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With an efficient production logistics system, intelligent manufacturers can reduce the 

investment in production, improve the stability and self-repair ability of production 

logistics, and strike a perfect balance between production scheduling and production 

logistics. This paper probes deep into the production logistics management (PLM) of 

industrial enterprises, and proposes a PLM model for such enterprises based on wavelet 

neural network (WNN). Firstly, the PLM system architecture of industrial enterprises was 

established, and the scheduling and task allocation principles were proposed for the 

collaboration of various subjects in the system. Based on curved time window, a multi-

objective path planning and optimization model was established, under influencing factors 

like the dynamics of station demand and the maximum driving range of handling 

equipment. Simulation results show that the proposed model is effective in optimizing the 

path for industrial production logistics. The research results provide theoretical supports 

to the real-time optimization of PLM and rationalization of production scheduling in 

industrial enterprises. 
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1. INTRODUCTION

In the era of intelligent manufacturing, the rapid response of 

the supply chain and the customization of products are the 

defining features of production. Multi-source information 

needs to be transmitted in the whole process of production, 

from material selection, production design, manufacturing, 

cargo transport, to sales. With the growing complexity of 

production processes, it is increasingly difficult to realize 

scheduling and collaborative control of the production 

logistics system (PLS) [1-3].  

For intelligent manufacturers, an efficient PLS can 

effectively lower production investment, enabling them to 

provide quality consumer services more rapidly and timely. 

However, the existing PLSs encounter various problems, such 

as high transport cost, inaccurate scheduling, chaotic logistics 

routes, and frequent overstocks. To integrate production 

information and achieve intelligent, lean, and synergistic 

production, industrial enterprises must work hard to improve 

and optimize the operating efficiency of production logistics 

[4-7]. 

So far, fruitful research has been done on PLSs at home and 

abroad. The theories on logistics cost, logistics distribution, 

and Petri net have been applied to study the production 

logistics of enterprises [3, 5, 6, 8]. Zhang et al. [9] evaluated 

the impact of PLS on the production process, and highlighted 

the importance of reverse logistics to enterprise benefit, in 

terms of supply, distribution, and other aspects. Qu et al. [2] 

modeled he green PLS of intelligent manufacturers, using the 

Petri net based on production time series, and predicted the 

future trend of green production logistics in manufacturing. 

Stepanov [10] combined FlexSim simulation software with 

program analysis to present an effective solution that improves 

the operating efficiency of the production logistics in chemical 

plants. Following the just-in-time (JIT) theory, Wang and Ma 

[11] built a fuzzy evaluation model and an evaluation index

system (EIS) for production logistics.

The operation mode of PLS constantly adapts to the changes 

in the external competitive environment. Therefore, more and 

more scholars are turning their attention to PLS optimization, 

especially the rational layout and implementation path [12-14]. 

Duan et al. [15] constructed a multi-objective optimization 

model for the implementation of PLS under complex 

conditions (e.g. machine constraint, time constraint, batch 

constraint, mixed flow constraint, and open constraint), and 

evaluated the stability of the model. Under the JIT-based 

flexible production condition, Santhosh et al. [16] proposed a 

mixed production and distribution scheduling method for 

manufacturers, which effectively reduces the production hours, 

distribution cost, and inventory cost. Sharma et al. [17] 

estimated the dynamic machine layout in various discrete job-

shop areas with local feature algorithm, and verified the 

effectiveness of the algorithm in the comprehensive layout 

design of job-shops through simulation. Stepanov [18] created 

an evaluation system for the dynamic machine layout of job-

shops, established optimization models for single-line and 

multi-line layouts, and proved the optimized layouts of 

production lines to be rational through case analysis. Relying 

on the multi-objective genetic algorithm (GA) based on 

difference calculation, Huang and Wang [19] designed the 

plane layout for the flow-shop of Ford Motor, and successfully 

elevated the efficiency of the PLS in the flow-shop. 

