-RIP, as the natural 

extension of the standard RIP, is a popular and useful tool to 

estimate the quality of a sensing matrix for the full recovery of 

a nearly sparse signal x, which is corrupted by the additive 

noise from its observations y. 

Definition 2 [41]: Let DRn×d be an overcomplete 

dictionary and a tight frame. Suppose a sensing matrix 𝐴 

follows the D-RIP with the smallest constant δk, such that 

 

(1 − 𝛿𝑘) ∥ 𝐷𝑎 ∥2
2≤∥ 𝐴𝐷𝑎 ∥2

2≤ (1 + 𝛿𝑘) ∥ 𝐷𝑎 ∥2
2 (8) 

 

holds for all k sparse signals with ∥ 𝑎 ∥0≤ 𝑘.  

Formula (8) indicates that nearly all the random matrices, 

whose entries are drawn from Gaussian, sub-Gaussian, or 

Bernoulli distribution with measurement number on the order 

of ∥ 𝑎 ∥0≤ 𝑘 , are very likely to satisfy the D-RIP, which 

exploits the nearly mutually orthogonal of the columns of the 

sensing matrix. 

724



 

Suppose A and D exhibit the D-RIP. Under a stronger 

assumption that 𝑥 is k-analysis-sparse, i.e., DTxRd is k-sparse, 

the highly correlated property of D can be used to recover 𝑥 

from its noisy measurements y=ADa+e by solving the relaxed 

l1-minimization problem: 

 

𝑥
^

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥
~

∈𝑅𝑛

∥ 𝐷T𝑥
~

∥1, 𝑠. 𝑡. ∥ 𝑦 − 𝐴𝑥
~

∥2≤ 휀 (9) 

 

where, ε>0 is an upper bound proportional to the noise level 

∥ 𝑒 ∥2. 

Then, the solution of Problem (9) can be expressed as: 

 

∥ 𝑥
^

− 𝑥 ∥2⩽ 𝑐1

∥ 𝐷T𝑥 − (𝐷T𝑥)𝑘 ∥1

√𝑘
+ 𝑐2휀 (10) 

 

where, c1>0 and c2>0 are numerical constants solely 

depending on 𝛿2𝑘 ; (DTx)k is the best approximation of DTx 

within all the 𝑘-largest nonzero entries in l1-norm, analogous 

to the solution (4). Thus, the recovery error ∥ 𝑥
^

− 𝑥 ∥2 

depends on the noise level ∥ 𝑒 ∥2 and the tail of the analysis 

vector 
∥𝐷T𝑥−(𝐷T𝑥)𝑘∥1

√𝑘
, and decays rapidly with the growing 

number of iterations. Since these results hold even if the 

dictionary has highly correlated columns, it is possible to 

derive the results mathematically, in a way similar to MP-

based methods, under the previous constraints. Without loss of 

generality, the convergence for the algorithm is similar to that 

for the l1-analysis methods. 

 

 

3. SSSP ALGORITHM  

 

This section derives the SSSP algorithm from MP-based 

methods under the constraint that D is an overcomplete 

dictionary rather than an orthonormal basis. Assuming that the 

sensing matrix obeys the D-RIP, a guarantee was designed to 

minimize the measurement number required to recover a 

sparse dictionary signal. Finally, a rigorous recovery error 

bound was derived and analyzed theoretically to verify the 

algorithm performance. 

 

3.1 Algorithm design 

 

The key of the underlying CS argument was explained on 

the simple case of a sparse signal, using a famous sparsifying 

basis, i.e., the orthonormal basis. The current CS theory holds 

that sparse signal can be represented through convex 

programming, such as match pursuit (MP) and its variants. For 

signal representation, MP-based methods iteratively select the 

columns of the basis closest to the original signal for 

projection onto the subspace, until meeting the preset 

termination condition. More specifically, $ x $ is recovered by 

solving the following constrained optimization problem based 

on least-squares: 

 

𝑥
^

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑧

∥ 𝑦 − 𝐴𝑧 ∥2), 𝑧 ∈ 𝑅(ΨΛ) (11) 

 

where, ΨΛ is the matrix Ψ constraint to the columns indexed 

by Λ; R(ΨΛ) is the span of ΨΛ. Drawing on the concept of 

pseudo inverse, Problem (11) can be solved by: 

 

𝑥
^

= ΨΛ𝐴
~

Λ
† 𝑦 = ΨΛ((𝐴

~

Λ
T𝐴

~

Λ)−1𝐴
~

Λ
T𝑦) (12) 

 

where, † is the pseudo-inverse operator. However, actual 

signals are often compressible in some overcomplete 

dictionary, including oversampled discrete Fourier transform 

(DFT), Gabor frame, and curvelet coefficient sequence of an 

image. In the absence of dictionary orthogonal, the standard 

l1-minimization approach usually fails to pinpoint the support 

estimation Λ. Interestingly, a recent investigation reports that 

MP-based methods adapted to the setting of an arbitrary 

dictionary could recover the analysis-sparse vector DTx 

associated with signal space methods, which easily find near 

sparse solutions and guarantee the recovery performance. 

