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Open pit mine production scheduling assigns mining blocks in different production periods 

for maximising profits after satisfying geotechnical and operational constraints. In this 

paper, two Open pit mine production scheduling models were applied in an African copper 

deposit. The first model is a traditional model with more tight resource constraints; the 

second model is a more robust model where resource constraints are relaxed by penalizing 

the objective function. Both the models were solved using two step algorithms: (a) year 

wise production scheduling using a sequential branch-and-cut algorithm; and (b) an 

iterative longest path algorithm to improve the solution generated from branch-and-cut. 

Results demonstrated that due to the tight constraints in Model 1, the optimizer was unable 

to generate a feasible solution after the first period, therefore the lower limit metal 

production constraint was eliminated to generate a feasible solution; however, Model 2 

was able to generate a feasible solution for all periods. Results show that both the models 

generated nearly the same amount of ore, waste, metal content, and mine life. Model 2 

generates relatively more net present value as compared to Model 1, whereas, the 

computational time required for solving the scheduling problem is relatively less for Model 

1 than for Model 2. 
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1. INTRODUCTION

The optimum pit limit of open pit mine is considered to be 

a fundamental problem in mine planning as it provides 

information which is essential in the evaluation of the 

economic potential of a mineral deposit. Open pit mine 

production scheduling (OPMPS) is a complex problem in 

mine planning and design [1]. OPMPS is an optimization 

problem used to extract the mining block from the pit by 

satisfying all its constraints to maximize the total discounted 

profit [2, 3]. OPMPS is generally defined in the form of either 

integer or mixed integer programming problem which solve 

by using a commercial solver [4]. In OPMPS the orebody is 

represented as three dimensional arrays of blocks. The mineral 

grade of each block within the orebody is estimated using 

limited number of explorations drilling data and applying 

geostatistical algorithms [5]. The economic value of block 

(EVB) is calculated using the calculated grades, market price 

of the mineral, mining and processing cost, and rate of 

recovery [6-11]. The EVB of the orebody is considered as 

input for OPMPS model. The solution of the OPMPS is 

assigned the blocks in different production periods by 

maximizing the objective value which aims to maximize the 

sum of discounted cash flow. 

A number of theories and algorithms are proposed in 

literature by different researchers for OPMPS problem. The 

exact method is Lerchs-Grossman algorithm based on the 

graph theory and graph cut method by Picard for solving the 

ultimate pit [12, 13]. The main limitation of these algorithms 

is that it is difficult to determine mining and processing 

capacities for each period. Dagdelen and Johnson proposed a 

Lagrangian method to handle capacity constraints problem by 

incorporating the Lagrangian multiplier; however, the 

selection of Lagrangian multiplier is a significant problem [14]. 

In the other direction, Caccetta and Giannini proposed a 

dynamic programming algorithm to bound the optimal 

solution generated from graph-theoretic technique [15]. 

Different researchers proposed integer programming (IP) 

and mixed integer linear programming (MIP) algorithms for 

solving OPMPS [16, 17]. These algorithms generate optimum 

solution for production scheduling [3, 18-22]; however, the 

main drawback of these algorithms is that the computational 

time increases exponentially as decision variables and 

constraints are increased [23]. Block aggregations methods, 

efficient clustering technique and decomposition-based 

heuristic approach reduces the computational complexity of IP 

and MIP by sacrificing some amount of optimality [24-27]. 

The parametric graph closure approach can be iteratively 

solved using network flow algorithm for solving mixed integer 

programming in mine scheduling [28, 29]. Although, these 

algorithms are computationally fast, selection of set of 

parameters are always very difficult. Simulated Annealing 

application to mine production scheduling problem was 

developed to gradually improve an initial non-optimal solution 

by multiple perturbation [30]. Ant colonies optimization was 

proposed to solve the mine production scheduling problem [31, 

32]. 