The existing studies have improved the operating efficiency 

of production logistics to a certain extent. However, there are 

several defects with these studies: the uncertainty and 

dynamics of PLS are not fully considered, the global 
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optimization of production logistics is difficult to achieve, and 

the time nodes of logistics links are not integrated into the 

management production logistics management (PLM) model. 

To improve the stability and self-repair ability of production 

logistics and perfectly balance production scheduling with 

production logistics, this paper explores the PLM model of 

industrial enterprises with the aid of the wavelet neural 

network (WNN). As an artificial intelligence (AI) technology, 

the WNN provides a desirable tool for information processing, 

due to its excellent self-learning ability and adaptability. The 

research results provide theoretical supports to the real-time 

optimization of PLM and rationalization of production 

scheduling in industrial enterprises. 

The remainder of this paper is organized as follows: Section 

2 built the architecture of the PLM system for industrial 

enterprises, and proposes the scheduling and task allocation 

principles of production logistics collaboration; Section 3 

constructs a WNN for PLM of industrial enterprises; Section 

4 establishes a multi-objective path planning and optimization 

model based on curved time window, in the light of various 

influencing factors; Section 5 proved the effectiveness of our 

model in industrial PLM and path optimization; Section 6 puts 

forward the conclusions.  

 

 

2. PLM ARCHITECTURE OF INDUSTRIAL 

ENTERPRISES 

 

For industrial enterprises, a complete PLM system (Figure 

1) should cover a data source layer, a data acquisition layer, a 

data storage and processing layer, an application service layer, 

and a user management layer. 

 

 
 

Figure 1. The PLM architecture of industrial enterprises 

 

 
 

Figure 2. The scheduling and task allocation principles 
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Based on advanced information technology (IT) advanced 

manufacturing technology, it is possible to realize all-round 

data interaction and attribute mapping between the PLM 

system in Figure 1 and the physical job-shops of modern 

industrial enterprises, thereby optimizing the process and 

efficiency of production control, and achieving the optimal 

effects on multi-machine collaboration, emergency handling, 

and logistic path planning. The PLM process can be divided 

into three steps: 

(1) Based on radio-frequency identification (RFID), 

wireless sensor network (WSN), and various sensors, the real-

time information (e.g. types of inventory materials, locations 

of materials and stations, the state of materials, and the path of 

handling equipment) is collected by the data acquisition 

module, processed through sampling, conversion, and fusion, 

and stored as the metadata of PLM system. 

(2) If the physical job-shop has a dynamic demand, the PLM 

system will analyze the related data on the demand task, 

according to the information on the task and handling 

equipment, and make predictive planning of equipment 

scheduling and distribution path from the perspectives of 

feasibility, reliability, and safety; 

(3) The predictive planning of the PLM system is simulated. 

Based on the simulation results, the managers make correct 

decisions through the human-computer interaction (HCI) 

platform. 

Figure 2 provides the scheduling and task allocation 

principles of production logistics collaboration based on 

inventory materials, production equipment, assembly 

equipment, and handling equipment. If the inventory of 

assembly materials falls short of the demand of assembly task, 

the real-time inventory must be fed back to the intelligent 

scheduling and path planning model for assembly materials, 

and inputted to the predictive distribution planning model for 

assembly. If the inventory of production falls short of the 

demand of production task, the scheduling plan for production 

and assembly logistics should be adjusted by the collaborative 

task allocation algorithm, and the updated plan should be fed 

back to the predictive path planning models for production and 

assembly materials. 

 

 

3. PREDICTIVE PLANNING MODEL 

 

3.1 Wavelet analysis 

 

Let R be the set of real numbers, and S2(R) be a vector space 

of a one-dimensional (1D) function whose squares are 

integrable. Then, the inner product of such a 1D function g and 

wavelet function h on the vector space S2(R) can be defined as: 

 

< 𝑔, ℎ >= ∫
∞

−∞
𝑔(𝑥)ℎ(𝑥)𝑑𝑥  (1) 

 

The norm on the vector space S2(R) can be defined as: 

 

‖𝑔‖2 = √< 𝑔, 𝑔 >  (2) 

 