As an MP variant, our algorithm recovers the 𝑥  using D 

from the noisy measurements (Table 1). 

 

Table 1. The SSSP algorithm 

 
Algorithm 1: SSSP algorithm 

Input: 

A, D, y, k, termination condition ε 

Initialization: 

l=0, I=, r0=y, and x0=0 

while termination condition is not satisfied do 

1: identify the index set Ω = supp(D,2k) (ATr) 

2: find the support estimation T=Ω∪I 

3: compute the approximation: 𝑥
~

= arg 𝑚𝑖𝑛
𝑧

∥ 𝑦 − 𝐴𝑧 ∥2 

𝑠. 𝑡. 𝑧 ∈ R(𝐷𝑇) 

4: shrink the index I = supp (x˜, k) = index corresponding to the 

largest magnitude entries of estimation 𝑥
~

. 

5: compute the new signal estimation: 𝑥𝑙+1 = 𝑃𝐼𝑥
~

 

6: compute the latest residual: 𝑟𝑙+1 = 𝑦 − 𝐴𝑥𝑙+1 

end while: 𝑙 = 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 or ∥ 𝑥𝑙+1 − 𝑥𝑙 ∥2/∥ 𝑥𝑙 ∥2≤ 휀  is 

satisfied 

Output: 

𝑥
^

= 𝑥𝑙+1 = 𝑆𝑆𝑆𝑃(𝐴, 𝐷, 𝑦, 𝑘) 

 

The SSSP algorithm consists of six steps. The first and 

second steps are identification and merging. The third to last 

steps are iterative updates. In the first step, the support 

estimation Ω is identified by iteratively introducing multiple 

indices with 2k largest related values in magnitude provided 

by some inputs A, D and y, plus the initialization x0=0. In the 

third step, the cardinality of the new support set I 

corresponding to the sparsity level k is updated, using the 

shrinking obtained by merging in the second step. This leads 

to a relatively sparse solution based on the trimmed set and a 

least-square solution.  

The termination condition is of great importance to the 

algorithm. As outlined in the next section, the normalized 

relative error ∥ 𝑥𝑙+1 − 𝑥𝑙 ∥2/∥ 𝑥𝑙 ∥2≤ 휀  was adopted as the 

termination condition in the simulations. 

Like classical MP-based methods, the SSSP is a hard 

thresholding pursuit algorithm that makes support estimation 

by greedy strategy, performs such a projection, and represents 

the sparse signals within a finite number of iterations. 

The main idea of the SSSP is to correctly choose the support 

estimation subject to an overcomplete dictionary constraint 

during each iteration. As shown in Table 1, the main difference 

between SSSP and traditional MP-based methods is the 

projection calculation by replacing simple hard thresholding: 

 

Λ𝑜𝑝𝑡(𝑥, 𝑘) = arg 𝑚𝑖𝑛
Λ:∥Λ∥0≤𝑘

 ∥ 𝑥 − 𝑃Λ𝑥 ∥2 (13) 
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where, PΛ is a hard thresholding operator applied to the 

optimal projection of a general vector xRn onto the columns 

of 𝐷 subject to the index set Λ constraint. In particular, such a 

projection is calculated with the proxy ATr if it has at most k 

nonzero entries. This guarantees the approximation to the 

desired sparse solution. 

Problem (13) is generally NP-hard compared to the classical 

CS problem. It is assumed that the calculation of the optimal 

projection PΛx is unworkable and nontrivial provided by any 

A, D, and r. An alternative way is to apply near-optimal 

projection to capture a near approximation of PΛx, such that  

 

∥ 𝑃𝑠𝑢𝑝𝑝(𝐷,𝑘)(𝐴T𝑟)𝑥 − 𝑥 ∥2≤ 𝑐1 ∥ 𝑃Λ𝑥 − 𝑥 ∥2 

∥ 𝑃𝑠𝑢𝑝𝑝(𝐷,𝑘)(𝐴T𝑟)𝑥 − 𝑥 ∥2≤ 𝑐2 ∥ 𝑃Λ𝑥 ∥2 
(14) 

 

for some constants c1≥0 and c2≥0. Notably, near-optimal 

projection is equivalent to optimal projection, even if the 

columns of $D$ are highly correlated under 𝑃𝑠𝑢𝑝𝑝(𝐷,𝑘)(𝐴T𝑟)𝑥 =

𝑃Λ𝑥. This clearly leads to highly accurate signal recovery. 