Ibrahimov et al. proposed a more efficient algorithm based 
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on computational intelligence method. The approach 

combining genetic algorithms and Lagrangian relaxation to 

optimally determine the constrained long-term production 

scheduling problem of open pit mines [33]. The proposed 

Lagrangian relaxation and genetic algorithms combines 

genetic algorithms into Lagrangian relaxation method to 

update the Lagrangian multipliers. Numerical results 

demonstrate to improve its performance. Subsequently, near-

optimal solution is achieved [34]. 

In this paper, we have proposed a sequential branch-and-cut 

algorithm for solving large scale open pit mine production 

scheduling problem. Two different models are considered: one 

integer programming model and another mixed integer 

programming model to solve large-scale real life mine 

scheduling problem. Both the models are solved in two steps 

process. In first step the OPMPS is iteratively solved year wise 

using sequential branch-and-cut algorithm. In the second step, 

the solution from sequential branch-and-cut improved by 

using longest path algorithm. The proposed method is applied 

as a case study in African copper mine.  

 

 

2. OPMPS METHODS 

 

OPMPS is traditionally based on a block model of the ore 

body built by using interpolation techniques, either traditional 

like inverse distance, nearest neighbourhood etc. or 

geostatistical method like simple kriging, ordinary kriging etc., 

from the drillhole sample data [35]. The orebody is 

represented by a geological block model, having a three-

dimensional array of blocks. Each block includes the volume, 

grade, and tonnage information. Orebody models and their 

geological characteristics are known to be a major source of 

scheduling risk [36]. Each block has a block economic value 

representing the net profit associated with it. The OPMPS 

consists of identifying which blocks should be mined during 

each period of the life of the mine so as to maximize the profit 

of the mining operation. Various physical and operational 

constraints have to be satisfied when scheduling blocks. 

OPMPS consists of several thousands of mining blocks which 

have to be scheduled year wise to maximize the total profit of 

mine over the life of mine. 

According to OPMPS, geotechnical, reserve, mining, 

processing, and metal production constraints have to be 

respected while maximizing the net present value over the life 

of the mine. The geotechnical constraints help to maintain a 

stable slope in the open pit during the production operation. 

The reserve constraints help to ensure each physical block can 

only be extracted one production period. Mining constraints is 

set to utilize the capacity of mining equipment available for 

excavation. According to the equipment capacity and its 

availability, the model fixes the upper and lower bound of 

mining constraints so that the model will not extract more than 

the total equipment capacity and not less than certain amount 

to make sure that equipment is not unutilized. The processing 

constraint deals with the capacity of processing plant. The 

maximum production capacity of the plant and the minimum 

production requirement are necessary to ensure smooth feed 

of ore to mill. Metal production constraints deals with certain 

amount of metal to supply the customer according to 

agreements with customer, now for case study two models are 

develops. 

 

 

2.1 OPMPS integer and mixed programming model  

 

Suppose 𝑥𝑖 is a mining block of an open pit mine, where 

𝑥𝑖 = 𝑋  and 𝑥  is set of all blocks in the deposit. Mine 

production scheduling can be formulated as mixed integer 

programs with time-indexed binary variables 𝑥𝑖,𝑡 , 𝑖 ∈ 𝑁, 𝑡 =

{1, . . . , 𝑇}  which are defined by 𝑥𝑖,𝑡 = 1  if mining block is 

extracted at time t, and 𝑥𝑖,𝑡 = 0 otherwise. This leads to the 

following integer programming formulation.  

