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The exploitation capability of the Harris Hawks optimization (HHO) is limited. This 

problem is solved here by incorporating features of Cuckoo search (CS). This paper 

proposes a new algorithm called Harris hawks-cuckoo search (HHO-CS) algorithm. The 

algorithm is validated using 23 Benchmark functions. A statistical analysis is carried out. 

Convergence of the proposed algorithm is studied. Nonetheless, converting color breast 

thermogram images into grayscale for segmentation is not effective. To overcome the 

problem, we suggest an RGB colour component based multilevel thresholding method for 

breast cancer thermogram image analysis. Here, 8 different images from the Database for 

Research Mastology with Infrared images are considered for the experiments. Both 1D 

Otsu’s between-class variance and Kapur's entropy are considered for a fair comparison. 

Our proposal is evaluated using the performance metrics – Peak Signal to Noise Ratio 

(PSNR), Feature Similarity Index (FSIM), Structure Similarity Index (SSIM). The 

suggested method outperforms the grayscale based multilevel thresholding method 

proposed earlier. Moreover, our method using 1D Otsu’s fitness functions performs better 

than Kapur’s entropy based approach. The proposal would be useful for analysis of infrared 

images. Finally, the proposed HHO-CS algorithm may be useful for function optimization 

to solve real world engineering problems. 
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1. INTRODUCTION

Breast cancer is most common among women. Over 2.1 

million women get affected each year, and the death rates are 

highly related to the breast cancer [1]. It is the second most 

common cancer in women after lungs cancer. Breast Cancer 

mostly begins in the ducts or lobules after uncontrolled growth 

of the cells. Breast cancer can spread to distant organs, so an 

early treatment is required. Cancer is a disease with multiple 

factors, so advanced screening of the breasts is required for 

analysis of the tumor formation. Breast cancer can be 

classified in several stages, the initial stage, which is known as 

DCIS (ductal carcinoma in situ), the growth of cells is limited 

in ducts. In the next stage, the formation of tumor occurs, and 

also has a small group of cancer cells. When the size of the 

tumor grows, it spreads to lymph nodes and distant organs 

such as bones, liver, brain or lungs. 

Advanced screening of breasts is required for analysis of 

tumor formation as an extra aid to a radio-physicist. There are 

various Medical imaging techniques used for early analysis of 

breast cancer, Such as Breast Ultrasound (Sonogram), 

Magnetic Resonance (MRI), Thermography, Mammography, 

Positron Emission Tomography (PET), Computed 

Tomography (CT), Integrated PET/CT, MRI and PET, 

Ultrasound and MRI. 

Mammography is one of the popular diagnostic techniques 

used for the detection of breast cancer. Mammography 

involves exposure to X-ray radiation on the human body. Due 

to the exposure to radiation, there is a possibility of further 

cancer cell growth. Sometimes Mammography, Breast MRI 

and Breast Ultrasound show “false-positive” results, in which 

the person needs an additional test or even more. This could 

lead to another mammogram or a different test. 

On the other hand, thermography is a clinical procedure 

where a thermal camera captures the infrared radiation of the 

human body at controlled room temperature and produces the 

digital thermal images. A body emits infrared radiation above 

absolute zero temperature. A thermal image shows the 

temperature variations of the body. The infrared radiation 

emitted by the surface of the body has wavelength ranges from 

0.8µm to 10 µm. Thermography is a non-invasive process, no 

exposure to radiations and does not involve in compression of 

breast tissues [2]. Thermography provides information on the 

growth of cancer cells before the formation of a tumour. No 

radiation is involved as the temperature variation of the body 

provides vascular activity information. 

Image Segmentation Partitions images into regions into 

homogeneous classes. For image segmentation, several 

techniques have been studied throughout the years. Multilevel 

thresholding is the easiest method in image segmentation. In 

color images, multilevel thresholding partitions, images into 

different classes based on threshold levels of each R, G, B 

histogram components. The thresholding based segmentation 

method is divided into parametric and non-parametric. Note 

that the parametric method calculates the probability density 

function of each class, whereas the nonparametric measure 

class variance, entropy to get the optimal threshold values [3]. 

Due to the computational complexity of the parametric 
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approach, nonparametric methods are used. Various 

optimization techniques are used in multilevel thresholding 

using nonparametric approaches to get the best threshold 

values. Segmentation of medical images is popular in recent 

years as it is helpful for analysis of a particular part of the body. 

In this work, a new optimization technique called Harris 

Hawks-Cuckoo Search (HHO-CS) is investigated. The Harris 

Hawks optimizer is found more popular for function 

optimization. However, its exploitation capability is limited, 

thereby not yielding to optimal or near optimal solutions. This 

has motivated us to incorporate the exploitation capability of 

the cuckoo search strategy. This is the real motivation behind 

the investigation of the proposed HHO-CS algorithm. Two 

different objective functions are used for a comparison. The 

suggested algorithm is used to obtain the optimal threshold 

values to segment colour thermogram images. The 

effectiveness of HHO-CS algorithm is validated with a set of 

23 Benchmark functions and compared with Harris Hawks 

optimization [4] and Cuckoo Search algorithm [5]. For 

multilevel thresholding of thermogram images, experiments 

are performed based on Otsu’s between-class variance and 

Kapur's entropy as the fitness functions. Our proposed HHO-

CS technique is evaluated based on the performance metrics – 

peak signal to noise ratio (PSNR), Feature similarity index 

(FSIM), Structure Similarity Index (SSIM). Results of 

objective function values, threshold levels of RGB component 

are also evaluated.  