Then, the least-squares problem based on the calculation of 

𝑃𝑠𝑢𝑝𝑝(𝐷,𝑘)(𝐴T𝑟)𝑥  was considered instead of that of PΛx. 

Specifically, the algorithm establishes the signal estimation 𝑥
~

 

via the dominant least squares problem of the merging step 

provided by T such that 

 

𝑥
^

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑧

∥ 𝑦 − 𝐴𝑧 ∥2, 𝑠. 𝑡. 𝑧 ∈ R(𝐷𝑇) (15) 

 

with 2k largest nonzero entries of DT(ATr). Similarly, the 

solution to the least-squares problem can be obtained by: 

 

𝑥
^

= 𝐷𝑇𝐴
~

𝑇
† 𝑦 = 𝐷𝑇((𝐴

~

𝑇
T𝐴

~

𝑇)−1𝐴
~

𝑇
T𝑦) (16) 

 

where, AT is the submatrix of A indexed by T. Many empirical 

evidences verify that the above standard CS recovery 

algorithms are suitable for calculating such a near-optimal 

projection. 

 

3.2 Bound for measurement number 

 

Setting aside the rich structure of dictionary D, the authors 

first explored the requirements on minimal measurement 

number, which depend on the sensing matrix A. Previous 

works have shown that 𝑥  can be recovered stably from the 

compressive measurements, provided that 𝐴 satisfies the RIP 

with the smallest constant δk(0,1). But numerous real signals 

are compressible under an overcomplete dictionary. Due to the 

overcomplete feature of D, the recovery error ∥ 𝑥 − 𝑥
^

∥2  in 

signal space is obviously smaller or larger than that ∥ 𝑎 − 𝑎
^

∥2 

in coefficient space, i.e., ∥ 𝑥 − 𝑥
^

∥2=∥ 𝐷𝑎 − 𝐷𝑎
^

∥2≠∥ 𝑎 −

𝑎
^

∥2. 

Next comes the situation where x can be sparsely 

represented by D. Specifically, the matrix $A$ satisfies the D-

RIP of order k, if there exists a constant δk(0,1) such that 

 

√1 − 𝛿𝑘 ≤
∥ 𝐴𝐷𝑎 ∥2

∥ 𝐷𝑎 ∥2

≤ √1 + 𝛿𝑘 (17) 

 

holds for all a with ∥ 𝑎 ∥0≤ 𝑘. The D-RIP ensures that the 

norm preservation of all signals has a sparse representation 

x=Da, in contrast to the standard RIP. 

Many methods are available to design matrices that satisfy 

the D-RIP. To the best of our knowledge, the sensing matrices 

whose entries are drawn from sub-Gaussian distribution are 

highly likely to satisfy the D-RIP. Here, the matrices are 

constructed in the following manner: 

A matrix ARm×n was generated by selecting the entries 

A[M, N] as I.I.D random variables. Then, two conditions were 

imposed on the random distribution. First, the distribution 

must be centered and normalized such that 

𝐴[𝑀, 𝑁] ∼
𝑖𝑑𝑑

 𝑁(0,
1

𝑚
). Second, the expected value of random 

variable ∥ 𝐴𝑥 ∥2
2 must be ∥ 𝑥 ∥2

2, which is given by: 

 

𝐸(∥ 𝐴𝑥 ∥2
2) =∥ 𝑥 ∥2

2 (18) 

 

Without loss of generality, any distribution with bounded 

support is sub-Gaussian, including Gaussian and uniform 

distributions. This paper utilizes a key property of such 

random variables: For a fixed vector (signal) x, any matrix 

ARm×n which satisfies 

 

𝑃𝑟(∥ 𝐴𝑥 ∥2
2−∥ 𝑥 ∥2

2≥ 휀 ∥ 𝑥 ∥2
2) ≤ 4𝑒−𝑐0( )𝑚 (19) 

 

implies that a matrix A is highly likely to satisfy the D-RIP, if 

and only if $ m $ is at least on the order of klog(d/k). For this 

reason, the probability used in the paper was taken over all 

draws of A and the constant c0(ε) based on the particular sub-

Gaussian distribution and the range of ε. Perhaps the most 

fundamental for our purpose is the following lemma. 

