
Analytical Evaluation of Resource Estimation in Web Application Services

Suneetha Bulla1*, Chirra Venkata Rami Reddy1, Panguluri Padmavathi2, Turaka Padmasri3

1 Vignan’s Foundation of Science, Technology and Research, Guntur 522513, India
2 Department of CSE, Geethanjali College of Engineering and Technology, Hyderabad 501301, India
3 Department of CSE, Rajiv Gandhi Universityof Knowledge Technologies IIIT Nuzvid, Nuzvid 521202, India

Corresponding Author Email: drsb_cse@vignan.ac.in

https://doi.org/10.18280/isi.250516 ABSTRACT

Received: 7 July 2020

Accepted: 12 September 2020

Cloud computing for web application is ubiquitous in the global market and represents a

generic pattern because rapid elasticity and infrastructure scaling naturally lends itself to

the needs of a virtual data center. Server requirement analysis depending on the workload

play a very important role in web app development and it leads to availability of service to

customer at any cost and cost analysis to the application provider. To achieve proper

infrastructure scaling the minimal number of servers are have to satisfy and determine SLO.

Thus this paper evaluates an analytical model to formulate prediction or estimation of

required servers has to satisfy the QoS performance metrics such as throughput, utilization

of cloud datacenter, request loss and required number of servers. The experimental model

is used to validate correctness of the analytical model that was hosted on AWS cloud

platform. Finally results have presented and conclusions are drawn.

Keywords:

cloud computing, web application, queuing

model, AWS

1. INTRODUCTION

Cloud computing is the emerging technology for offering

infrastructure and applications as SaaS on on-demand and also

it is base technology of different fields like artificial

intelligence, IoT, Machine Learning etc. [1]. Rapid elasticity

is one of the important characteristics of CC, it provides right

amount of computing resources among pool of resources

according to web application needs. It provision and de-

provision the resources depends on the incoming traffic

without human intervention. The real time cloud providers like

Amazon, Google and IBM are also offering this elasticity

service using different names like auto scaling, scalability etc...

This property is attracting global market for web customers to

move their services into clouds [2]. In terms of cloud

computing services the elasticity facing two challenges over-

provisioning and under-provisioning, then the over-

provisioning leads to excess computing cost for infrastructure

wastage, while under-provisioning leads unavailability of

resources.

Herbst et al. [3] and Aljahdali et al. [4] have suggested

scalability, elasticity, and efficiency are used to calculate

performance of web based applications. In this situation

dynamic scaling shows solution of elastic cloud computing. It

has ability to scale up and scale down the resources when the

sudden workload at runtime. Most of the cloud providers are

offering SaaS applications due to the e-commerce of global

market and the use of multi-tenancy. As per the publications

scalability are utility perspective [5-7]. There is necessity to

understand the effected system components to understand the

scalability nature of the data center. Lorido-Botran et al. [8]

have conducted survey on scalability of infrastructure and

resource estimation challenges. Estimating computing

infrastructure and implementing an efficient auto-scaler for

web services are challenging tasks due to various factors.

These factors are dynamic workload, infrastructure

requirement, and cost estimation.

This will be beneficial for the organization, those who are

client of cloud applications. CSP is expected to have advanced

scalar measures. However, putting scalar measures onto its

edge, which is, its customers' networks will estimate the cost

of the web application. Threshold is one of the ideas to

measure customer usage on cloud and it ensures that customer

bill. These services can be considering cloud computing

characteristics. There is a necessity to research to fulfill these

gaps.

The objective of this paper is two-fold, one is evaluated the

analytical model to predict or estimate the required number of

servers for web application depending on the workload, at the

same time second one is to validate this analytical model with

experimental model. The specific objective is to analyze the

challenges in the implementation of an auto-scaler in clouds.

The rest of this paper is structured as following; literature of

various works related to this paper have discussed in Section

2. Section 3 depicts analytical evaluation process of cloud

datacenter architecture. The validated experimental modeled

is presented in Section 4. Section 5 discussed about results of

analytical and experimental model and finally section 6 drawn

about the conclusions.

2. LITERATURE SURVEY

Several authors contributed their works on CC architecture

models as well as resource prediction on web services. The

literature mainly focused analytical evaluation work on CC

using queuing models and experimental and simulation studies

using various cloud providers and tools. This section discussed

these two sections briefly.