Converting colour thermal images into grayscale images 

makes it a difficult task to extract features due to poor contrast, 

low visual perception. Therefore, it is necessary to perform full 

colour image processing of the clinical images for research 

support. For the past few years, many optimization techniques 

are used to perform segmentation to get better quality 

segmented images. This has motivated us to investigate a 

method to segment colour thermogram images. Results are 

presented using 1D Otsu’s objective function and Kapur’s 

entropy.  

Organization of the paper is as follows: Section 2 discusses 

the related work. The proposed HHO-CS algorithm is 

presented in Section 3. The methodology is discussed in 

Section 4. Results are presented in Section 5. Conclusions are 

given in Section 6. 

 

 

2. RELATED WORK 

 

Díaz-Cortés et al. [6] in 2018 presented multilevel 

thresholding of Breast Thermal images using Dragonfly 

algorithm. The Segmentation of grayscale breast thermal 

images is performed by using the energy curve of images as 

an input. The colour Segmentation of satellite images using 

nature-inspired optimization algorithms are proposed by 

Bhandari et al. [7]. The performance of the algorithms was 

performed based on Otsu’s between-class variance and 

Kapur’s entropy as the objective functions. The Kapur’s 

entropy based objective function has better performance and 

the Cuckoo search algorithm was found to be more efficient 

for Colour segmentation of satellite images. 

He and Huang [8] presented an efficient krill herd (EKH) 

optimization technique for multilevel thresholding of colour 

images using Otsu’s method, Kapur and Tsallis entropy as the 

objective functions. The efficient krill herd (EKH) algorithm 

shows better performance as compared to the krill herd 

algorithm (KH). Electro-magnetism optimization (EMO) 

algorithm based multilevel thresholding is presented by Oliva 

et al. [9]. The Otsu’s and Kapur's entropy criterion used as 

objective functions and the histogram of images are taken as 

the input. Oliva et al. [3] presented a hybrid Artificial Bee 

colony-Salp Swarm algorithm (ABC-SSA), for image 

segmentation. The hybrid approach performs better than ABC, 

SCA, SSO, SSA algorithms in a multilevel thresholding 

problem using Kapur’s entropy as the objective function. 

Multilevel thresholding of Satellite images proposed by Pare 

et al. [10] using optimization techniques WDO, BFO, FA, 

ABC, DE and PSO by taking energy curves of image as an 

input. The objective functions based on Kapur’s entropy, 

Tsallis entropy and Otsu’s method are used. The Kapur’s 

entropy based DE techniques produces better segmented 

images. 

Multilevel thresholding using WDO and CS was proposed 

by Bhandari et al. [11] using Kapur’s entropy as the objective 

function. Multilevel thresholding using various Optimization 

techniques are reported in the studies [12-15]. Horng et al. [16] 

presented multilevel thresholding based on honey bee mating 

optimization using the cross entropy as the objective function. 

Bhandari et al. [17] proposed a modified artificial Bee colony 

(MABC) optimizer for multilevel thresholding of satellite 

images through maximization of Otsu’s between-class 

variance, Kapur’s and Tsallis entropy. The MABC algorithm 

produces better segmented images as compared to ABC 

method.  

 

2.1 Harris Hawks Optimization 

 

A nature-inspired Optimization algorithm called “Harris-

Hawks optimization” algorithm was proposed by Heidari et al. 

in 2019. The Harris-hawks optimization technique is inspired 

by the hunting strategy of Harris-hawks and escaping of prey. 

The Harris-hawks catch prey by a “Surprise Pounce” or also 

known as “Seven kills” strategy. The Harris-hawks 

optimization technique also features exploration and 

exploitation phase [4].  

 

2.1.1 Exploration phase 

The exploration phase of HHO algorithm consists of two 

strategies to detect the prey (Rabbit) by perching randomly on 

some locations, taking an equal chance q (in each perching 

plan), the perch based on the position of other hawks. The 

location of the rabbit is known as 𝑋rabbit. The rabbit location 

for the condition q< 0.5 described in Eq. (1). When q≥ 0.5, 

hawks roost on random high trees inside their range of location. 

 

1 2

3 4

| ( ) 2 ( ) |, 0.5
( 1)

( ( ) ( )) ( ( )), 0.5

rand rand

rabbit m

X r X t r X t q
X t

X t X t r LB r UB LB q

− − 
+ = 

− − + − 
 (1) 

 

where, The term X(t+1) represents updated position of Hawks 

in each iteration, 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) is the postion of rabbit, 𝑋𝑟𝑎𝑛𝑑(𝑡) 

is the position of Hawks chosen randomly, LB is the lower 

bound, UB is the upper bound, and 𝑋𝑚(𝑡)  is the average 

position of hawks. Random numbers r1, r2, r3, r4 are used to 

explore different regions of Search space for the Hawks. The 

equation for the average position of hawks is given by: 

 

1

1
( ) ( )

N

m i

i

X t X t
N =

=   (2) 

 

where, Xi(t) and N represents the location of each Hawk in 
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iteration t and number of Hawks, respectively. The transition 

from the Exploration Phase to Exploitation Phase occurs 

depending on the Perching strategy of Hawks on escaping prey 

(Rabbit). The initial energy E0 The value ranges from -1 to 1 

for every iteration t. When the value of E0 decreases from 0 to 

-1, it signifies a weakening of the prey. In case the value of E0 

increases from 0 to 1, it signifies strengthening of the prey. 

The escaping energy of the Prey also a key factor in the 

transition, which is modelled as: 

 

02 (1 )
t

E E
T

= −  (3) 

 

2.1.2 Exploitation phase 

The Hawks perform the “Surprise Pounce” strategy to catch 

the prey. There is also an escaping factor ‘r’ of the prey, where 

the value of r is greater than 0.5 signify higher chance of 

escape and less than or equal to 0 signify lower chance of 

escape of the rabbit. There are different phases of exploitation 

of prey based on the escaping factor and energy of the prey. 