Lemma 1: Let χ denote any k-dimensional of Rn with the 

fixed δ, a(0,1). Suppose that A is an m×n random matrix 

whose entries are selected from an I.I.D sub-Gaussian 

distribution satisfying (19), the minimum number of 

measurements for correct signal recovery can be obtained by: 

 

𝑚 = 𝑂(
2𝑘log (42/𝛿) + log (4/𝛼)

𝑐0(𝛿/√2)
) (20) 

 

with probability exceeding 1-α, 

 

√1 − 𝛿 ∥ 𝑥 ∥2≤∥ 𝐴𝑥 ∥2≤ √1 + 𝛿 ∥ 𝑥 ∥2 (21) 

 

for all xχ. 

Instead of focusing on a single k-dimensional subspace, 

Lemma 1 was used to consider all possible subspaces spanned 

by k columns of D to construct the D-RIP for A. Thus, the 

following lemma can be derived: 

Lemma 2: Let D be an overcomplete dictionary of the 

dimension nd with fixed δ, a(0,1). The minimal number of 

measurements for correct signal recovery can be obtained by 

 

𝑚 = 𝑂(
2𝑘log (42𝑒𝑑/𝛿𝑘 + log (4/𝛼)

𝑐0(𝛿/√2)
) (22) 

 

where, e is the base of the natural algorithm. Then, A will 

satisfy the D-RIP of order k with a small constant δ at the 

probability of 1-α. 

As noted above, almost all random matrices help to 

implement the sensing process. The following parts will focus 

on the random matrices in the development of our theory. 
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3.3 Recovery of approximately sparse-dictionary signals 

from incomplete measurements 

 

The assumption that signals have a sparse representation in 

an overcomplete dictionary D provides a theoretical guarantee 

for the accuracy recovery of sparse signals. Analogously to the 

guarantees of MP-based methods, the proof relies on iteration 

invariant, which indicates that the recovery error is mostly 

determined by the number of iterations.  

Before stating the main result on the recovered error of the 

algorithm, the following lemma was presented: 

Lemma 3: Assuming that 𝐴  follows the D-RIP with the 

smallest constant δt, any signal x can be expressed as x=Da 

with aRd provided by any support estimation β such that 

 

|⟨𝑥, (𝐴T𝐴 − 𝐼)𝑥⟩| ≤ 𝛿𝑡 ∥ 𝑥 ∥2
2 (23) 

 

where t=card{supp(x)}. 

So far, it is pointed out that, to bound the actual recovery 

error, a sequence approximation 𝑥𝑙 ∈ {𝑥0, . . . , 𝑥𝑙+1}  with ∥
𝑥𝑙 ∥0≤ 𝑘  is consecutively close to the original signal x 

established by Lemma 3. This leads to the following theorem. 

Theorem 1: A procedure 𝑠𝑢𝑝𝑝(𝐷,𝑘)(𝐴T𝑟) corresponds to a 

near-optimal projection 𝑃𝑠𝑢𝑝𝑝(𝐷,𝑘)(𝐴T𝑟)  when (1 + 𝑐1)(1 −
𝑐2

(1+𝛽)2) < 1, which indicates that 

 

∥ 𝑥 − 𝑥𝑙+1 ∥2≤ 𝜂1 ∥ 𝑒 ∥2 (24) 

 

where, β is an arbitrary constant; η1 is a constant depending on 

c1, c2, and β. Inspired by previous works on signal space setting, 

the conditions of Theorem 1 on the near-optimal projections 

holds in cases where D cannot satisfy the traditional RIP. Thus, 

a stronger convergence for the algorithm was provided in the 

following theorem. 

Theorem 2: Let 𝐴 be a sensing matrix satisfying the D-RIP 

of order 4k or a coefficient vector a. Then, the signal 

estimation xl+1 after l+1 iterations of the algorithm satisfies 

with ∥ 𝑥 − 𝑥𝑙+1 ∥2≤ 𝐶1 ∥ 𝑥 − 𝑥𝑙 ∥2+ 𝐶2 ∥ 𝑒 ∥2 

 

𝐶1 = ((2 + 𝜆1)𝛿4𝑘 + 𝜆1)(2 + 𝜆2)√
1 + 𝛿4𝑘

1 − 𝛿4𝑘

 

  𝐶2 = (
(2 + 𝜆2)((2 + 𝜆1)(1 + 𝛿4𝑘) + 2)

√1 − 𝛿4𝑘

). 

(25) 

 

Note that constants C1 and C2 depend on the isometry 

constant δ4k, as well as the approximation parameters λ1 and λ2. 