Scalability is an attractive factor in the cloud. It is

Ingénierie des Systèmes d’Information
Vol. 25, No. 5, October, 2020, pp. 683-690

Journal homepage: http://iieta.org/journals/isi

683

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.250516&domain=pdf

represented by the ability to boost or reduce the required

resources according to the real needs of the organization. It is

achieved by relying on characteristic of server virtualization

and it pays attention to one of the most important advantages

of adopting the cloud which is flexibility. In this regard, users

can add access points according to their needs. Furthermore,

enterprise's employees can move freely from the main location

of the company. They can work from their homes, or even

from another city or country, if they have machines connected

to the Internet through a web browser. They can easily access

the cloud and use its services wherever and whenever they

want to do so. Therefore, they can process their data regardless

of their geographical position. This advantage will serve the

employee as well as the organization [8-10]. The numerous

benefits of the elasticity in the cloud cost efficiency,

continuous availability of the service, recovery, scalability.

In the cloud computing technology, resources and services

can be provided instantaneously as soon as the user requests

them, and these services can be released directly when no

longer needed. Moreover, the user will pay only for the used

services and resources. The authors define the elasticity as "the

degree to which a system is able to adapt to workload changes

by provisioning and de-provisioning resources in an

autonomic manner, such that at each point in time the available

resources match the current demand as closely as possible".

However, there are some factors that play an important role in

achieving the highest grade of elasticity, such as the workload

from the customer's requests, response time of the cloud

servers, the resources capability of scaling up or down, and the

type of cloud platform. The cloud is not completely elastic, but

it is the best technology in this regard compared with any

traditional computing system. Moreover, developers are

working to improve this feature to further enhance cloud [3,

11, 12].

The most important benefit for enterprises, especially small

and mid-sized scale enterprises, which adopt the cloud is the

observable decrease in the infrastructure and operational costs

related to IT hardware and software. These costs include

buying servers and other hardware pieces, the annual payment

for buying and updating software licenses, paying salaries to a

large number of employees in the IT department who are

required to manage the processes, and the large amount of

money which should be spent for regular maintenance

purposes. In this technology, customers will obtain their IT

needs from the provider with cost-effective solutions as they

will pay less for purchasing hardware equipment and software

applications and licenses, compared with the amount that they

would pay if they did not adopt the cloud. Most of the

literatures focused on predict the scalability of cloud services

from an experimental point of view [13-20]. We note that

many comparative studies [21, 22] are conducted a

comparative study to analyze the performance of scalable

cloud with two applications, three public clouds and three

private clouds that have been built using the three mainstream

hypervisors. Gao et al. and Vasar et al. [10, 15, 23] have

conducted experiments different clouds using different

frameworks.

3. ANALYTICAL EVALUATION

This paper adopted real time cloud provider architecture

like Amazon Web application hosting architecture to analyze

the elasticity of the web application resource consumption and

presented in Figure 1. This architecture contains DNS

Resolution, Content Delivery Network, Resources and Static

Content, Web Servers, Application Servers, Database Servers.

The web application receives load from DNS resolution

through load balancer. It distributes incoming load to a midst

of resources. The application servers are configured with

scaling to which user’s associate triggers. These triggers will

give notification to load balancer to scale application server

based on server threshold value by a monitoring system. The

LB ensures an even distribution of the incoming load among

all running VM instances in a group [23, 24].

Figure 1. Web application hosting architecture of Amazon Web Services

684

The web server’s runs simultaneously depending on the

incoming traffic, each server have a buffer to execute

workload. The scale up and scale down can be varying

automatically based on the QoS parameters such as utilization

of computing infrastructure among all running instances [25].

When the average utilization of all running instances exceeds

an upper threshold, then a trigger will fire to launch a new

server that will be added to the pool of resources and

configured at the load balancer. Similarly scale down also. The

workload can be distributed midst of available application

servers. Like most above architecture, a datacenter has a

database server to be used for storing configuration

information and incoming workload.