The exploitation phases are shown in Figure 1.  

 

 
 

Figure 1. Exploitation phases of HHO 

 

a. Soft Besiege 

The Hawks perform Soft Besiege based on Rabbit’s energy. 

The position of hawks for soft Besiege models as below.  

 
X(t+1) =∆X(t) -E|J 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) −X(t)| (4) 

 
∆X(t)= 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) −X(t) (5) 

 

where, “J” is known as “Jump strength” of the Rabbit. 

 

b. Hard Besiege 

When the Rabbit is fagging, the hawks perform “Surprise 

Pounce” tactics, when the escaping factor value “r” is greater 

than or equal to 0.5 and the escaping energy is less than 0.5. 

For each iteration, the positions of hawks are updated using 

the equation.  
 

( 1) ( ) | ( ) |rabbitX t X t E X t+ = −   (6) 

 

where, E is the energy. 

 

c. Soft Besiege with progressive rapid dives 

In Case of Escaping energy greater than or equal to 0.5 and 

the escaping factor less than 0.5 of the rabbit, the hawks 

perform soft besiege with progressive rapid dives. In this 

condition, the rabbit has sufficient energy to outflow). The 

Levy flight movement of Hawks depends on the zig-zag 

motion of the rabbit [6]. The Hawks update their position 

concerning the movements of the rabbit. The equations for this 

strategy can be described as below 

( ) | ( ) ( ) |rabbit rabbitY X t E JX t X t= − −  (7) 
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(10) 

 

Note that LF is the Levy flight. 

d. Hard Besiege with progressive rapid dives 

When Escaping energy is less than 0.5 and escaping factor 

is less than 0.5, the rabbit is completely exhausted and has low-

level energy, the Hawks perform hard besiege with rapid dives 

to catch the rabbit. In this stage, the hawks successfully catch 

the rabbit. The Levy flight method is also used in this phase. 

The equation for the position of hawks, for each iteration, is 

given below: 

 

𝑋(𝑡 + 1) =  = {
𝑌, 𝑖𝑓 𝐹(𝑌) < 𝐹(𝑋(𝑡))

𝑍, 𝑖𝑓𝐹(𝑍) <  𝐹(𝑋(𝑡))
 (11) 

 

Y=𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) – E|J𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋𝑚(𝑡) (12) 

 

Z= Y + S × LF(D) (13) 

 

2.2 Cuckoo search optimization 

 

Nature-inspired Cuckoo Search optimization was proposed 

by Yang and Deb in 2009 [5]. The Cuckoo Search algorithm 

is based on the brooding parasitism of Cuckoo birds as they 

use another host bird’s nest for breeding. The phases of the 

cuckoo search algorithm are described below 

1) A cuckoo bird lays one egg at a time and pass down to 

another bird’s nest; 

2) The best nests with good quality eggs are carried over to 

the next generations; 

3) The number of host nests is fixed, and the host bird can 

discover an egg with a probability of 𝑝𝑎∈ [0,1]. Interestingly, 

the host bird can either throw the egg or abandon the nest 

immediately. The number of nests “n” and “𝑝𝑎” are replaced 

with new solutions. 

The mathematical equation, for each iteration, is modelled 

as below. 

 

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝛼⨁𝐿�́�𝑣𝑦 (𝜆) (14) 

 

the equation for the levy flight mechanism is given below. 

 

L�́�vy ~𝑢 = 𝑡−𝜆, (1< λ ≤ 3) (15) 

 

where, ‘u’ is the variable and ‘ ’ is a constant. 
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3. PROPOSED HARRIS HAWKS-CUCKOO SEARCH 

OPTIMIZER 

 

Harris Hawks Optimization technique performs good 

exploration tactics to catch the prey to reach a global best 

solution, whereas the weak exploitation capability of hawks 

signifies a higher chance of getting into local optima. To 

enhance the performance of HHO, the exploitation capability 

of Cuckoo search mechanism is inherited here. The location of 

hawks is updated by: 

 
X(t+1)=

{

𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑟1|𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑋(𝑡)|  + 𝛼⨁𝐿�́�𝑣𝑦 (𝜆), 𝑞 ≥ 0.5

𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋𝑚(𝑡)) − 𝑟3(𝐿𝐵 + 𝑟4(𝐿𝐵 + (𝑈𝐵 − 𝐿𝐵)) + 𝛼⨁𝐿�́�𝑣𝑦 (𝜆) ,

 𝑞 < 0.5, |𝐸| ≥ 1 

 

      (16) 
 

 
 

Figure 2. Flow diagram of HHO-CS 

The flow diagram of HHO-CS method is displayed in 

Figure 2. 

 

Table 1. Parameter settings 

 
Algorithm Parameter Value 

HHO-CS 

N 

𝑝𝑎 

𝛽 

30 

0.25 

1.5 

HHO N 30 

 