Further, an immediate lemma associated with Theorem 2 can 

be derived: 

Lemma 4: Under the conditions of Theorem 3, after a 

constant number of iterations 𝑙 + 1 = ⌈
log (∥𝑥∥2/∥𝑒∥2)

log (1/𝐶1)
⌉, there is: 

 

∥ 𝑥 − 𝑥𝑙+1 ∥2≤ (1 +
1 − 𝐶1

𝑙+1

1 − 𝐶1

)𝐶2 ∥ 𝑒 ∥2 (26) 

 

Lemma 4 implies the results in Theorem 1 with 𝜂1 = (1 +
1−𝐶1

𝑙+1

1−𝐶1
)𝐶2. More specifically, through various combinations of 

C1, C2 and δ4k, Theorem 2 shows that C1<1 and the accuracy of 

the algorithm improves per iteration. Thus, it can be concluded 

that C10.5 and C27.5, if 𝜆1 =
1

10
, 𝜆2 = 1, and δ4k0.1. The 

recursive nature of Theorem 2 is induced by the following 

lemma. 

Lemma 5: Under the conditions of Theorem 2, the signal 

estimation xl after l-th iteration satisfies 

 

∥ 𝑥 − 𝑥𝑙+1 ∥2≤ 0.5 ∥ 𝑥 − 𝑥𝑙 ∥2+ 7.5 ∥ 𝑒 ∥2. 
 

Particularly, 

 

∥ 𝑥 − 𝑥𝑙 ∥2≤ 2−𝑙 ∥ 𝑥 ∥2+ 15 ∥ 𝑒 ∥2 (27) 

 

Each iteration of the algorithm is crucial to reducing the 

recovery error by a constant factor, while adding an noise 

component. After enough iterations l, the most term 2−𝑙 ∥ 𝑥 ∥2 

can be minimized, and the recovery error will solely depend 

on the noise level. The upper bound of recovery error (27) also 

applies to the accurate support estimation T. 

 

3.4 Recovery of approximately arbitrary signals from 

incomplete measurements 

 

Theorem 2 implies that the recovery accuracy is positively 

correlated with the values of C1 and C2. It is possible to achieve 

accurate recovery by choosing a sufficiently small ∥ 𝑒 ∥2 . 

However, this is not the case if the signals do not have a sparse 

representation in D, that is, if 

 

𝑦 = 𝐴(𝐷𝑎𝑘) + 𝐴(𝑥 − 𝐷𝑎𝑘) + 𝑒 = 𝐴(𝐷𝑎𝑘) + 𝑒
^
 (28) 

 

where, 𝑒
^

= 𝐴(𝑥 − 𝐷𝑎𝑘) + 𝑒  is the equivalent measurement 

error corrupted by the noise constraint to a sparse-dictionary 

signal with ∥ 𝑎𝑘 ∥0≤ 𝑘 . In fact, such a noise 𝑒
^

 limits the 

maximum achievable accuracy. For illustration, the relative 

conditions were treated as valid, and the following lemma was 

extended from Theorem 2. 

Lemma 6: For the general CS model 𝑦 = 𝐴(𝐷𝑎𝑘) + 𝑒
^
 (28), 

if δ4k0.1, the upper bound of recovery error can be expressed 

by 

 

∥ 𝑥 − 𝑥𝑙+1 ∥2≤ 0.5 ∥ 𝑥 − 𝑥𝑙 ∥2+∥ 𝑥 − 𝐷𝑎𝑘 ∥2 

+7.5 ∥ 𝐴(𝑥 − 𝐷𝑎𝑘) ∥2+ 7.5 ∥ 𝑒 ∥2. 
 

Particularly, 

 

∥ 𝑥 − 𝑥𝑙 ∥2≤ 2−𝑙 ∥ 𝐷𝑎𝑘 ∥2+∥ 𝑥 − 𝐷𝑎𝑘 ∥2 

+15 ∥ 𝐴(𝑥 − 𝐷𝑎𝑘) ∥2+ 15 ∥ 𝑒 ∥2 
(29) 

 

where, ak is an approximation of x with ∥ 𝑎𝑘 ∥0≤ 𝑘. 

Note that the coefficient vector ak minimizes the upper 

bound (29), highlighting the importance of ak to sparse signal 

recovery from a small set of measurements. Based on Lemma 

6, the term ∥ 𝐴(𝑥 − 𝐷𝑎𝑘) ∥2  was used to prove the 

convergence for the algorithm if $D$ is not unitary. 

Then, (29) was modified into the following theorem, which 

implies the existence of an upper bound of the term 

∥ 𝐴(𝑥 − 𝐷𝑎𝑘) ∥2 in the signal space. 