Figure 2 depicts queuing model of Figure 1 web application

architecture. In this queuing model arrivals are aggregated

before entering the datacenter. The architecture can be divided

into 3 parts load balancer, computing tire, storage tire. This

paper mainly focuses on computing tire. So, the elastic

computing tire modeled as parallel queuing models each

server follows as M/M/1. In practical scenario each server has

a buffer queue that was indicated as M/M/1/k but this paper

assumed it as M/M/1 model for our convenience. This

approximation is highly reliable to the real-time environment

with large finite buffers, such as datacenter, where the buffer

loss probability is negligible [26, 27]. The cloud architecture

follows each system as open queue M/M/1 model.

Figure 2. Queuing model of web application hosting

architecture

It considers that the request arrival rate and service rate

follow a Poisson distribution with where λ arrival rate and µ

service time. Where S is represents as total number of running

servers and we assumed the queuing-based loss probability is

zero. The effective arrival rate ƛ is equals the arrival rate λ/S.

The computing tire presented in Figure 2. The load balancer

distributes the arrivals midst of available servers. The

transition probability will be equal to 1/S for each server. If

where All servers have the same computing capacity, μi=μ, and

the arrival rate of each instance is λi = λ/S,

Then the mean utilization of resource U is calculated as

follows in Eq. (1):

U =
λ

Sμ
 (1)

where,

U is the utilization,

λ arrival rate,

S total number of servers,

μ service rate.

The utilization of the resources depends on the arrival rate

and services rate followed by number of servers.

The little’s formula is used to calculate throughput of

datacenter. Based on the Figure 3 when the arrival rate λ will

be distributed among S instances, then each server throughput

is λ/S. The total number of required servers can be calculated

by using utilization, when upper threshold utilization is 100%

then the formula is:

S =
λ

μ
+ 1 (2)

In Eq. (2) the required number of servers is impacted based

on arrival rate and server power capacity. The scalability

allows servers to be scale up or down based on the QoS metrics.

Here the threshold value plays important role to generate

trigger when utilization of the datacenter exceeds or decreased.

When the server threshold exceeds pre-defined value for

example 80% then it generates trigger to scale up resource

similarly the server threshold below pre-defined value for

example 30% then it generates trigger to scale down resources.

Finally, the total required number of servers calculated using

this procedure depending on the workload.

Figure 3. Elastic computing of application servers

The scalability depending on the CPU utilization, it can

measure using upper and lower threshold, the upper threshold

exceeds servers should be scale up depending on network in.

Similarly, when it is in lower threshold, the instances should

be decreased. The threshold value is depending on the time of

request throughput. For example, when we consider adding or

removing instances by 10% of the running instances at the

time of the threshold triggering, the provisioning can be

expressed as follows:

When

U > U_T, Sreq = [S +| 0.1 × S|]

U < L_T, Sreq = [S − | 0.1 × S |]

The required number of servers calculates process

depending on the λ and utilization of the datacenter. These are

the rules to scale and descale virtual servers.

λ

Sμ
 ≤ U_T (3)

Thus,

685

S = U_T −1 × λ/μ + 1 (4)

where, U_T indicates upper threshold, if we assume 80%, then

the required servers calculated as follows:

S = 1.25 × λ/μ + 1 (5)

Similarly, lower threshold also calculated as follows above

procedure. Thus, number of servers required to be added to

depending on the workload of λ is:

S_res = 1.25 × λ/μ + 1 − Srun_res (6)

where, 1.25 indicates the 80% threshold value followed by

total datacenter utilization and Srun_res is running instances,

these are committed with load balancer.

4. EXPERIMENTAL EVALUATION

We have conducted an experiment to analyze the required

number of servers for web application depending on the time

and workload. The performance metrics are throughput and

utilization and number of running servers. This experiment

validates our analytical model. Figure 4 illustrates design

process of the experimental setup in AWS. This paper was

adopted Amazon AWS to conduct experiment on US West

Origin region. Different services are used to establish data

center on VPC and host web application, those are VPC, EC2

Instances, Elastic Container Service, Elastic Beanstalk, Elastic

Load Balancer, RDS server, Route53 and CloudWatch. We

used another two EC2 instances to generate the incoming load

to web application.

The experiment used different sizes of instances that are

optimized for our processing and network connectivity needs.