Table 2. Results of benchmark functions (𝑓1-𝑓13), with 30 

dimensions 

 
Function  HHO-CS HHO 

𝒇𝟏 Avg 

Std 

Min 

Max 

8.8674E-95 

4.8557E-94 

4.5074E-115 

2.6596E-93 

1.6694E-94 

6.9584E-94 

1.9980E-121 

3.6163E-93 

𝒇𝟐  Avg 

Std 

Min 

Max 

5.9147E-49 

2.3401E-48 

3.3248E-59 

1.2151E-47 

1.3618E-49 

7.2705E-49 

3.4078E-59 

3.9850E-48 

𝒇𝟑 Avg 

Std 

Min 

Max 

2.6211E-72 

1.4357E-71 

1.2370E-98 

7.8634E-71 

8.4362E-76 

3.3003E-75 

4.5853E-99 

1.5885E-74 

𝒇𝟒 Avg 

Std 

Min 

Max 

2.5076E-49 

9.4690E-49 

6.2383E-58 

5.0141E-48 

8.8527E-49 

3.6383E-48 

4.5837E-58 

1.9624E-47 

𝒇𝟓 Avg 

Std 

Min 

Max 

0.0290 

0.0524 

3.9738E-5 

0.2504 

0.0172 

0.0339 

1.7375E-5 

0.1741 

𝒇𝟔 Avg 

Std 

Min 

Max 

1.0566E-04 

1.2169E-04 

9.8245E-08 

4.9675E-04 

1.2869E-04 

1.5884E-04 

4.6149E-07 

6.6066E-04 

𝒇𝟕 Avg 

Std 

Min 

Max 

1.4913E-04 

2.0653E-04 

1.0482E-05 

8.6431E-04 

1.7717E-04 

1.4357E-04 

3.0423E-06 

6.6621E-04 

𝒇𝟖 Avg 

Std 

Min 

Max 

-1.2486E+04 

45.2858 

-1.2569E+04 

-1.2350E+04 

-1.2562E+04 

40.0058 

1.2569E+04 

1.2350E+04 

𝒇𝟗 Avg 

Std 

Min 

Max 

0 

0 

0 

0 

0 

0 

0 

0 

𝒇𝟏𝟎 Avg 

Std 

Min 

Max 

8.8818E-16 

1.47E+02 

8.8818E-16 

8.8818E-16 

8.8818E-16 

1.47E+02 

8.8818E-16 

8.8818E-16 

𝒇𝟏𝟏 Avg 

Std 

Min 

Max 

0 

0 

0 

0 

0 

0 

0 

0 

𝒇𝟏𝟐 Avg 

Std 

Min 

Max 

5.9841E-06  

9.2809E-06 

1.4347E-08 

3.4656E-05 

1.1300E-05 

2.2354E-05 

7.8338E-09 

1.1656E-04 

𝒇𝟏𝟑 Avg 

Std 

Min 

Max 

7.0957E-05 

1.2754E-04 

2.4497E-08 

6.3517E-04 

8.1648E-05 

9.4889E-05 

5.8620E-09 

3.5137E-04 
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Figure 3. Convergence curves of HHO-CS and HH 

 

Table 3. Results of benchmark functions (𝑓14-𝑓23) 

 
Function  HHO-CS HHO 

𝒇𝟏𝟒 Avg 

Std 

Min 

Max 

1.5585 

1.2876 

0.9980 

5.9288 

1.3280 

0.9466 

0.9980 

5.9288 

𝒇𝟏𝟓 Avg 

Std 

Min 

Max 

3.4236E-04 

2.9925E-05 

3.0756E-04 

4.4702E-04 

3.8963E-04 

2.6287E-04 

3.0771E-04 

1.8000E-03 

𝒇𝟏𝟔 Avg 

Std 

Min 

Max 

-1.0316 

6.78E-16 

-1.0316 

-1.0316 

-1.0316 

6.78E-16 

-1.0316 

-1.0316 

𝒇𝟏𝟕 Avg 

Std 

Min 

Max 

0.3979 

2.54E-06 

0.3979 

0.3979 

0.3979 

2.54E-06 

0.3979 

0.3979 

𝒇𝟏𝟖 Avg 

Std 

Min 

Max 

3 

0 

3 

3 

3 

0 

3 

3 

𝒇𝟏𝟗 Avg 

Std 

Min 

Max 

-3.6028 

1.4095 

-3.8628 

-3.8599 

-3.8590 

0.0061 

-3.8628 

-3.8333 

𝒇𝟐𝟎 Avg 

Std 

Min 

Max 

-3.1250 

0.0726 

-3.2605 

-2.9690 

-3.0913 

0.0988 

-3.2836 

-2.8111 

𝒇𝟐𝟏 Avg 

Std 

Min 

Max 

-5.5267 

1.4608 

-10.0063 

-5.0028 

-5.1375 

1.0277 

-10.0464 

-2.6226 

𝒇𝟐𝟐 Avg 

Std 

Min 

Max 

-5.2484 

0.9042 

-10.0360 

-5.0679 

-5.2495 

0.9097 

-10.0658 

-5.0685 

𝒇𝟐𝟑 Avg 

Std 

Min 

Max 

-5.4583 

1.2722 

-10.4055 

-5.1106 

-5.3041 

0.9876 

-10.5332 

-5.1076 

 

Benchmark Function Optimization 

To test the effectiveness of HHO-CS, HHO, and CS 

algorithms, a set of 23 standard benchmark functions including 

unimodal, multimodal, multimodal with fixed dimension 

functions (𝑓1 − 𝑓23) are taken for a minimization problem. The 

unimodal functions are used to test the exploitation capability 

of optimizers and the multimodal functions are used to test the 

exploration ability. The unimodal functions also signify the 

ability to reach the global best while the performance of the 

multimodal functions shows the local optima avoidance. The 

dimension size is set to 30. The population size N is 30 and the 

maximum iteration is 500. All the algorithms are run in 

MATLAB R2018 having an Intel Core i5-8265U CPU clocked 

at 1.60GHz with 4GB RAM, with windows 10 operating 

system. The parameter settings are shown in Table 1. The 

results of an Average (Avg), Standard deviation (Std), Minima 
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(Min) and Maxima (Max) of 30 runs of each benchmark 

functions are shown in Table 2&3. The boldface letters 

indicate the best results. The convergence curves are shown in 

Figure 3. 

In summary, the proposed HHO-CS algorithm performs 

better than the HHO for the multimodal test functions. 

However, the performance of our method is similar to that of 

the HHO for some of the functions. Nevertheless, the 

suggested algorithm ensures a better convergence, because of 

its enhanced exploitation capability. 