The mathematical representation of model 1 can be written 

as: 

 

𝑍 = Max ∑ ∑ 𝑐𝑖𝑡𝑥𝑖,𝑡
𝑁
𝑖=1

𝑇
𝑡=1   (1) 

 

In this model (Model 2), a robust OPMPS model is 

proposed where some of the decision variables are allowed to 

take real value. Therefore, the model is a mixed integer 

programming formulation. The mathematical representation 

of objective function can be written as: 

 

𝑍 = Max ∑ ∑ 𝑐𝑖𝑡𝑥𝑖,𝑡
𝑁
𝑖=1

𝑇
𝑡=1   

− ∑ 𝑣𝑡
𝑜−𝑑𝑡

𝑜− + 𝑣𝑡
𝑜+𝑑𝑡

𝑜+ + 𝑣𝑡
𝑚−𝑑𝑡

𝑚− + 𝑣𝑡
𝑚+𝑑𝑡

𝑚+𝑇
𝑡=1   

(2) 

 

Subject to: 

Reserve constraints: A block can be mined only once during 

its time period which is defined as: 

 

∑ 𝑥𝑖𝑡 ≤ 1    𝑖 = 1, . . . , 𝑁𝑇
𝑡=1   (3) 

 

Slope constraints: A block cannot be mined before its 

predecessors. To access a given block, a set of overlying 

blocks needs to be exacted. Slope constraints are written as: 

 

𝑥𝑖𝑡 − ∑ 𝑥𝑝𝜏 ≤ 0    𝑝 ∈ 𝑃𝑖 ,    𝑡 = 1, . . . , 𝑇𝑡
𝜏=1   (4) 

 

Mining constraints: The total weights of blocks mined 

during each period should be at least equal to a minimum 

mining limit to ensure proper utilization of mining equipment. 

On the other hand, it should not exceed the mining equipment 

capacity available during that period. In mining constraints, 

both upper and lower bound have to be satisfied. The mining 

constraints are written as: 

 

𝑀𝐶 ≤ ∑ 𝑚𝑐𝑖 ∗ 𝑥𝑖𝑡
𝑁
𝑖=1         𝑡 = 1, . . . , 𝑇  

𝑀𝐶 ≥ ∑ 𝑚𝑐𝑖 ∗ 𝑥𝑖𝑡
𝑁
𝑖=1         𝑡 = 1, . . . , 𝑇  

(5) 

 

Processing constraints: It mainly depends on the processing 

capacity of plants, the total amount of ore blocks mined during 

each period should be at least equal to minimum amount 

required for processing plant, but it should not exceed the 

processing plant capacity, then storing placed is required to 

store the excess ore. In model 2, the violations should not be 

more than for specific time period. The modified processing 

constraints for both upper and lower bounds can be presented 

in Eq. (7). The processing constraints of both models are 

written as Eqns. (6) and (7): 

 

𝑃𝐶 ≤ ∑ 𝑝𝑐𝑖 ∗ 𝑚𝑐𝑖 ∗ 𝑥𝑖𝑡
𝑁
𝑖=1      𝑡 = 1, . . . , 𝑇  

𝑃𝐶 ≥ ∑ 𝑝𝑐𝑖 ∗ 𝑚𝑐𝑖 ∗ 𝑥𝑖𝑡
𝑁
𝑖=1     𝑡 = 1, . . . , 𝑇  

(6) 

 

𝑃𝐶 ≤ ∑ 𝑝𝑐𝑖 ∗ 𝑚𝑐𝑖 ∗ 𝑥𝑖𝑡
𝑁
𝑖=1 + 𝑑𝑡

𝑜−     𝑡 = 1, . . . , 𝑇  

𝑃𝐶 ≥ ∑ 𝑝𝑐𝑖 ∗ 𝑚𝑐𝑖 ∗ 𝑥𝑖𝑡
𝑁
𝑖=1 − 𝑑𝑡

𝑜+    𝑡 = 1, . . . , 𝑇  
(7) 
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Metal production constraints: The amount of metal 

recovered from the ore blocks processed should not exceed the 

amount that can be sold during this period and should not be 

less than a minimum amount, both upper and lower bound of 

metal production constraints has to be satisfied. Eq. (9) shows 

the maximum allowable violations are for lower and upper 

limit bounds. The metal production constraints for both 

models are written as: 