The elastic beanstalk is used to host web application on

scalable instances. The AWS allows us to configure scale up

and scale down threshold value. In this experiment we were

configured scale up resources when the resource utilization

exceeds 80% and scale down when the resource utilization

below 30%. These instances are scaled up when the utilization

of the computing resources exceeds more the 80% and

similarly it scales down the resources when the utilization

below 30%. Many authors have conducted experiments using

these configuration values [28-31]. Web server ran Ubuntu

Linux as the underlying operating system for all our instances.

The load balanced attached with elastic beanstalk to distribute

incoming traffic among available servers and it takes

responsibility to scale up and scale down resources based on

the trigger. Finally cloud datacenter adopts DNS from Route53,

thus it provides availability of the web application to the

customers.

The main goal of this experiment is to estimate number of

computing resources required for time based on the incoming

traffic. for that we used popular Apache JMeter to generate

synthetic HTTP traffic which was first directed to a load

balancer that was readily available at the AWS. This load

balancer distributed load available among available pool of

resources evenly in a round robin fashion. All the experiment

resources were hosted within the same AWS VPC (Virtual

Private Cloud). The virtual machines on the VPC are logically

isolated. Siege was configured for windows system and JMeter

was configured for Linux System to generate workload

simultaneously. The metrics were taken every 15 minutes. In

this experiment we considered throughput, network in,

network out, CPU utilization, request loss and total number of

running instances. The CPU utilization measures were taken

in the continuous stable time from 5 to 10 minutes.

Figure 4. Experimental test bed for web service hosting

686

5. RESULTS AND DISCURSIONS

This paper considers analytical model and experimental

model to estimate the computing resources on web application

datacenter. Based on the present cloud environment, the

analytical model assumed no loss probability of the traffic due

to the elasticity property, thus it can handle enough resources

when the high traffic occurs. Finally results of the

experimental model have been validated to the analytical

model. The experimental test bed was hosted on Amazon

AWS and it was same structure of the analytical queuing

model presented in Figure 1. The network in and out has been

taken from two different sources. The input http traffic flow

has been following the Poisson distribution. The incoming

traffic or arrival rate fixed 400 requests per second and varied

up to 20000 requests per second.

The experiment initially started with 5 running instances.

Each instance was configured as a web server, and hosted the

web application on it, web page size was adjusted to achieve

100% CPU utilization where the 100 requests per second for

each instance, which is the target capacity of instance. Initially

the experiment will handle 500 requests per second, and it will

close to 100% average CPU utilization of auto scaling group.

Based on average resource CPU utilization add more instances

when high load spike occurs. This experiment used 80%

average CPU utilization to add instances and the scaling size

to be 2 instances in the default period of auto scaling in

Amazon. The incoming traffic varied from 400 to 20000

requests per second.

Figure 5 depicts throughput of cloud datacenter. X-axis

indicates different traffic rates. There is significant difference

between analytical and experimental model. In the analytical

evaluation assumes there is no loss probability of the incoming

traffic but in the real time scenario based on the bandwidth or

network there may be loss probability occur. For example,

from Table 1 when 16500 packets entered in the network

based on the bandwidth this experiment allows 15205 requests

only.

Figure 5. In relation between incoming traffic and

throughput

Figure 6 shows that required number of instances allocated

during the experimental testbed run and analytical model.

When load of 4000 Req/sec entered in the data center, results

show that 51 instances is the minimum number of instances

required to ensure that the average utilization is below 80%.

According to the number of required instances can be

calculated analytically as: S = 1.25 × 4000/100 + 1 = 51, which

comes in line with the experimental results. In the

experimental results there is no significant difference due to

the elasticity and throughput of the datacenter. When the

incoming traffic increases required servers also increased.

From the Figure 7 results the CPU utilization significantly

impacted when the high load spike occurs, such that the

workload increases the corresponding utilization also

increases. As per our assumptions the results show that the

average utilization does not exceed the upper threshold in both

analytical and experimental models. In the experimental

model throughput significantly varies when compare to the

analytical, but utilization do not have significant difference.

Figure 6. In relation between incoming traffic and number of

required servers

Figure 7. In relation between incoming traffic and CPU

utilization

Table 1 shows that comparison between analytical and

experimental results performance metrics. These are

throughput, required number of servers and utilization of the

computing resources. When the incoming traffic increases

required number of servers also increases. Based on this sever

optimization the cloud customer will gain knowledge on

required number of the servers to maintain datacenter.