 

 

4. METHODOLOGY 

 

Multilevel thresholding of color thermogram images is 

solved using the RGB histogram as the input, considering that 

the color images contain more information, better visual 

perception of the human eye with contrary to grayscale images, 

where we cannot see the temperature variations. The 

multilevel thresholding technique is used to get better results. 

 

4.1 Otsu’s between class variance 

 

The bi-level and multilevel thresholding of images based on 

the between class variance was first proposed by Otsu [18]. 

Bi-level thresholding and multilevel thresholding separate 

images into classes when the maximum variance is calculated. 

This method considers histogram of an image as an input. The 

probability distribution of intensity levels of R, G, B channel 

is obtained. The optimal threshold values are obtained for each 

channel of the colour image. The mathematical representation 

is given below 
 

2 2

1 1

( )k k k T

nt nt

k k

    
= =

= = −   (17) 

 
1 1

( )
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2( ) max( ( )),otsuf th th=  0≤ th ≤ L − 1 (20) 

 

where, 
2 is the variance, µ is the mean. 

 

4.2 Kapur’s entropy 

 

Kapur’s entropy method measures the entropy of different 

classes of an image. To segment colour images, the Kapur’s 

entropy maximizes the entropy and obtain optimal threshold 

values of each R, G, B channel. The probability distribution of 

intensity levels of each R, G, B channel is used to measure the 

entropy criterion. Segmentation of Colour images performed 

by maximizing Kapur’s entropy, which is taken as the 

objective function [19]. The mathematical formulations for 

Kapur’s entropy are 
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where, entropy of each class is calculated by 
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In summary, the proposed Harris Hawks-Cuckoo Search 

Optimizer (Eq. (16)) is used to optimize the fitness functions 

shown in Eq. (20) (Otsu’s method) and Eq. (21) (Kapur’s 

method). It is reiterated that the optimum threshold values are 

obtained through the maximization.  

 

 

5. RESULTS AND DISCUSSIONS 

 

The multilevel colour thermogram image thresholding 

method is implemented using both Otsu’s between-class 

variance and Kapur’s entropy as the fitness functions. The 

proposed HHO-CS, CS and HHO algorithms are implemented 

to get optimal results. The multilevel colour thermogram 

image thresholding method is shown in Figure 4.  

 

 
 

Figure 4. Multilevel thresholding of thermal images 

 

The benchmark images are displayed in Figure 5. The 

experiments are based on a set of 8 different images acquired 

from the Database for Research Mastology with Infrared 

images [20]. The images are captured using a FLIR SC-620 

Thermal Camera. The selected images and their respective 

histogram plots are described in Figure 5. For experimental 

purposes, images with size 341×256 are taken. 

The population size and the maximum number of iterations 

of each algorithm are set to 30 and 500, respectively. The 

Lower bound (LB) and upper bound (UB) of the algorithm is 

set to 0 to 255. The performance of the algorithms is evaluated, 

which is composed of 20 runs of the same algorithm using a 

specific image and calculating the average of objective 

function values, PSNR, SSIM and FSIM [21-24]. 
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Figure 5. Benchmark images and their respective histograms 

 

5.1 Benchmark images 

 

The Peak Signal to noise ratio (PSNR) is a widely used 

performance metric for measuring the quality of the original 

image with the reconstructed images. Structure Similarity 

Index (SSIM) and Feature Similarity index (FSIM) quality 

metric measure the similarity between the original image and 

the output segmented image. SSIM specify quality 

degradation due to data processing. All experiments are 

performed on MATLAB R2018a with 4GB RAM on an Intel 

core i5 CPU clocked at 1.6 GHz frequency. 

 

5.2 Experiment 1: Based on Otsu’s between class variance 

 

Optimal threshold values are obtained using HHO-CS 

algorithm and presented in Table 4. Objective function values 

and PSNR values obtained from HHO-CS and HHO 

algorithms using Otsu’s between class variance are displayed 

in Table 5. Remarkable differences are found. It is observed 

that the suggested HHO-CS method outperforms as compared 

to HHO. Similarly, a significant improvement over the HHO 

algorithm is seen with respect to the PSNR values. The reason 

could be the enhanced exploitation capability of HHO-CS 

method to get the best solutions. For instance, an improvement 

of 3% in PSNR value is seen in the test image sample TH1 

with threshold level K=4 (see Table 5). The SSIM and FSIM 

values obtained from HHO-CS and HHO algorithms using 

Otsu’s between-class variance are shown in Table 6. 

Interestingly, the suggested technique has shown better values 

(for SSIM and FSIM) than HHO. 

 