The fundamental wavelet refers to function φ, which 

belongs to S2(R) and satisfies the following admissibility 

condition: 

 

𝑈𝜙 = ∫
∞

−∞
|�̂�(𝜏)|

|𝜏|
𝑑𝜏 < +∞  (3) 

 

Under the constraint of the admissibility condition, function 

φ is transformed into a window function with compact support 

and oscillation attenuation. Suppose x and y are nonzero real 

numbers. Then, the wavelet function {φx,y}generated from 

function φ can be expressed as: 

 

𝜙𝑥,𝑦(𝐴) = √|𝑥|𝜙 (
𝐴−𝑦

𝑥
)  (4) 

 

where, x and y are continuous wavelets. In general, wavelet 

function φ(x) is generated by the scaling function ξ(x):  

 

{
𝜉(𝑥) = √2∑ 𝑞𝑘𝜉(2𝐴 − 𝑘)𝑘∈𝐼

𝜙(𝑥) = √2∑ ℎ𝑘𝜙(2𝐴 − 𝑘)𝑘∈𝐼

  (5) 

 

where, I is the set of integers. The orthogonality constraint of 

(5), i.e. the relationship between the scaling function and the 

wavelet function, can be expressed as: 

 

ℎ𝑘 = (−1)𝑘𝑞𝑘  (6) 

 

3.2 WNN 

 

The biggest difference between WNN and traditional neural 

network (NN) is the replacement of sigmoid function with 

nonlinear wavelet basis. The selected wavelet basis is 

translated to be superposed linearly with the scale factor, 

thereby expressing the signal. Based on the transform principle 

of discrete wavelet, the basis wavelet function φ(at-1,…at-n) 

satisfying the admissibility condition in Hilbert space can be 

determined by the following admissibility condition:  

 

𝑈𝜙 =

∫
|�̂�(𝜏𝑎𝑡−1 ,𝜏𝑎𝑡−2 ,⋯,𝜏𝑎𝑡−𝑛)|

|𝜏𝑎𝑡−1|
2
+|𝜏𝑎𝑡−2|

2
+⋯+|𝜏𝑎𝑡−𝑛|

2𝑆2
𝑑𝜏𝑎𝑡−1 , ⋯ , 𝑑𝜏𝑎−𝑛 <

+∞  

(7) 

 

The wavelet basis function can be obtained through the 

translation, rotation, and scaling of the fundamental wavelet: 

 

𝜙𝑥,𝛼,�̄�(𝑎𝑡−1, ⋯ , 𝑎𝑡−𝑛) = 𝑥
−1𝜙 (𝑥−1𝑟𝑜𝑡−𝛼(𝑎𝑡−1 −

𝑦𝑥𝑡−1 , ⋯ , 𝑎𝑡−𝑛 − 𝑦𝑥𝑡−𝑛))  
(8) 

 

where, x is the scale factor; y is the translation vector; α is the 

rotation angle; rot-α=(at-1, …, at-n) is the rotation vector:  

 

𝑟𝑜𝑡−𝛼 = (𝑎𝑡−1, ⋯ , 𝑎𝑡−𝑖 , ⋯ , 𝑎𝑡−𝑗 , ⋯ , 𝑎𝑡−𝑛) =

𝑎𝑡−𝑖 𝑐𝑜𝑠 𝛼 − 𝑎𝑡−𝑗 𝑠𝑖𝑛 𝛼 , 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛  
(9) 

 

By properly adjusting x, y, and α, φx,α,ȳ(⁎) can satisfy the 

frame properties of the following vector space: 

 

𝑊1‖𝑔‖
2 ≤ ∑ |< 𝜙𝑥,𝜃,𝑦(∗) >|

2
𝑥,𝑦 ≤ 𝑊2‖𝑔‖

2  (10) 

 

where, W1 and W2 are frame boundaries satisfying 

0≤W1≤W2≤∞. Figure 3 presents the WNN designed for 

predictive planning of industrial production, assembly, and 

distribution. 