Theorem 3: Assuming that 𝐴 satisfies the upper bound of D-

RIP with the constant δ4k0.1, then the following holds for a 

general vector x=DakRn: 

 

∥ 𝐴𝑥 ∥2≤ √1 + 𝛿𝑘(∥ 𝑥 ∥2+
1

√𝑘
∥ 𝑥 ∥1) (30) 
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Bounding the right side of (29) with Theorem 3: 

 

∥ 𝑥 − 𝑥𝑙+1 ∥2≤ 0.5 ∥ 𝑥 − 𝑥𝑙 ∥2+ 7.5 ∥ 𝑒 ∥2 

+(7.5√1 + 𝛿𝑘 + 1) ∥ 𝑥 − 𝐷𝑎𝑘 ∥2. 

+
7.5√1 + 𝛿𝑘

√𝑘
∥ 𝑥 − 𝐷𝑎𝑘 ∥1 

 

Particularly, 

 

∥ 𝑥 − 𝑥𝑙 ∥2≤ 2−𝑙 ∥ 𝐷𝑎𝑘 ∥2+ 15 ∥ 𝑒 ∥2 

+(15√1 + 𝛿𝑘 + 1) ∥ 𝑥 − 𝐷𝑎𝑘 ∥2 

+
15√1 + 𝛿𝑘

√𝑘
∥ 𝑥 − 𝐷𝑎𝑘 ∥1 

(31) 

 

Denote 

 

𝑀(𝑥): = 𝑖𝑛𝑓
𝑎𝑘:∥𝑎𝑘∥0≤𝑘

 (∥ 𝑥 − 𝐷𝑎𝑘 ∥2

+
1

√𝑘
∥ 𝑥 − 𝐷𝑎𝑘 ∥1) 

(32) 

 

is the model mismatch quantity (for any xRn). Notice that (30) 

and (32) have a similar form. Combining this result in (31), we 

have 

 

∥ 𝑥 − 𝑥𝑙+1 ∥2≤ 0.5 ∥ 𝑥 − 𝑥𝑙 ∥2+ 7.5 ∥ 𝑒 ∥2 

+8.5√1 + 𝛿𝑘𝑀(𝑥). 

 

Particularly, 

 

∥ 𝑥 − 𝑥𝑙 ∥2≤ 2−𝑙 ∥ 𝐷𝑎𝑘 ∥2+ 15 ∥ 𝑒 ∥2  

+16√1 + 𝛿𝑘𝑀(𝑥) 
(33) 

 

Note that this quantity measures the bound of the above 

recovery error. If M(x) is sufficiently large, the signal is neither 

a k sparse signal nor a compressible signal, such that xDak. 

Since the term ∥ 𝐴(𝑥 − 𝐷𝑎𝑘) ∥2 bounds the recovery error, 

(29) was modified into the following lemma, which implies 

the existence of an upper bound of the term ∥ 𝐴(𝑥 −
𝐷𝑎𝑘) ∥2in the coefficient space. 

Lemma 7: If 𝐴𝐷 satisfies the condition of D-RIP with the 

constant δ4k0.1, (30) can be extended into: 

 

∥ 𝐴(𝑥 − 𝑥𝑘) ∥2=∥ 𝐴𝐷(𝑎 − 𝑎𝑘) ∥2 

≤ √1 + 𝛿𝑘(∥ 𝑎 − 𝑎𝑘 ∥2+
∥ 𝑎 − 𝑎𝑘 ∥1

√𝑘
) 

(34) 

 

By Lemma 7, the term ∥ 𝐴𝐷(𝑎 − 𝑎𝑘) ∥2  bounds the 

recovery error in the coefficient space: 

 

∥ 𝑥 − 𝑥𝑙+1 ∥2≤ 0.5 ∥ 𝑥 − 𝑥𝑙 ∥2+ 7.5 ∥ 𝑒 ∥2

+∥ 𝑥 − 𝐷𝑎𝑘 ∥2 

+7.5√1 + 𝛿𝑘(∥ 𝑎 − 𝑎𝑘 ∥2+
1

√𝑘
∥ 𝑎 − 𝑎𝑘 ∥2). 

 

Particularly, 

 

∥ 𝑥 − 𝑥𝑙 ∥2≤ 2−𝑙 ∥ 𝐷𝑎𝑘 ∥2+ 15 ∥ 𝑒 ∥2

+∥ 𝑥 − 𝐷𝑎𝑘 ∥2 

+15√1 + 𝛿𝑘(∥ 𝑎 − 𝑎𝑘 ∥2+
1

√𝑘
∥ 𝑎 − 𝑎𝑘 ∥2) 

(35) 

where, ak is a near $ k $ sparse approximation of a. If ak is 

arbitrarily compressible, then a= ak, indicating that the upper 

bound of (35) is reasonably small. 

 

3.5 Computation complexity  

 

This subsection discusses the subsequent results related to 

the convergence speed of the algorithm. 