Table 4. Threshold values obtained using HHO-CS algorithm 
 

Image K HHO-CS 

  R G B 

TH1 2 137,239 110,210 82,163 

3 141,176,230 60,153,182 62,130,149 

4 44,58,113,145 44,102,160,230 46,86,135,250 

5 145,191,196,197,254 61,87,168,173,255 83,98,152,196,236 

TH2 2 138,236 82,88 81,190 

3 108,212,228 62,60,140 51,86,118 

4 101,155,176,255 93,130,167,228 46,94,185,198 

5 112,180,183,224,255 83,96,126,200,247 82,128,137,239,254 

TH3 2 125,229 102,238 83,86 

3 136,147,180 81,151,215 63,110,196 

4 140,188,212,249 59,91,140,243 63,104,195,248 

5 32,153,155,190,249 83,96,97,103,231 60,76,86,164,196 

TH4 2 148,203 95,174 77,90 

3 100,189,222 56,130,217 52,107,108 

4 104,164,194,250 110,148,175,251 80,114,190,215 

5 106,111,184,249,254 64,69,88,123,217 58,88,64,65,104 

TH5 2 137,138 101,209 75,88 

3 113,141,201 60,134,141 47,63,126 

4 155,162,172,254 112,146,147,219 84,94,202,215 

5 130,165,192,217,253 86,166,174,187,218 76,96,176,209,220 

TH6 2 128,137 47,100 85,147 

3 117,134,206 56,131,209 71,138,166 

4 130,143,170,254 118,120,126,216 60,117,202,244 

5 66,185,195,199,245 94,107,119,148,208 55,84,93,162,247 

TH7 2 139,184 93,97 56,85 

3 115,124,214 63,136,158 59,61,129 

4 219,237,241,251 110,167,184,232 91,120,243,246 

5 114,118,142,250,255 78,138,186,191,240 29,68,92,133,207 

TH8 2 125,139 100,126 92,130 

3 97,190,243 43,64,131 54,83,169 

4 125,156,162,253 126,134,218,233 94,95,131,213 

5 141,156,159,213,247 93,115,182,238,253 21,63,98,241,247 
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Table 5. Comparison of objective function and PSNR values 