 

𝑀𝑃 ≤ ∑ 𝑚𝑝𝑖 ∗ 𝑝𝑐𝑖 ∗ 𝑥𝑖𝑡    𝑡 = 1, . . . , 𝑇𝑁
𝑖=1   

𝑀𝑃 ≥ ∑ 𝑚𝑝𝑖 ∗ 𝑝𝑐𝑖 ∗ 𝑥𝑖𝑡
𝑁
𝑖=1    𝑡 = 1, . . . , 𝑇  

(8) 

 

𝑀𝑃 ≤ ∑ 𝑚𝑝𝑖 ∗ 𝑝𝑐𝑖 ∗ 𝑥𝑖𝑡 + 𝑑𝑡
𝑚−   𝑡 = 1, . . . , 𝑇𝑁

𝑖=1   

𝑀𝑃 ≥ ∑ 𝑚𝑝𝑖 ∗ 𝑝𝑐𝑖 ∗ 𝑥𝑖𝑡 − 𝑑𝑡
𝑚+𝑁

𝑖=1    𝑡 = 1, . . . , 𝑇  
(9) 

 

Decision variables are 

 

𝑥𝑖𝑡 = 0 or 1  𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . , 𝑇  

𝑑𝑡
𝑜−𝑑𝑡

𝑜+𝑑𝑡
𝑚−𝑑𝑡

𝑚+ ≥ 0       𝑡 = 1, . . . , 𝑇 

 

where, 
 

𝑥𝑖𝑡 = {0 otherwise

1 if block 𝑖 is mined during period 𝑡
 

𝑐𝑖𝑡 = block economic value of block 𝑖 if mined at period 𝑡 

=
𝑐𝑖

(1+𝑑)𝑡  

 

ci=Economic value of block i. 

d=discounted rate. 

N=The number of blocks considered for scheduling.  

i=Block index, i=1, ..., N. 

T=The number of periods over which blocks are being 

scheduled (horizon). 

t=period index, t=1, ..., T. 

Pi=The set of predecessors of block i; i.e., blocks that should 

be removed before i can be mined. 

si=The set of successors of block i. 

𝑀𝐶=The maximum weight of material at period t. 

𝑀𝐶=The minimum weight of material at period t. 

𝑃𝐶=minimum weight of ore required to feed the processing 

plant in period t (minimum processing capacity of plant). 

𝑃𝐶=maximum weight of ore that can be processed in plant 

at period t (maximum processing capacity of plant). 

𝑀𝑃=minimum amount of metal that should be produced in 

period t. 

𝑀𝑃 =maximum amount of metal that should be sold in 

period t (metal demand). 

mci=The weight of block i. 

mpi=The amount of metal in block i. 

𝑣𝑡
𝑜− =

𝑐𝑜−

(1+𝑑2)𝑡=Unit shortage of ore that can associated with 

failure meet 𝑃𝐶 during period t. 

(𝑐𝑜− is the undiscounted unit shortage cost, and d2 represent 

the risk discount rate). 

𝑣𝑡
𝑜+ =

𝑐𝑜+

(1+𝑑2)𝑡=Unit surplus cost incurred if the total weight 

of the ore blocks mined during period t exceeds 𝑃𝐶. 

𝑣𝑡
𝑚+ =

𝑣𝑚+

(1+𝑑2)𝑡 =Unit surplus cost incurred if the metal 

production during period t exceeds 𝑀𝑃. 

𝑑𝑡
𝑜−=Shortage of amount of ore at discounted cost in time 

period t. 

𝑑𝑡
𝑜+=Surplus of amount of ore at discounted cost in time 

period t. 

𝑑𝑡
𝑚− =Shortage of metal for selling at discounted time 

period t. 

𝑑𝑡
𝑚+=Surplus of metal for selling at discounted time period 

t. 