It is assumed that 𝑥
^

= 𝑥𝑙+1  is an output of the algorithm 

after l+1 iterations. For parameter η>0, the algorithm produces 

a signal estimation 𝑥
^
 after at most 𝑂(log ∥ 𝑥 ∥2/𝜂) iterations 

such that 

 

∥ 𝑥 − 𝐷𝑎
^

𝑘 ∥2= 𝑂(𝜂 +∥ 𝑒 ∥2) = 𝑂(𝑚𝑎𝑥{𝜂, ∥ 𝑒 ∥2}. (36) 

 

The computing cost is the sum of costs of its six steps. The 

first step acquires the signal estimation 𝑥
~

 via the LS provided 

by the proxy ATr. The second step efficiently calculates the 

support estimation Ω = 𝑠𝑢𝑝𝑝(𝐷,2𝑘)(𝐴T𝑟)  and its 

corresponding pruned set 𝐼  with the standard CS recovery 

algorithms. The single runtime of these algorithms is 

proportional to O(knd) or O(nd) during each iteration. 

Therefore, the overall runtime of these algorithms is 

𝑂(𝑘𝑛𝑑log ∥ 𝑥 ∥2/𝜂)  or 𝑂(𝑛𝑑log ∥ 𝑥 ∥2/𝜂)  as k increases. 

As depicted in Figure 2, the runtime was in line with advanced 

bounds, resulting in a relatively linear convergence. 

 

 
 

Figure 2. The convergence of the SSSP algorithm for three 

types of signals 

 

The next section illustrates challenging task of computing 

the near-optimal projection for a near approximation to 

optimal projection is illustrated through simulations, and 

details the parameters related to sparse-dictionary signal 

recovery. 

 

 

4. SIMULATION AND RESULTS ANALYSIS 

 

This section compares the recovery performance of the 

proposed method with conventional baseline methods, and 

measures the signal recovery frequency with additive 

Gaussian noise. The proposed method was also applied to 

coded aperture spectral imaging (CASSI) on a hyperspectral 

data cube, in contrast to the said baseline methods. 
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4.1 Recovery performance under an overcomplete 

dictionary 
 

In the first simulation, the original data were generated in 

three steps: (1) Generate a k sparse signal x with n=256 sparse 

in the dictionary 𝐷  domain; (2) Generate a random sensing 

matrix; (3) Compute the compressive measurement. The 

simulation consists of 1,000 independent trials. 

The recovery error Rrec were measured by two indices Rrec 

and Rres: 
 

𝑅𝑟𝑒𝑐(𝑥, 𝑥
^

) =
∥ 𝑥 − 𝑥

^
∥2

∥ 𝑥 ∥2

≤ 휀1 (37) 

 

with ∥ 𝑥 − 𝑥
^

∥2≤ 10−4 ∥ 𝑥 ∥2.  
 

 

 
 

Figure 3. The frequency of signal recovery out of 1,000 trials 

for different SSSP variants, when the nonzero entries in 𝑎 are 

well separated (a), and when the nonzero entries in 𝑎 are 

clustered (b) 
Note, k=8, n=256, d=1,024, the dictionary DRn×d is a 4 overcomplete 

DFT, and ARm×n is a Gaussian matrix. 

 

Then, the effects of the algorithm with different support 

estimation techniques were checked for the case where the $ k 

$ nonzero entries of $ a $ are well separated, and the case 

where they are clustered, in comparison with four existing 

algorithms: Orthogonal matching pursuit (OMP), compressive 

sampling matching pursuit (CoSaMP), subspace pursuit (SP), 

and linear programming (LP). Note that D is a 4 

overcomplete DFT dictionary. Thus, the neighboring columns 

in this dictionary are highly coherent. First, the frequency of 

signal recovery was investigated with sparsity level k=8 as a 

function of the measurement number m. The simulation results 

are shown in Figure 3. 

As mentioned before, the main task of the algorithm is the 

calculation of Λopt(x,k). Such projections are required for 

identification and update steps. To cope with the challenge, 

standard recovery algorithms like OMP, SP, CoSaMP, and LP 

were adopted to calculate the near-optimal projection 

Psupp(D,k)(ATr), which leads to the support estimation 

supp(D,k)(ATr). For simplicity, the support estimations obtained 

by OMP, SP, CoSaMP, and LP are denoted as SSSP(OMP), 

SSSP(SP), SSSP(SP), and SSSP(CoSaMP), respectively. 

Figure 3(a) compares the performance of eight different 

algorithms for the case where the nonzero entries of 𝑎 are well 

separated. It can be seen that SSSP(LP) outperformed the other 

algorithms when using the support supp(D,k)(ATr) derived by a 

classical algorithm like LP. This means LP is suitable for 

finding the exact Λopt(x,k) when x=PΛopt(x,k)x and its 

corresponding nonzero entries of Λopt(x,k) are well separated. 