687

Table 1. Comparison of analytical results and experimental results

Comparison of experimental results to analysis

Incoming Traffic
Servers CPU Utilization AVG Throughput

Analytical Experimental Analytical Experimental Analytical Experimental

500 7.25 7 68.96551724 70 500 467

1000 13.5 12 74.07407407 72 1000 840

1500 19.75 20 75.94936709 78 1500 1424

2000 26 24 76.92307692 73 2000 1810

2500 32.25 30.5 77.51937984 78 2500 2289

3000 38.5 36.4 77.92207792 73 3000 2750

3500 44.75 42.3 78.2122905 77 3500 3211

4000 51 48.2 78.43137255 79 4000 3672

4500 57.25 54.1 78.60262009 79 4500 4134

5000 63.5 60 78.74015748 80 5000 4595

5500 69.75 65.9 78.85304659 80 5500 5056

6000 76 71.8 78.94736842 80 6000 5518

6500 82.25 77.7 79.02735562 79 6500 5979

7000 88.5 83.6 79.0960452 81 7000 6440

7500 94.75 89.5 79.15567282 80 7500 6902

8000 101 95.4 79.20792079 80 8000 7363

8500 107.25 101.3 79.25407925 80 8500 7824

9000 113.5 107.2 79.29515419 80 9000 8285

9500 119.75 113.1 79.33194154 81 9500 8747

10000 126 119 79.36507937 79 10000 9208

10500 132.25 124.9 79.39508507 81 10500 9669

11000 138.5 130.8 79.42238267 78 11000 10131

11500 144.75 136.7 79.44732297 82 11500 10592

12000 151 142.6 79.47019868 78 12000 11053

12500 157.25 148.5 79.49125596 81 12500 11515

13000 163.5 154.4 79.51070336 79 13000 11976

13500 169.75 160.3 79.5287187 79 13500 12437

14000 176 166.2 79.54545455 80 14000 12898

14500 182.25 172.1 79.56104252 81 14500 13360

15000 188.5 178 79.57559682 81 15000 13821

15500 194.75 183.9 79.58921694 79 15500 14282

16000 201 189.8 79.60199005 80 16000 14744

16500 207.25 195.7 79.61399276 80 16500 15205

17000 213.5 201.6 79.62529274 80 17000 15666

17500 219.75 207.5 79.63594994 81 17500 16128

18000 226 213.4 79.6460177 80 18000 16589

18500 232.25 219.3 79.6555436 79 18500 17050

19000 238.5 225.2 79.66457023 80 19000 17511

19500 244.75 231.1 79.67313585 79 19500 17973

20000 251 237 79.6812749 80 20000 18434

6. CONCLUSIONS

This paper evaluates an analytical model to estimate the

required number of servers to achieve proper elasticity for web

applications. This estimation is depending on the incoming

workload in particular time and service rate of server. This

prediction analysis must satisfy the QoS metrics such as

throughput, computing resources utilization and required

number of servers.

The proposed analytical model validated with experimental

model that was hosted. Noticeable fluctuation and variability

were identified in the real time measurements, but the overall

mean performance metrics are agreed with analytical results.

When the throughput increases the corresponding utilization

increases; thus, it leads to consumption of more resources.

Moreover, we plan to propose different types of novel

methods to estimate the number of servers and cost estimations

for web applications as feature research directions.

REFERENCES

[1] Qu, C.H., Calheiros, R.N., Buyya, R. (2018). Auto-

scaling web applications in clouds: A taxonomy and

survey. ACM Computing Surveys, 51(4): 73.

https://doi.org/10.1145/3148149

[2] Becker, M., Lehrig, S., Becker, S. (2015). Systematically

deriving quality metrics for cloud computing systems. In:

Proceedings of the 6th ACM/SPEC International

Conference on Performance Engineering - ICPE 15.

ACM, New York, pp. 169-174.

https://doi.org/10.1145/2668930.2688043

[3] Herbst, N.R., Kounev, S., Reussner, R. (2013). Elasticity

in cloud computing: what it is, and what it is not. In:

Presented as Part of the 10th International Conference on

Autonomic Computing, USENIX, San Jose, pp. 23-27.

[4] Aljahdali, H., Albatli, A., Garraghan, P., Townend, P.,

Lau, L., Xu, J. (2014). Multi-tenancy in cloud computing.