The set of wavelet functions {φx,α,ȳ(⁎)}is the activation 

number of the only hidden layer in the WNN. Rearranging this 

set into φ1(⁎), φ2(⁎), …, φn(⁎), the WNN g(⁎) can be 

approximated as: 
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�̂�(∗) = ∑ 𝜔𝑖𝜙𝑖
𝑁
𝑖=1 (∗) =

∑ 𝜔𝑖
𝑁
𝑖=1 𝜙𝑥,𝛼,𝑦(𝑎𝑡−1, 𝑎𝑡−2, ⋯ , 𝑎𝑡−𝑛)  

(11) 

 

where, ωi is the connection weight between hidden layer nodes 

and output layer nodes; φx,α,ȳ(⁎) is the output of hidden layer 

nodes. 

 

 
 

Figure 3. The structure of our WNN 

 

 

4. WNN-BASED PREDICTIVE PLANNING OF 

PRODUCTION LOGISTICS 

 

4.1 Time window function 

 

To obtain the objective function of WNN-based 

optimization, this paper defines the effective time period 

during which the handling equipment is allowed to serve the 

production or assembly equipment. Normally, there are two 

kinds of time windows, depending on the strictness of the time 

constraint: the hard time window, i.e. the scheduling or 

distribution service must be completed in the required period, 

and the soft time window, i.e. the service can be completed in 

the best period. 

In actual production, however, if the arrival time of the 

handling equipment deviates slightly from the expected time 

to complete the task, there is a relatively small adverse effect 

on production or assembly. In the case of large deviation, the 

adverse effect will gradually or even linearly amplify with the 

elapse of time. To overcome the problem, a curved time 

window was put forward. The curve of its penalty cost 

function is shown in Figure 4. 

 

 
 

Figure 4. The curve of penalty cost function 

 

As shown in Figure 4, the curved time window adds an 

acceptable service time window [ts', tp'] to the best service time 

window of the soft time window. Let si be the arrival station 

of handling equipment l at time tli. Then, the penalty cost it 

needs to pay can be expressed as: 

𝑓(𝑡𝑙𝑖) =

{
 
 

 
 
𝑃𝐶1(𝑡𝑠

′ − 𝑡𝑙𝑖) + 𝑃𝐶2(𝑡𝑠 − 𝑡𝑠
′ )      𝑡𝑙𝑖 ≤ 𝑡𝑠

′

𝑃𝐶2(𝑡𝑠 − 𝑡𝑙𝑖)                          𝑡𝑠
′ < 𝑡𝑙𝑖 ≤ 𝑡𝑠

0                                                𝑡𝑠 < 𝑡𝑙𝑖 ≤ 𝑡𝑝

𝑃𝐶3(𝑡𝑙𝑖 − 𝑡𝑝)                          𝑡𝑝 < 𝑡𝑙𝑖 ≤ 𝑡𝑝
′

𝑃𝐶3(𝑡𝑝
′ − 𝑡𝑝) + 𝑃𝐶4(𝑡𝑙𝑖 − 𝑡𝑝

′ )      𝑡𝑝
′ < 𝑡𝑙𝑖

  (12) 

 

where, PC1, PC2, PC3, and PC4 are the penalty costs per unit 

time if handling equipment l arrives before ts', within [ts', ts], 

within [tp, tp'], and after tp'. The penalty cost will be zero, if 

handling equipment l completes the handling task within [ts, 

tp]. 

 

4.2 Objective function of multi-stage path optimization 

 

To minimize the total time cost of logistics, the cost of 

material handling, and the adverse impact of handling on 

production and assembly in industrial job-shops, this paper 

establishes a multi-objective path planning and optimization 

model, giving full consideration to the dynamics of station 

demand and the maximum driving range of handling 

equipment.  

A total of three 0-1 decision variables v1-lij, v2-il, and v3-kl 

were set up for the model. If v1-lij=1, handling equipment l 

moves from station si to station sj; if v2-il=1, the task 1 of station 

si is handled by handling equipment l; if v3-kl=1, the task 2 of 

station sk is handled by handling equipment l. 