The above formulation of model 1 can be solved using any 

integer programming solution algorithm. The solution of this 

formulation provides the sequence of extraction of mining 

blocks after satisfying all the constraints presented in Eqns. (3), 

(4), (5), (6) and (8). However, sometime this formulation 

generates infeasible solution due to the tight geotechnical, 

reserve, mining, processing, and metal constraints. Out of 

these constraints, geotechnical and reserve constraints are 

strict constraints which cannot violated at any circumstances. 

On the other hand, mining, processing, and metal production 

constraints are soft constraints which may be violated in 

certain circumstances. For an example, if mine management is 

planning to extract more materials from a mine for specific 

period, they can hire mining equipments from market on 

payment basis. On the other hand, if mine management unable 

to produce less than the minimum amount of materials, the 

equipments will be idle and keeping idle of such high cost 

equipment produces some losses due to high depreciation 

amount. In other example, if management is producing more 

amount of ore than the maximum required amount in the 

process plant, those excess ore needs to be stored and proper 

storing impose some extra cost to the management. Therefore, 

there is a need of more robust formulation which will 

generates feasible solution for the OPMPS formulation. 

In model 2, the 𝑥𝑖𝑡  is the first stage decision variables which 

can only take the binary value; however, 𝑑𝑡
𝑜−𝑑𝑡

𝑜+𝑑𝑡
𝑚−𝑑𝑡

𝑚+ are 

second stage decision variables which can take any real 

positive values. In this paper, these variables are allowed to 

take any real positive value up to infinity for which the 

objective function is penalized. However, one can restrict the 

amount of maximum deviation if required. Practically, the 

optimizer selects positive values for these four decision 

variables during the optimization process, as long as they help 

to increase the objective function value even after penalization. 

The optimizer selects these decision variables values as zero, 

if allowing the deviation is actually reduced the objective 

function values. 

 

2.2 Solution approach  

 

The above OPMPS models cannot be solved optimally 

within the reasonable amount of time when the numbers of 

decision variables, and number of constraints are significantly 

high. The computational time of the OPMPS can be reduced 

by solving sequentially (period by period). First, the 

formulation of both the models are solved for period one 

considering T=1 using branch-and-cut algorithm [37]. The 

solution of formulation, when solved for first period, provides 

decision whether a block can be extracted in period one or not. 

The set of blocks, which take the decision variable value of 1 

for first period solution, will be assigned to extract in first 

period. Then those blocks will be eliminated from the set of 

blocks N and the remaining blocks will be used for solving the 

formulation of next period considering T=1. This process will 

be repeated until no single block will be left in the deposit 

which can be extracted profitably. Although, the approximate 

algorithm cannot generate the optimum solution; however, it 

can produce a solution very fast. The more detail about the 

sequential solution approach can be found elsewhere [17, 38]. 

Although, the sequential solution can reduce the 
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computational complexity of both the models to generate 

feasible solution; however, the solution generated using this 

process is far from the optimality. To improve the sub-

optimum solution, a network flow based iterative longest path 

problem algorithm proposed by Lamghari and 

Dimitrakopoulos is applied here [39]. By this iterative process, 

the blocks with negative economic value are differed for latter 

period and the block with positive economic value are 

advanced for earlier period which ultimate improves the net 

present value. To know more about the longest path problem 

for improving initial feasible solutions, readers are referred 

[38-40]. 

 

 

3. CASE STUDY DESCRIPTION 

 

The studied deposit is located in the Central African Copper 

belt. Geologically, the deposit is a stratiform copper-cobalt 

deposit. Two principal stratiform mineralized horizons are 

developed and identified as the Upper and Lower Orebodies. 