It can also be seen that OMP, CoSaMP, and SP are not 

effective for signal recovery, due to the mutual coherence 

between A and D. 

Figure 3(b) compares the performance of eight different 

algorithms for the case where the nonzero entries of 𝑎  are 

clustered. It can be seen that SSSP(CoSaMP) outshined the 

other algorithms. Besides, SSSP(OMP) and OMP always 

failed with the increase of m, because OMP selects the largest 

index per iteration. This means the correct identification of 

support set hinges on the high coherence between close atoms 

in and around the cluster. 

It can be thus concluded that the algorithm accurately 

recovers the signals, whereas LP and OMP performs poorly, 

when the supports of x are clustered together; the exact 

opposite phenomena occur if the supports are well separated. 

In general, the algorithm variants outperform the 

corresponding algorithm. 
 

4.2 Recovery performance for overcomplete dictionaries in 

compressive spectral 
 

Then, the signal recovery performance of our algorithm was 

verified on a small set of compressive CASSI measurements, 

which covers several practical issues. Specifically, a real 

hyperspectral data cube with a sparse representation in some 

dictionaries was adopted instead of an ideal sparse-dictionary 

signal whose coefficients are random sub-Gaussian variables. 

In the second simulation, the final test dataset was sensed 

via a charge-coupled device (CCD) camera AVT Marlin 

F033B (range: 450-700nm; step size: 10nm). The 

hyperspectral images captured by the camera have a spatial 

resolution of 256256 pixels, with L=24 bands. Figure 4 

presents a red-green-blue (RGB) profile of the test data cube.  

The 4 overcomplete dictionary of the dimension 64256 

can be sparsely represented by 1,024 nonoverlapping pixels 

for each image. The proposed algorithm was adopted to 

recover the underlying data cube from the CASSI 

measurements, corrupted by the sensing noise with zero-mean 

and variance δ2=10-4. The same baseline methods were taken 

as the benchmarks for image recovery, due to their reasonable 

computation complexity. The peak signal-to-noise ratio 

(PSNR) was selected to measure the quality of each recovered 

image: 
 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10

∥ 𝑥
^

∥2

∥ 𝑥 − 𝑥
^

∥2

 (38) 

 

where, x is the original image; 𝑥
^
 is the recovered image. 
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Figure 4. A RGB decomposed representation of the original 

bands for the test dataset 

 
Figure 5. The random coded aperture 

 

Table 2. The mean PSNR for the recovered bands of 

multispectral scene (unit: dB) 

 
Method Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 

OMP 14.25 14.32 14.24 14.93 14.21 14.57 

SP 16.32 16.58 16.43 16.59 16.42 16.58 

CoSaMP 17.33 17.46 17.44 17.52 17.39 17.55 

LP 27.33 27.31 27.75 27.81 27.77 27.41 

SSSP 27.32 27.55 27.83 27.41 27.92 27.55 

 

 
 

Figure 6. The reconstruction of a subset of bands for the 

hyperspectral images with different algorithms: (1) OMP, (2) 

SP, (3) CoSaMP, (4) LP, and (5) SSSP 

As shown in Figure 6 and Table 2, the proposed algorithm 

achieved the best quality of recovered bands, provided by the 

structure of H using a random coded aperture (Figure 5), in 

terms of PSNR.  

Note that all the entries lie in a random code obey sub-

Gaussian distribution. The results visually show the bands 

recovered with the proposed algorithm are superior than those 

recovered with the benchmark algorithms. In contrast, the 

baseline methods performed poorly, because they neglect the 

near-optimal projection scheme.  

It can also be seen from Figure 6 that, the PSNR achieved 

with our algorithm outperformed that of most baseline 

algorithms by up to 7dB. The only method that realized 

comparable effect is LP when using SSSP. The results verify 

that our algorithm can improve the recovery of hyperspectral 

images, while greatly reducing the computing complexity. 

 

 

5. CONCLUSIONS 

 

This paper presents a near-optimal projection scheme to 

solve the bottleneck in the setting of the overcomplete 

dictionary. The scheme develops such a projection to 

iteratively identify the atoms from the given dictionary. It was 

observed that the accuracy of the algorithm is solely controlled 

by the noise level due to its convergence. The behavior of the 

signal space method was also analyzed, even when the 

columns of dictionary too coherent to satisfy the general 

properties. It is verified that our method can obtain the optimal 

projection, and provide theoretical basis for clear explanation 

of the observed phenomena. Simulation results show that our 

method achieved outstanding recovery performance in noisy 

case. 
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