The total time cost of logistics in an industrial job-shop 

consists of the planned time, the driving cost, as well as the 

expected time and driving cost induced by various real-time 

demands. Therefore, the adverse impact of path planning on 

production or assembly was characterized by the penalty cost 

function of curved time window. Then, the minimization of 

the total time cost can be expressed as: 

 

𝑚𝑖𝑛𝐻 = 𝑑𝑐1 ∑ ∑ ∑ 𝑣1−𝑙𝑖𝑗𝑑𝑖𝑗𝑙∈𝐿𝑗∈𝑆
𝑖≠𝑗

𝑖∈𝑆 +

𝑑𝑐2∑ ∑
𝑑𝑖𝑗

𝑣∗
𝑗∈𝑆
𝑖≠𝑗

𝑖∈𝑆 + 𝑐𝑘𝑙 ∑ ∑ 𝑓 ′(𝑡𝑙𝑘 , 𝐷𝑘𝑙)𝑙∈𝐿𝑘∈𝑆   
(13) 

 

where, S is the set of stations; L is the set of handling 

equipment; dc1 and dc2 are the driving costs of handling 

equipment per unit distance and per unit time, respectively; dij 

is the distance between stations si and sj; tlk and Dlk are the time 

and distance for handling equipment l to complete task 2 of 

station sk, respectively; ckl is the quantity of materials that task 

2 of station sk need to be handled by handling equipment l; v* 

is the mean velocity of handling equipment. 

The time and driving cost incurred as task 2 is released by 

station sk and accepted by handling equipment l can be 

calculated by: 

 

𝑓 ′(𝑡𝑙𝑘, 𝐷𝑘𝑙) = 𝑑𝑐1 ∑ ∑ 𝑣3−𝑘𝑙𝐷𝑘𝑙 +𝑙∈𝐿𝑘∈𝑆

𝑑𝑐2∑ ∑
𝐷𝑘𝑙

𝑣∗𝑙∈𝐿𝑘∈𝑆   
(14) 

 

The path planning must meet certain constraints. First, the 

number of handling equipment entering a station must equal 

to that leaving the station: 

 

∑ 𝑣1−𝑙𝑖𝑞𝑖∈𝑆 = ∑ 𝑣1-𝑙𝑞𝑗𝑗∈𝑆 , ∀𝑞 ∈ 𝑆  (15) 

 

After completing the required task, a handling equipment 

must return to the waiting center: 
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∑ 𝑣1−𝑙0𝑖𝑖∈𝑆 = ∑ 𝑣1-𝑙𝑗0𝑗∈𝑆   (16) 

 

The number of handling equipment that accepts tasks must 

be smaller than the total number Q of available handling 

equipment: 

 
∑ 𝑣1−𝑙0𝑖𝑖∈𝑆 ≤ 𝑄  (17) 

 

The quantity ci of materials in the initial task assigned by 

station si to handling machine must fall within the rated 

capacity C of the handling machine: 

 

∑ ∑ ∑ 𝑐𝑖𝑙∈𝐿𝑗∈𝑆𝑖∈𝑆 𝑣1−𝑙𝑖𝑗 ≤ 𝐶, ∀𝑖 ≠ 𝑗  (18) 

 

The driving distance of the handling equipment must fall 

within its maximum driving range dmax:  

 

∑ ∑ ∑ 𝑣1−𝑙𝑖𝑗𝑙∈𝐿𝑗∈𝑆𝑖∈𝑆 𝑑𝑖𝑗 ≤ 𝑑𝑚𝑎𝑥  ∀𝑖 ≠ 𝑗  (19) 

 

The quantity of materials in dynamic tasks like task 2 must 

be smaller than the residual capacity of handling equipment l: 

 

𝐶 − ∑ 𝑐𝑖𝑣2−𝑖𝑙𝑖∈𝑆 ≥ ∑ 𝑐𝑘𝑙𝑘∈𝑆 , ∀𝑖 ≠ 𝑗  (20) 

 