The footwall of the deposit is marked by a thrust zone or 

breccia. The ore body’s downdip is cut off by an 

approximately E-W trending and relatively steep fault, which 

limits its depth. The ore body is divided into three types of ores: 

oxide, mixed and sulphide (Figure 1). The oxide and mixed 

parts of the ore were evaluated together but in two zones: oxide 

main and oxide supergene. The sulphide part was also 

evaluated in two zones: east sulphide and west sulphide, which 

are separated by a fault. The primary copper minerals 

(chalcopyrite and possibly bornite and digenite) and primary 

cobalt minerals (linnaeite and carrollite) principally occur as 

thin, discontinuous bands in the upper and lower ore bodies. A 

total of 462 boreholes were considered for creating the 

borehole database. This database was used for ore section 

interpretation, ore body modeling and resource estimation. 

The boreholes are drilled on average on a 50-m grid. All the 

assay data was composited at 10 m intervals within the ore 

body for all the statistical and geostatistical work. 

 

 

4. RESULTS AND DISCUSSION 

 

Detailed statistical analysis of composited samples was 

carried out. The Table 1 shows the descriptive statistics of the 

composited data. It is seen from the Table that the grade of 

copper is skewed towards the left side but it has comparatively 

less variance. 

The ordinary kriging was used for the grade estimation [41]. 

Spatial correlation of the data was measured using the 

variogram analysis [42]. The directional experimental 

variograms of the deposit were calculated in different 

directions, i.e. 0°, 45°, 90°, and 135°, with a spread of 22.5° 

for all four ore bodies. The lag spacing for calculating the 

variograms along strike for sulphides (both east and west) and 

oxides (both mixed and supergene) were 24 m and 32 m, 

respectively. The variograms along the downhole direction (-

90° dip) were also calculated for all four ore bodies. A 2m lag 

spacing was used for all ore bodies with the exception of oxide 

supergene, which had a 1.6 m lag spacing. The directional 

variograms demonstrated the presence of anisotropy. All 

variograms were fitted with spherical variogram models. All 

variograms were fitted by single structure with nugget model 

for copper except for that of sulphide east along downhole (dip 

-90°), which was fitted with a two structure and nugget model. 

The block model of the deposit was estimated using the 

ordinary block kriging estimation technique. The estimated 

block size is selected as 20 m * 20 m * 10 m due to the 

selective mining unit (SMU) size [35]. Figure 2 shows the 

grade map of copper of one of the fourteen bench. The 

estimated block model was then used as an input for mine 

production scheduling. 

For the OPMPS models, the economic value of block i i.e. 

𝑐𝑖 is used as input. The value of block i is calculated by using 

the following Equation. 
 

 
 

Figure 1. Ore body model showing oxide and sulphide ore bodies 
 

Table 1. Descriptive statistics of composited copper data 
 

Statistics Sample No Mean (%) Variance (%2) Coefficient of variation Skewness Kurtosis 

Copper 1212 3.03 14.6 1.25 2.52 8.08 
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Figure 2. Copper grade map of one of the copper deposits using ordinary block kriging 

 

𝑐𝑖 = 𝑛𝑒𝑡 𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑖 − 𝑚𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 − 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑡  

Case 1 If net revenue > processing cost 

Or case 2 -mining cost, otherwise  

 

where,  

 

net revenue𝑖

= tonnage* grade𝑖*recovery*(price-selling cost) 

 

The grade i for all blocks i are obtained from the block 

model which was obtained from ordinary kriging estimates. 

The calculated economic value of all the blocks were used in 

both the OPMPS models. The implementation of the OPMPS 

models were done in MATLAB environment and the models 

were solved using CPLEX solver [43]. The geotechnical and 

economical parameters, and the different constraints limits 

that are used in this paper are presented in Table 2. 