2014 IEEE 8th International Symposium on Service

Oriented System Engineering, Oxford, UK, pp. 344-351.

https://doi.org/10.1109/SOSE.2014.50

688

[5] Lehrig, S., Eikerling, H., Becker, S. (2015). Scalability,

elasticity, and efficiency in cloud computing: A

systematic literature review of definitions and metrics. In:

Proceedings of the 11th International ACM SIGSOFT

Conference on Quality of Software Architectures - QoSA

15, pp. 83-92. https://doi.org/10.1145/2737182.2737185

[6] Hwang, K., Bai, X., Shi, Y., Li, M.Y., Chen, W.G., Wu,

Y.W. (2016). Cloud performance modeling with

benchmark evaluation of elastic scaling strategies. IEEE

Transactions on Parallel Distributed Systems, 27(1):

130-143. https://doi.org/10.1109/TPDS.2015.2398438

[7] Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.

(2014). A review of auto-scaling techniques for elastic

applications in cloud environments. Journal of Grid

Computing, 12: 559-592.

https://doi.org/10.1007/s10723-014-9314-7

[8] Jennings, B, Stadler, R. (2015). Resource management in

Clouds: Survey and research challenges. Journal of

Network and Systems Management, 23: 567-619.

https://doi.org/10.1007/s10922-014-9307-7

[9] Gao, J., Bai, X., Tsai, W.T., Uehara, T. (2013). SaaS

testing on clouds - issues, challenges, and needs. In:

Proceedings - 2013 IEEE 7th International Symposium

on Service-Oriented System Engineering, Redwood City,

USA, pp. 409-415.

https://doi.org/10.1109/SOSE.2013.98

[10] Al-Said Ahmad, A., Brereton, P., Andras, P. (2017). A

systematic mapping study of empirical studies on

software cloud testing methods. In: Proceedings 2017

IEEE International Conference on Software Quality,

Reliability and Security Companion, Prague, Czech

Republic, pp. 555-562. https://doi.org/10.1109/QRS-

C.2017.94

[11] Geetha, N., Anbarasi, M.S. (2015). Ontology in cloud

computing: A survey. International Journal of Applied

Engineering Research, 10(23): 43373-43377.

[12] Hu, Y., Deng, B., Peng, F.Y., Hong, B., Zhang, Y.C.,

Wang, D.X. (2016). A survey on evaluating elasticity of

cloud computing platform. In: World Automation

Congress Proceedings, pp. 1-4.

https://doi.org/10.1109/WAC.2016.7583052

[13] Islam, S., Lee, K., Fekete, A., Liu, A. (2012). How a

consumer can measure elasticity for cloud platforms. In:

Proceedings of the Third Joint WOSP/SIPEW

International Conference on Performance Engineering -

ICPE 12. ACM, New York, pp. 85-96.

https://doi.org/10.1145/2188286.2188301

[14] Gao, J., Pattabhiraman, P., Bai, X., Tsai, W.T. (2011).

SaaS performance and scalability evaluation in clouds. In:

Proceedings - 6th IEEE International Symposium on

Service-Oriented System Engineering, SOSE 2011.

IEEE, Irvine, pp. 61-71.

https://doi.org/10.1109/CloudCom.2012.6427555

[15] Herbst, N.R., Kounev, S., Weber, A., Groenda, H. (2015).

BUNGEE: An elasticity benchmark for self-adaptive

IaaS cloud environments. In: Proceedings - 10th

International Symposium on Software Engineering for

Adaptive and Self-Managing Systems, SEAMS 2015, pp.

46-56. https://doi.org/10.1109/SEAMS.2015.23

[16] Bauer, A., Herbst, N., Kounev, S. (2017). Design and

evaluation of a proactive, application-aware auto-scaler.

In: Proceedings of the 8th ACM/SPEC on International

Conference on Performance Engineering - ICPE 17.

ACM, New York, pp. 425-428.

https://doi.org/10.1145/3030207.3053678

[17] Beltran, M. (2016). Defining an elasticity metric for

cloud computing environments. In: Proceedings of the

9th EAI International Conference on Performance

Evaluation Methodologies and Tools. ICST (Institute for

Computer Sciences, Social-Informatics and

Telecommunications Engineering), ICST, Brussels, pp.