During the logistics, there must be paths linking up the 

handling equipment and the stations it serves: 

 

∑ ∑ ∑ 𝑣1−𝑙𝑖𝑗𝑙∈𝐿𝑗∈𝑆𝑖∈𝑆 = 𝑣2−𝑖 = 𝑣3−𝑘𝑙 , ∀𝑖 ≠ 𝑗  (21) 

 

4.3 Dynamic adjustment of handling equipment conflicts 

 

The handling equipment might encounter three kinds of 

conflicts: intersection conflict, collision, and intersection 

occupation. In the PLM system, the locations of intelligent 

handling equipment can be updated in real time, based on the 

data collected by RFID, WSN, and sensors. Let β be the safe 

time threshold for conflict identification. Two handling 

equipment will have conflict at the next intersection if their 

real-time states satisfy: 

 

{
|𝑇𝑚

𝑤1 − 𝑇𝑚
𝑤2| ≤ 𝛽

𝑊𝑚
𝑤1 = 𝑊𝑚

𝑤2   (22) 

 

where, Tm
w1 and Tm

w2 are the arrival times of handling 

equipment w1 and w2 at intersection m, respectively; Wm
w1 and 

Wm
w2 are the identifiers of handling equipment w1 and w2 at 

intersection m, respectively. The conditions for collision can 

be expressed as:  

 

{

|𝑇𝑚
𝑤1 − 𝑇𝑚

𝑤2| ≤ 𝛽

𝑊𝑚
𝑤1+1 = 𝑊𝑚

𝑤2    

𝑊𝑚
𝑤1 = 𝑊𝑚

𝑤2+1    

  (23) 

 

The conditions for intersection occupation can be expressed 

as:  

 

{
0 ≤ |𝑇𝑚

𝑤1 − 𝑇𝑚
𝑤2| ≤ 𝑇𝑚

𝑤1 + 𝛽

𝑊𝑚
𝑤1 = 𝑊𝑚

𝑤2                              
  (24) 

 

The handling equipment in conflict states at the intersection 

were assigned different priorities of passing the intersection 

(Figure 5).  

The priorities were designed based on the remaining time 

for the current task on each equipment. The shorter the 

remaining time, the higher the priority. The dynamic 

adjustment of priority can be expressed as: 

 

𝛾 = 𝑒𝑥𝑝 [
𝑅𝑇(𝑟𝑖)

𝑁(𝑚)+1
]
−1

  (25) 

 

where, RT(ri) is the estimated remaining time of task ri; N(m) 

is the number of handling equipment lining up at intersection 

m.  

 

 
 

Figure 5. The intersection occupation 

 

 
 

Figure 6. The congestion on the path between two 

intersections 

 

Figure 6 illustrates the congestion at the path between two 

intersections. The congestion or non-congestion can be 

characterized by the number of handling equipment that can 

be accommodated on the path: 

 

{
𝑁(𝑝) = 𝐶(𝑝) − 𝐴(𝑝)

𝐶(𝑝) = 𝐶 [
𝑙𝑝

𝑙𝐻𝐸+𝛥𝑑
]     

  (26) 

 

where, N(p) is the number of handling equipment that can be 

currently accommodated on path p; C(p) is the rated capacity 

of handling equipment that can be accommodated on path p; 

A(p) is the number of handling equipment driving on path p; lp 

is the length of path p; lHE is the length of handling equipment; 

Δd is the minimum headway between handling equipment 

driving on the path. 

 

 

5. LOGISTIC PATH OPTIMIZATION WNN 

 

To map the logistics path planning problem into a dynamic 

solution process of a WNN, an n×n matrix was constructed to 

represent the visits to n stations. Each row stands for a station, 

and each column stands for a node output. The serial number 

of a station in the station sequence visited by a handling 

equipment was recorded by setting the output of the node with 

that serial number to 1. Table 1 provides the two-dimensional 
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(2D) matrix of the effective solution to a network of six 

stations. The path in the table is s3→s4→s5→s1→s2→s6. 