 

Table 2. Details of different parameters values and 

constraints limits 

 
Description  Values  

Total number of blocks 16532 

Slope angle (degree) 45° 

Block dimensions (m × m × m) 20 × 20 × 10 

Specific gravity of rock (ton/m3) 2.86 

Recovery (%) 0.9 

Cutoff grade (%) 0.2292 

Discount (%)  0.10 

Selling price of ore (US $/pound)  1.9 

Selling cost of ore (US $/pound)  0.3 

Processing cost of ore (US $/ton)  6 

Mining cost of rock (US $/ton)  0.6 

Blockmass or tonnage (ton)  11440 

Mining constraints upper bound (Million ton)  25 

Mining constraints lower bound (Million ton)  10 

Processing constraints upper bound (Million ton)  8 

Processing constraints lower bound (Million ton)  7 

Metal production constraints upper bound (ton)  50000 

Metal production constraints lower bound (ton)  45000 

 

The Model 1 was solved first by sequentially solving 

branch-and-cut algorithm and then applied maximum flow 

longest path algorithm. However, after solving the production 

scheduling for the first period using branch-and-cut algorithm, 

it was observed that no further feasible solution can be 

generated from the study mine. Therefore, one of three 

resource constraints need to be relaxed for generating feasible 

solution. However, case study mine management was not 

willing to relaxed mining as well as processing constraints 

because they do not want to hire extra mining equipment, not 

want to allow mining equipment to be ideal, do not enough 

space and arrangement for storing extra ore, and finally they 

do not want to keep their plan idle. Therefore, the metal 

production constraint is relaxed. The lower limit constraint of 

metal production from Eq. (8) is eliminated from the 

formulation and the Model 1 was solved sequentially to 

generate the feasible solution. It was observed from the 

solution that the study mine can last for 10 years. This feasible 

solution was then improved using longest path problem. 

Figure 3 and 7 present a section of the production scheduling 

generated using Model 1 and 2 from the case study mine. It 

was observed that slope constraints and reserve constraints are 

satisfied. 

 

 
 

Figure 3. East-west section of the production schedule of the 

study mine using Model 1 

 

Figure 4 presents the comparison of raw materials 

production with mining capacity constraints upper and lower 

limit bounds. It is observed from this Figure. that at the initial 

period the material production was at the minimum level then 

started increasing and then finally starts decreasing. This 

behavior is due to the sequential application of branch-and-cut 

algorithm which tries to maximize the profit at very initial 
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periods. Therefore, high grades ore are extracted at initial 

period and waste materials are deferred for the later period. 

Since, more ore are extracted in the initial periods, and ore and 

metal productions are also set of constraints in this formulation, 

the optimizer is not allowing to produce more materials at the 

initial time periods. However, in all the cases, the material 

productions are within the bound which demonstrated that the 

mining capacity constraints are satisfied. 

 

 
 

Figure 4. Comparison of raw material production from the 

study mine using model 1 and 2 

 

 
 

Figure 5. Comparison of ore production from the study mine 

using model 1 and 2 

 

Figure 5 presents the ore production with upper and lower 

limit constraints for study mine. It was observed that the first 

period the ore production was relatively low and then 

maintained a constant production of 8 MT and drop the 

production at the last period. The reason for lower ore 

production is due to the upper limit of metal target production. 

With this minimum amount ore, the process plant was able to 

generate higher limit metal production value which is due to 

the extraction of higher-grade ores in the initial period. Period 

2 onwards optimizer produces the maximum amount; however, 

at the final period the ore production drops due to the non-

availability of the enough ore in the deposit. It is also necessary 

to mention that all the cases the ore productions were within 

the target limits. This demonstrated that the ore production 

constraints are satisfied by the model. 

The actual metal production with upper and lower limit for 

both Models are presented in Figure 6. It was observed that 

only in first period the actual production was within the limit, 

rest of the other periods the actual production was lower than 

the lower limit constraints. It was noted that in Model 1, the 

actual formulation generates the feasible solution for the 

period 1 after that the solution was infeasible, and for 

generating the feasible solutions, the lower limit constraint 

was eliminated from the formulation and model was solved. 