172-179. https://doi.org/10.4108/eai.14-12-

2015.2262685

[18] Kuhlenkamp, J., Klems, M., Röss, O. (2014).

Benchmarking scalability and elasticity of distributed

database systems. Proc VLDB Endow, 7(12): 1219-1230.

https://doi.org/10.14778/2732977.2732995

[19] Ilyushkin, A., Ali-Eldin, A., Herbst, N., Papadopoulos,

A.V., Ghit, B., Epema, D., Iosup, A. (2017). An

experimental performance evaluation of autoscaling

policies for complex workflows. In: Proceedings of the

8th ACM/SPEC on International Conference on

Performance Engineering - ICPE 17. ACM, New York,

pp. 75-86. https://doi.org/10.1145/3030207.3030214

[20] Jayasinghe, D., Malkowski, S., Wang, Q.Y., Li, J., Xiong,

P.C., Pu, C. (2011). Variations in performance and

scalability when migrating n-tier applications to different

clouds. In: Proceedings - 2011 IEEE 4th International

Conference on CLOUD Computing, CLOUD 2011, pp.

73-80. https://doi.org/10.1109/CLOUD.2011.43

[21] Jayasinghe, D., Malkowski, S., Li, J., Wang, Q.Y., Wang,

Z.K., Pu, C. (2014). Variations in performance and

scalability: an experimental study in IaaS clouds using

multi-tier workloads. IEEE Transactions on Services

Computing, 7(2): 293-306.

https://doi.org/10.1109/TSC.2013.46

[22] Vasar, M., Srirama, S.N., Dumas, M. (2012). Framework

for monitoring and testing web application scalability on

the cloud. In: Proceedings of the WICSA/ECSA 2012

Companion Volume on - WICSA/ECSA ‘12, pp. 53-60.

https://doi.org/10.1145/2361999.2362008

[23] Bellenger, D., Bertram, J., Budina, A., Koschel, A.,

Pfänder, B., Serowy, C., Astrova, I., Grivas, S.G., Schaaf,

M. (2011). Scaling in cloud environments. In:

Proceedings of the 15th WSEAS International

Conference on Computers, Wisconsin, pp. 145-150.

[24] Idziorek, J. (2010). Discrete event simulation model for

analysis of horizontal scaling in the cloud computing

model. In: Proceedings of the 2010 Winter Simulation

Conference, Baltimore, MD, USA.

https://doi.org/10.1109/WSC.2010.5678994

[25] Scheinhardt, W. (1998). Markov-modulated and

feedback fluid queues. Ph.D. Thesis, University of

Twente, the Netherlands.

[26] Shen, X., Chen, H., Dai, J., Dai, W. (2002). The finite

element method for computing the stationary distribution

of an SRBM in a hypercube with applications to finite

buffer queueing networks. Queueing Systems, 42(1): 33-

62. https://doi.org/10.1023/A:1019942711261

[27] Thuraisingham, B. (2020). Cyber security and artificial

intelligence for cloud-based internet of transportation

systems. 2020 7th IEEE International Conference on

Cyber Security and Cloud Computing (CSCloud)/2020

6th IEEE International Conference on Edge Computing

and Scalable Cloud (EdgeCom), New York, NY, USA.

https://doi.org/10.1109/CSCloud-

EdgeCom49738.2020.00011

[28] Al-Haidari, F., Sqalli, M., Salah, K. (2015). Evaluation

689

of the impact of EDoS attacks against cloud computing

services. Arabian Journal for Science and Engineering,

40: 773-785. https://doi.org/10.1007/s13369-014-1548-y

[29] Dei Rossi, G.L., Iacono, M., Marin, A. (2015).

Evaluating the impact of eDoS attacks to cloud facilities.

VALUETOOLS 2015, Berlin, Germany, pp. 188-195.

https://doi.org/10.4108/eai.14-12-2015.2262650

[30] Salah, K., Elbadawi, K., Boutaba, R. (2015). An

analytical model for estimating cloud resources of elastic

services. Journal of Network and Systems Management,

24: 285-308. https://doi.org/10.1007/s10922-015-9352-x

[31] Amazon Web Services, Auto Scaling.

http://aws.amazon.com/autoscaling/.

690

http://aws.amazon.com/autoscaling/