 

Table 1. The 2D matrix of the effective solution  

 
Serial number 1 2 3 4 5 6 

s1 0 0 0 1 0 0 

s2 0 0 0 0 1 0 

s3 1 0 0 0 0 0 

s4 0 1 0 0 0 0 

s5 0 0 1 0 0 0 

s6 0 0 0 0 0 1 

 

Let Xpi and Ypi be the input and output of node (p, i), 

respectively. If node i on path p is visited, then Ypi=1; 

otherwise, Ypi=0. The energy function of the WNN can be 

defined as:  

 

𝐸 =
𝜔1

2
∑ ∑ ∑ 𝑌𝑝𝑖𝑌𝑝𝑗

𝑃
𝑗=1

𝑃
𝑖=1

𝑃
𝑝=1 +

𝜔2

2
∑ ∑ 𝑌𝑝𝑖𝑌𝑞𝑗

𝑃
𝑖=1

𝑃
𝑝=1 +

𝜔3

2
(∑ ∑ 𝑌𝑝𝑖 − 𝑃)

2 +𝑃
𝑖=1

𝑃
𝑥=1

𝜔4

2
∑ ∑ ∑ 𝑑𝑝𝑞

𝑃
𝑗=1

𝑃
𝑞=1

𝑃
𝑝=1 𝑌𝑝𝑖(𝑌𝑞,𝑖+1 + 𝑌𝑞,𝑖−1)  

(27) 

 

where, ω1, ω2, ω3, and ω4 are weight coefficients; dpq is the 

distance between p and q; the first three terms are the 

constraints; the last term is the optimization function. 

The dynamic equation of the WNN can be expressed as: 

 
𝑑𝑋𝑝𝑖

𝑑𝑡
= −

𝜕𝐸

𝜕𝑌𝑝𝑖
= −𝜔1(∑ 𝑌𝑝𝑖 −

𝑃
𝑖=1

1) −𝜔1(∑ 𝑌𝑞𝑖 − 1)
𝑃
𝑞=1 −𝜔4 ∑ 𝑌𝑞,𝑖+1

𝑃
𝑖=1   

(28) 

 

The logistics path of the industrial job-shop can be solved 

by the WNN in the following steps: 

Step 1: Initialize values and weights. Set time point to t=0, 

the value range of weight coefficients to 1.0-1.5, and X0=0.02. 

Step 2: Calculate the distance dpq between path nodes, and 

initialize the input Xpi to the WNN by:  

 

𝑋𝑝𝑖(𝑡) = 𝑋0
′ + 𝜀𝑝𝑖  (29) 

 

where, X′0=0.5X0ln(P-1), with P being the number of WNN 

nodes; εpi is a random number within (-1, 1). 

Step 3: Solve the dynamic equation (28), using the first-

order Euler method: 

 

𝑋𝑝𝑖(𝑡 + 1) = 𝑋𝑝𝑖(𝑡) +
𝑑𝑋𝑝𝑖(𝑡)

𝑑𝑡
𝛥𝑡  (30) 

 

Step 4: Calculate the output with sigmoid function:  

 

𝑌𝑝𝑖(𝑡) =
1

2
(1 + 𝑡𝑎𝑛ℎ(

𝑋𝑝𝑖(𝑡)

𝑋0
))  (31) 

 

Step 5: Calculate the energy function E (27), evaluate the 

legitimacy of logistics path, and judge whether the number of 

iterations reaches the termination condition; If not, return to 

Step 3. 

Step 6: Output the optimal path, the optimal energy function, 

the number of iterations, and the time-varying path length. 

 

 

6. SIMULATION AND RESULT ANALYSIS 

 

The convergence speed and accuracy of the proposed WNN 

were simulated on MATLAB 2016b. As shown in Figures 7 

and 8, the training error of the WNN reached the standard after 

200 iterations; the actual outputs of the WNN trained on 58 

sets of samples agree well with the 58 sets of data outputted 

from the training samples. The results demonstrate the path 

optimization effect of our WNN. 