obtained from HHO-CS and HHO algorithms using Otsu’s 

between-class variance 

OBJECTIVE FUNCTION PSNR 

Images K HHO-CS HHO HHO-CS HHO 

TH1 2 

3 

4 

5 

1.3864 E+04 

1.4623 E+04 

1.7680 E+04 

1.9050 E+04 

1.3829E+04 

1.4581E+04 

1.7483E+04 

1.8744E+04 

55.0114 

62.7343 

69.6979 

74.3875 

53.4132 

62.5010 

67.6563 

73.3842 

TH2 2 

3 

4 

5 

1.5874 E+04 

1.6509 E+04 

1.9470 E+04 

2.0844 E+04 

1.5860E+04 

1.6499E+04 

1.8832E+04 

1.9810E+04 

55.3194 

62.4648 

66.3321 

72.0098 

54.1919 

61.3768 

65.7321 

71.8845 

TH3 2 

3 

4 

5 

1.2160 E+04 

1.3104 E+04 

1.8422 E+04 

2.0441 E+04 

1.2133E+04 

1.3012E+04 

1.7919E+04 

1.8662E+04 

55.3793 

62.1599 

65.2385 

68.4839 

53.9000 

60.9659 

64.2440 

66.8464 

TH4 2 

3 

4 

5 

1.6818 E+04 

1.7437 E+04 

2.1086 E+04 

2.2654 E+04 

1.6807E+04 

1.7369E+04 

1.9552E+04 

2.1593E+04 

56.1415 

58.5895 

64.3450 

66.0842 

54.938 

55.1351 

60.9177 

64.0399 

TH5 2 

3 

4 

5 

1.2864 E+04 

1.3962 E+04 

1.8368 E+04 

2.0739 E+04 

1.2858E+04 

1.3833E+04 

1.7688E+04 

1.9943E+04 

56.2041 

57.7679 

59.3859 

62.8876 

55.5316 

56.0270 

58.7054 

61.4830 

TH6 2 

3 

4 

5 

1.4484 E+04 

1.5325 E+04 

2.0903 E+04 

2.2077 E+04 

1.4467E+04 

1.5185E+04 

2.0314E+04 

2.1627E+04 

56.5041 

58.1370 

64.2811 

66.2539 

55.0818 

57.5004 

63.2488 

65.4236 

TH7 2 

3 

4 

5 

1.8836 E+04 

1.9405 E+04 

2.2614 E+04 

2.5290 E+04 

1.8825E+04 

1.9340E+04 

2.1881E+04 

2.3362E+04 

57.6207 

63.8870 

65.7686 

66.2036 

55.0971 

62.9271 

63.9271 

65.7404 

TH8 2 

3 

4 

5 

1.4799 E+04 

1.5705 E+04 

2.1482 E+04 

2.2905 E+04 

1.4757E+04 

1.5658E+04 

2.1221E+04 

2.2280E+04 

57.6318 

64.2626 

67.8773 

69.2639 

56.5587 

64.2060 

67.5404 

68.6456 

Table 6. Comparison of SSIM and FSIM values obtained 

from HHO-CS and HHO algorithms using Otsu’s between 

class variance 

SSIM FSIM 

Images K HHO-CS HHO HHO-CS HHO 

TH1 2 

3 

4 

5 

0.7342 

0.7829 

0.8280 

0.8604 

0.6967 

0.7355 

0.8181 

0.8523 

0.7515 

0.8029 

0.8140 

0.8396 

0.7486 

0.7992 

0.8110 

0.8347 

TH2 2 

3 

4 

5 

0.7114 

0.8079 

0.8501 

0.9109 

0.6912 

0.7904 

0.8483 

0.8976 

0.7586 

0.7946 

0.8267 

0.8438 

0.7170 

0.7781 

0.8231 

0.8362 

TH3 2 

3 

4 

5 

0.7281 

0.7964 

0.8248 

0.8787 

0.7060 

0.7784 

0.8174 

0.8653 

0.7676 

0.8025 

0.8238 

0.8449 

0.7468 

0.7970 

0.8258 

0.8418 

TH4 2 

3 

4 

5 

0.6699 

0.8010 

0.8324 

0.8963 

0.6662 

0.7934 

0.8292 

0.8714 

0.7840 

0.8170 

0.8344 

0.8570 

0.7698 

0.8106 

0.8210 

0.8359 

TH5 2 

3 

4 

5 

0.7401 

0.8007 

0.8591 

0.8729 

0.7238 

0.7952 

0.8470 

0.8667 

0.7419 

0.7739 

0.8255 

0.8996 

0.7361 

0.7680 

0.8137 

0.8811 

TH6 2 

3 

4 

5 

0.7287 

0.7728 

0.8421 

0.8899 

0.7207 

0.7702 

0.8388 

0.8890 

0.7676 

0.8272 

0.8310 

0.8485 

0.7533 

0.8158 

0.8237 

0.8442 

TH7 2 

3 

4 

5 

0.7009 

0.7765 

0.8461 

0.8914 

0.6941 

0.7507 

0.8422 

0.8884 

0.7920 

0.8189 

0.8335 

0.8628 

0.7823 

0.8153 

0.8266 

0.8445 

TH8 2 

3 

4 

5 

0.7194 

0.8192 

0.8476 

0.8777 

0.6839 

0.8119 

0.8426 

0.8701 

0.7921 

0.8213 

0.8418 

0.8550 

0.7907 

0.8177 

0.8356 

0.8521 

5.3 Results of HHO-CS algorithm using Otsu’ between-

class variance 

Segmented results of HHO-CS algorithm using Otsu’s 

method is shown in Figure 6. Both the low contrast and high 

contrast visual features are retained. The quality of the output 

is implicit. The proposed method may attract radio physicists 

to use it as an additional tool for diagnosis. 

K=2  K=3  K=4  K=5 

Figure 6. Results of HHO-CS algorithm using Otsu’s method 

5.4 Experiment 2: Based on Kapur’s entropy 

Optimal threshold values, obtained using HHO-CS 

algorithm, are displayed in Table 7. Objective function values 

and PSNR values obtained from HHO-CS and HHO methods 
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using Kapur’s entropy are presented in Table 8. Profound 

differences are seen. It is observed that the suggested HHO-

CS method performs better than the HHO. Similarly, a 

significant improvement over the HHO algorithm is seen with 

respect to the PSNR values. The reason could be the enhanced 

exploitation capability of HHO-CS algorithm to achieve the 

best solutions. Our method has shown consistently better 

PSNR values than HHO (see Table 8). The SSIM and FSIM 

values obtained from HHO-CS and HHO algorithms using 

Kapur’s entropy are shown in Table 9. Interestingly, our 

method has shown better values (for the SSIM and FSIM) than 

the HHO. 