Since, the lower limit of metal production constraint was 

eliminated after first period, the solution generated from the 

model doesn’t produce metal quantity within the target 

production limit. It was also observed from Figure 6 that 

actually metal production showing a decreasing trend which 

demonstrated the fact that the proposed OPMPS model tries to 

maximize the metal production in the earlier periods to 

maximize the return on investment early. The net present value 

for the study mine using Model 1 is approximately 405 M US 

$. The metal production from Model 2. It was observed that 

none of the year the metal production is within the limits. This 

result is quite expected as both the upper and lower bound 

violation terms were in the formulation. It was also observed 

that in the first year the optimizer violates the upper limit 

constraints to generate more metal which ultimately generate 

more revenue. However, second period onwards, the optimizer 

violates the lower limit constraints. It is also interesting to 

observe that violations are more at the latter period than the 

initial period which reflects the fact that the optimizer delayed 

the large amount of violation for the later periods. The net 

present value for the study mine using Model 2 is around 408 

M US $.  

 

 
 

Figure 6. Comparison of metal production from the study 

mine using model 1 and 2 

 

 
 

Figure 7. East-west section of the production schedule of the 

study mine using Model 2 

 

When compared between these two models, it was observed 

that over the life of the mine, both the models generate same 

amount of ore, waste, and metal content with same mine life. 

However, due to the difference in extraction sequence, Model 

2 generates relatively more NPV than Model 1. The more NPV 
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of the Model 2 attributed due to the production of more amount 

of ore and metal in the first year and thus more discounted cash 

flow. The computational time of the Model 1 is relatively less 

as compared to Model 2. Model 1 takes 823 seconds, whereas, 

Model 2 takes 1049 seconds to solve the whole problem. This 

is quite obvious because the number of constraints and 

decision variables are more in the Model 2 as compared to 

Model 1. Moreover, Model 2 is more robust for production 

scheduling; Model 1 does not guarantee the feasible solution 

for every situation (Figure 7). 

 

 

5. CONCLUSION  

 

The strategic and tactical decision making in mining is 

largely depend on successful OPMPS models. This paper 

presented two different OPMPS models. The first model is 

more traditional model with tight constraints; whereas, second 

model is more robust model allowing violation in some 

constraints and penalizing the objective function for such 

violation. Due to the nature of the formulation of the Model 2, 

it always ensures feasible solution; however, feasibility is not 

guaranteed in case of Model 1.  

For solving the large scale OPMPS models, a two steps 

algorithm was followed. In first step, year-by-year production 

scheduling was performed by applying sequential branch-and-

cut algorithm. And in second step, the iterative longest path 

algorithm was applied to improve the solution generated in 

first step. The results demonstrated that the proposed solution 

approach generates feasible solution with significantly less 

computational cost.  

Both the OPMPS models were applied in copper mine from 

Africa for life of the mine production scheduling. Prior to 

solving the OPMPS models, a geostatistical algorithm called 

ordinary kriging was applied to estimate the quality and 

quantity of resource of the copper deposit. The economic value 

of each block within the resource model was calculated by 

considering fixed metal prices, mining and processing costs. 

Model 1 was unable to generate the feasible solution after 

period 1 for this deposit and the lower limit constraint of the 

metal production was eliminated from the constraint set; 

however, Model 2 generates the feasible solution for the study 

mine. The life of the mine using both the models is 10 years. 

The total production of ore, waste, metal is more or less same 

in both the models. The net present value generated from the 

Model 2 is slightly more than Model 1; whereas, the 

computational time for the Model 1 is relatively low. The final 

results demonstrated that the slope, reserve, mining, 

processing, and metal production constraints are satisfied by 

both the model (relaxed Model 1). The main limitation of the 

proposed method is that the grade value, metal price, and cost 

of mining and processing are considered fixed and known with 

full certainty. However, the mining activity is largely 

uncertain due to the grade uncertainty and volatility of the 

metal price and mining cost. Incorporation of these 

uncertainties can significantly improve the robustness of the 

OPMPS models. 
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