With fixed number of tasks and the number of handling 

equipment, the effects of the proposed multi-objective path 

planning and optimization model were compared through 

simulations considering and without considering conflicts at 

intersections. The two situations are hereinafter referred to as 

with and without conflicts, respectively. 

 

 
 

Figure 7. The training error curve of the WNN 

 

 
 

Figure 8. The fitting effect of WNN on training data 

 

Table 2 records the simulation results with and without 

conflicts. It can be seen that, the waiting time of handling 

equipment with conflicts was always shorter than that without 

conflicts. As the number of tasks or handling equipment 

increased, the probability of conflicts between handling 

equipment at intersections was on the rise, and the decrements 

of waiting time and task completion time of handling 

equipment were also going up. 

Figure 9 compares the time costs in 10 simulations with and 

without conflicts. Obviously, the consideration of conflicts 

reduced both waiting time and task completion time, that is, 

the collaborative operations of multiple equipment became 

more efficiency after considering the conflicts. 

Table 3 compares the parameters of some handling 

equipment with and without conflicts at intersections. 

Obviously, the handling machines in the situation with 

conflicts (Y) had shorter idle time, higher operation frequency, 

smaller time cost per operation, higher effective utilization rate, 

and better transport capacity. These results are visually 

demonstrated by the curve of utilization rate of handling 

machines in Figure 10. 
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Table 2. The simulation results with and without conflicts 

 
Simulation 

number 

Number of 

tasks 

Number of handling 

equipment 

Decrement of waiting 

time/s 

Decrement of task completion 

time/s 

1 100 30 2.0 5.6 

2 100 20 10.0 21.8 

3 150 25 5.0 12.9 

4 150 25 12.0 49.1 

5 150 28 20.0 56.6 

 

  
 

Figure 9. The time costs in 10 simulations with and without conflicts 

 

Table 3. The parameters of some handling equipment with and without conflicts 

 

Serial number of 

handling machine 

Idle  

time 

Number of 

operations 

Time cost per 

operation 

Effective utilization 

rate 

Transport 

capacity 

N Y N Y N Y N Y N Y 

1 2,163.49 2,022.56 425 461 57.10 56.56 88.65 90.56 70 80 

2 3,147.51 3,122.15 355 398 64.66 59.34 45.21 49.22 71 76 

3 3,439.38 3,375.75 425 466 56.95 51.25 67.17 71.31 72 79 

4 3,598.97 3,478.21 321 343 74.22 72.95 61.05 65.58 70 75 

5 6,427.92 6,247.35 215 287 75.84 71.41 48.18 52.19 81 86 

6 978.93 955.55 120 147 198.22 189.71 80.56 85.57 72 76 

7 1,095.11 1,012.98 153 187 157.19 150.53 80.52 81.98 74 85 

8 1,041.76 989.27 198 209 124.69 121.68 83.05 87.43 75 83 

9 1,944.64 1,792.28 115 144 187.94 182.52 76.09 78.97 75 84 

10 901.21 856.91 127 136 192.11 190.17 71.32 82.65 72 84 

 

 
 

Figure 10. The utilization rates of handling machines with 

and without conflicts 

 

 

7. CONCLUSIONS 

 

Considering the excellent self-learning ability and 

adaptability of the AI technology of WNN, this paper proposes 

a WNN-based PLM model for industrial enterprises. Firstly, 

the architecture of the PLM system was constructed for 

industrial enterprises, and the scheduling and task allocation 

principles were designed for the collaboration of various 

subjects in the system. Next, a WNN was constructed for 

industrial PLM. Simulation results show that the WNN 

converged rapidly and accurately, and achieved good fitting 

effect on training data. 

Finally, a multi-objective path planning and optimization 

model was constructed based on the dynamics of station 

demand and the maximum driving range of handling 

equipment. Through contrastive simulations, it is learned that, 

with conflicts at intersections, the proposed model can 

effectively improve the effective utilization rate and transport 

capability of handling equipment through the optimization of 

logistics path. The proposed model provides a novel tool for 

industrial enterprises to implement PLM and path planning.  
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