Table 7. Threshold values of HHO-CS 

Images K HHO-CS 

R G B 

TH1 2 227,234 42,179 233,252 

3 190,229,255 125,145,200 51,71,189 

4 132,137,187,247 15,104,136,210 32,42,141,233 

5 98,115,202,203,212 3,75,102,115,186 25,112,158,188,232 

TH2 2 239,255  106,206 25,191 

3 208,235,255 16,132,247 35,88,238 

4 166,200,218,250 141,216,245,251 38,68,199,228 

5 116,153,168,190,250 98,103,177,200,215 42,60,80,176,198 

TH3 2 221,227 230,239 186,255 

3 126,230,244 87,137,154 21,33,131 

4 129,156,204,223 80,84,187,227 126,190,222,227 

5 104,138,143,228,255 54,82,130,169,223 16,36,58,205,238 

TH4 2 227,255 47,120 169,255 

3 137,158,236 82,121,254 62,120,190 

4 136,194,209,224 51,57,80,249 41,46,144,182 

5 164,166,239,245,254 5,51,59,114,118 85,164,176,187,207 

TH5 2 236,249 87,254 44,148 

3 189,203,255 31,229,244 191,219,233 

4 188,202,219,253 115,147,239,250 3,40,132,252 

5 99,160,176,197,250 49,82,124,231,250 70,85,109,133,226 

TH6 2 212,229  45,117 119,245 

3 137,168,203 115,129,218 3,73,153 

4 105,123,200,250 77,92,138,250 74,133,136,252 

5 147,196,209,230,252 19,35,66,133,164 36,69,188,222,243 

TH7 2 250,252 179,242 178,243 

3 215,220,254 3,102,158 126,150,157 

4 104,184,237,246 33,49,156,208 5,68,117,245 

5 150,151,200,209,251 25,159,180,196,229 9,31,34,106,191 

TH8 2 233,249 251,252 30,163 

3 219,225,233 14,142,219 69,100,124 

4 179,198,211,242 35,63,83,129 3,131,181,246 

5 89,139,166,202,234 26,79,102,114,251 27,34,74,149,159 

Table 8. Comparison of objective function values and PSNR 

obtained from HHO-CS and HHO algorithms using Kapur’s 

entropy 

OBJECTIVE FUNCTION PSNR 

Image K HHO-CS HHO HHO-CS HHO 

TH1 2 

3 

4 

5 

25.3967 

36.4699 

42.8620 

50.2350 

23.8390 

34.0063 

39.4868 

48.4930 

48.8151 

53.1784 

55.0468 

59.3109 

48.3047 

52.8795 

54.5950 

58.2001 

TH2 2 

3 

4 

5 

25.8282 

32.0311 

40.5143 

50.2481 

25.6571 

31.2724 

40.2226 

48.3490 

53.1854 

58.6532 

62.7254 

65.2311 

52.9000 

58.1990 

62.0969 

65.6008 

TH3 2 

3 

4 

5 

26.7611 

33.3907 

41.5988 

51.4126 

26.6938 

32.1520 

40.8171 

50.8451 

50.1649 

52.0191 

56.6610 

60.1033 

48.5777 

51.0425 

56.1281 

59.7543 

TH4 2 

3 

4 

5 

26.8261 

32.5919 

37.2682 

46.2737 

23.7504 

31.6829 

37.0698 

46.1896 

53.8566 

56.3193 

61.9640 

65.6875 

52.0168 

55.2586 

61.7853 

65.5550 

TH5 2 

3 

4 

5 

27.6672 

34.4082 

40.0538 

48.3672 

27.1914 

34.3798 

39.3762 

47.7147 

50.1393 

54.0606 

58.6640 

60.4075 

48.6514 

53.9827 

57.6439 

59.3283 

TH6 2 

3 

4 

5 

26.9100 

35.6760 

44.2570 

50.4478 

23.9546 

33.8006 

40.7154 

50.3543 

50.3106 

53.5330 

62.0879 

63.5159 

46.0928 

51.0713 

55.1715 

63.5070 

TH7 2 

3 

4 

5 

25.7328 

32.2351 

41.8437 

45.9847 

25.5387 

32.1220 

41.7025 

45.5572 

50.1983 

53.8161 

58.3176 

60.1012 

50.1500 

53.1795 

57.5759 

59.5965 

TH8 2 

3 

4 

5 

25.8521 

33.2082 

40.5836 

49.3672 

25.4122 

32.3197 

39.5286 

49.3606 

48.1895 

53.7797 

58.8640 

63.8921 

47.3364 

53.6042 

57.9005 

63.8803 

Table 9. Comparison of SSIM and FSIM values from HHO-

CS and HHO algorithms using Kapur’s entropy 

SSIM FSIM 

Image K  HHO-CS HHO HHO-CS HHO 

TH1 2 

3 

4 

5 

0.6241 

0.6707 

0.8155 

0.8571 

0.5798 

0.6643 

0.8028 

0.8317 

0.6870 

0.7283 

0.7510 

0.7849 

0.6632 

0.7103 

0.7496 

0.7835 

TH2 2 

3 

4 

5 

0.5481 

0.7343 

0.7836 

0.8283 

0.4899 

0.6783 

0.7482 

0.8315 

0.7122 

0.7438 

0.7630 

0.7782 

0.7084 

0.7417 

0.7583 

0.7992 
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TH3 2 

3 

4 

5 

0.5980 

0.7112 

0.7358 

0.8388 

0.5208 

0.6878 

0.7033 

0.8058 

0.6772 

0.7294 

0.7668 

0.7705 

0.6623 

0.7228 

0.7655 

0.7765 

TH4 2 

3 

4 

5 

0.5191 

0.7289 

0.7478 

0.8016 

0.5160 

0.6951 

0.7266 

0.7959 

0.7124 

0.7456 

0.7621 

0.7926 

0.7100 

0.7425 

0.7617 

0.7878 

TH5 2 

3 

4 

5 

0.6818 

0.7089 

0.7416 

0.8283 

0.5718 

0.6686 

0.7132 

0.8208 

0.6790 

0.7141 

0.7284 

0.7311 

0.6773 

0.6978 

0.7165 

0.7298 

TH6 2 

3 

4 

5 

0.4988 

0.6538 

0.7238 

0.7364 

0.4164 

0.5617 

0.6815 

0.7157 

0.7221 

0.7579 

0.7994 

0.8185 

0.6941 

0.7565 

0.7879 

0.8237 

TH7 2 

3 

4 

5 

0.4523 

0.6513 

0.7897 

0.7911 

0.4510 

0.5336 

0.6850 

0.7208 

0.7920 

0.8193 

0.8335 

0.8628 

0.7823 

0.8189 

0.8266 

0.8445 

TH8 2 

3 

4 

5 

0.4331 

0.6004 

0.7162 

0.7819 

0.3654 

0.4711 

0.5864 

0.6146 

0.7909 

0.8213 

0.8418 

0.8550 

0.7921 

0.8177 

0.8356 

0.8521 

5.5 Results of HHO-CS algorithm using Kapur’s entropy 

       K=2  K=3  K=4  K=5 

Figure 7. Results of HHO-CS algorithm using Kapur’s 

entropy 

Segmented results of HHO-CS algorithm using Kapur’s 

entropy is shown in Figure 7. Both the low contrast and high 

contrast visual features are retained.  

From this study, it is believed that the 1D Otsu’s between 

class variance method outperforms 1D Kapur’s entropy based 

technique. Because, infrared images, mostly have low contrast 

features. Therefore, between class variance helps us to 

compute optimal threshold values for separating different 

classes. It seems that the between class variance information 

is more than the entropy information in thermograms. In 

summary, the suggested multilevel colour image thresholding 

technique is useful for thermogram image analysis.   

6. COCLUSIONS

Unlike early multilevel thresholding method reported in the 

breast thermogram analysis, based on the gray-level images, 

the suggested method uses R, G, B colour components. The 

suggested technique is useful for the breast thermogram 

analysis. Results using the colour images may assist the 

clinicians, as an extra support, in the breast thermogram 

analysis. Nevertheless, the proposed HHO-CS optimizer helps 

us to compute optimal values for colour image thresholding. 

The exploitation capability of the HHO is enhanced, because 

the exploitation feature of CS is integrated in the system. 

Profound differences are observed while studying the 

convergence curves presented in this paper. The suggested 

HHO-CS performs better than both the HHO and CS 

optimizers. The speed of convergence is implicit (see Figure 

3). The method has shown its ability to extract both the low 

and high resolution visual features, because all three colour 

components are used. The quality of the visual results is 

explicit (from Figure 6, 7). From Tables 4-6, it is observed that 

the RGB components based thresholding method using Otsu’s 

objective function is better than the Kapur’s entropy based 

approach; the reason is that the former fitness function could 

preserve more details. Therefore, the suggested RGB 

component based method using Otsu’s between class variance 

may be suitable for pathological investigations. To figure out 

other merits, our method is faster and more accurate. It is re-

iterated that the proposed technique may attract the use of low 

cost and portable infrared cameras for analysis of breast 

thermograms. The proposal would be useful for analysis of 

other infrared images together with a clinical study. It is also 

believed that the suggested HHO-CS optimizer would be 

useful for function optimization to solve real world 

engineering problems. 
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