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ABSTRACT 

  
 In this work, non-Newtonian fluid properties in a non-Darcy porous channel, specifically 

Darcy-Forchheimer porous channel is investigated with focus on a numerical analysis of 

Eyring-Powell type of non-Newtonian fluid. The unsteady state problem is considered 

under the influence of thermal radiation and transversely applied magnetic field. The 

governing non-linear partial differential equations were non-dimensionalized and then 

solved using Crank-Nicolson concept. Significance of non-Newtonian fluid properties as 

well as other fluid parameters is considered on the velocity, temperature and concentration 

profiles with the aid of graphs.  
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1. INTRODUCTION 

 

Study of flow behaviour of non-Newtonian fluids in 

permeable medium is very essential due to the fact that non-

Newtonian fluid demonstrate nonlinear relationship between 

shear stress and shear rate different from Newtonian fluids. 

Eyring-Powell model is a very important type of rheological 

fluid model for analysing non-linear relationship between 

shear stress and rate of deformation. The Eyring-Powell type 

of rheological model modified after Manisha and Timol [1], 

Malik et al. [2] is given as  

 

𝜏𝑥𝑦 = 𝜇
𝜕𝑢∗

𝜕𝑦∗ +
1

𝑎
𝑠𝑖𝑛ℎ−1 (

1

𝑐

𝜕𝑢∗

𝜕𝑦∗)        (1) 

 

where 𝜇 , is the dynamic viscosity coefficient, 𝑎  and 𝑐 

corresponds to Eyring-Powell parameters, 
𝜕𝑢∗

𝜕𝑦∗ stands for the 

rate of deformation, (x, y) are the Cartesian coordinates of any 

point in the flow domain and 𝜏 is the shear stress. 

This model was discovered by Powell and Eyring [3].  

When modelling flow of fluids in permeable channels, heat 

transfer analysis has always been of interest in controlling the 

rate of heat transfer, a better quality control in manufacturing 

industries and reduction in its emission to the body and its 

immediate environment. Adesanya and Gbadeyan [5], Islam et 

al. [6], Patel and Timol [7], Patel and Timol [8] and Hayat et 

al. [9], out of many researchers have greatly worked using this 

fluid model to describe non-linear behaviour of non-

Newtonian fluids. 

The Eyring-Powell model, according to Manisha and Timol 

[1], Khader and Megahed [10], Malik et al. [2], although more 

mathematically complex, has certain advantages over the 

Power-law fluid model. Eyring-Powell model works perfectly 

well for both low and high shear rate as it was based on the 

kinetic theory of liquids. Eldabe et al. [11] together with Zueco 

and Beg [12] investigated the Eyring-Powell fluid having the 

effect of couple stresses between two parallel plates.  

Nabil et al. [13] studied heat and mass transfer MHD 

Eyring-Powell fluid with dissipation in a porous medium. In 

their work, the effects of thermal radiation were neglected. By 

using homotopy analysis, Malik et al. [2] obtained boundary 

layer Eyring-Powell fluid with a variable viscosity. 

Over an exponentially shrinking sheet, Asmat et al. [14] 

examined radiation effects on boundary layer Eyring-Powell 

fluid using homotopy analysis. Tasawar et al. [15] using non-

uniform heat source/sink investigated the Powell-Eyring fluid 

past an unsteady inclined stretching sheet. Darji and Timol [16] 

investigated the group theoretical similarity analysis for 

natural convection flow of some non-Newtonian fluid models. 

It was observed in their work that the velocity in Williamson 

model is higher than that of Prandtl-Eyring model.     

Adesanya and Gbadeyan [5] employ Adomial 

decomposition method to study visco-elastic fluid flow having 

slip conditions. Gbadeyan and Dada [17] investigated heat 

transfer on an unsteady MHD Eyring-Powell fluid flow with 

slip in a porous medium. 

In the above cited studies, attention has not been given to 

studies involving effects of thermal radiation, magnetic field 

and dissipation.  

Oyelami and Dada [18] investigated an unsteady 

magnetohydrodynamic flow of both Prandtl-Eyring and 

Eyring-Powell non-Newtonian fluid model having slip 

through porous channel. Also, importance of 

magnetohydrodynamic Powell-Eyring fluid having thermal 

conductivity that is variable together with non-linear radiation 

over a porous cylinder was considered by Amit and Shalini 

[19]. 

The present study considered the effects of thermal 

radiation, magnetic field and dissipation on an unsteady MHD 

flow of non-Newtonian Eyring-Powell model. The equations 

governing the model were simplified, non-dimensionaliszd 

and solutions were provided by using Crank Nicolson finite 

difference method with the help of MATLAB programming 

package. Fluid parameters arising from the flow is shown 

graphically on velocity, temperature and concentration 

profiles.  
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2. PROBLEM FORMULATION 

 

Unsteady incompressible and electrically conducting 

Eyring-Powell fluid is considered along a vertical plate in a 

porous medium. The 𝑥∗ axis is taken in a vertically upward 

direction with 𝑦∗axis normal to it. Along 𝑦∗, a magnetic field 

of uniform strength is applied. It was initially assumed that at 

𝑡 ≤ 0 both the plate and fluid maintain same temperature and 

concentration which are denoted by 𝑇∞
∗  and 𝐶∞

∗  respectively. 

Thereafter, temperature and concentration of the plate at 𝑡 >
0  was raised and both maintained 𝑇𝑤

∗  and 𝐶𝑤
∗ . The fluid 

properties are assumed to be constant except that Boussinesq 

relations was used to approximate the body forces terms in the 

momentum equation. Taking into account viscous dissipation 

effects, radiative heat flux in the 𝑦∗  direction is defined 

according to Modes [19] as follows: 

 

𝑞𝑟 = −
4𝜎𝜕𝑇∗4

3𝑘1𝜕𝑦∗             (2) 

 

The governing equations are 

 
𝜕𝑢∗

𝜕𝑥∗ +
𝜕𝑣∗

𝜕𝑦∗ = 0;             (3) 

 
𝜕𝑢∗

𝜕𝑡∗ + 𝑢∗ 𝜕𝑢∗

𝜕𝑥∗ + 𝑣∗ 𝜕𝑢∗

𝜕𝑦∗ =
1

𝜌

𝜕

𝜕𝑦∗ (𝜏𝑥𝑦) + 𝑔𝛽𝑇(𝑇∗ − 𝑇∞
∗ ) +

𝑔𝛽𝑐(𝐶∗ − 𝐶∞
∗ ) −

𝜎𝐵0
2𝑢∗

𝜌
−

𝜈𝑢∗

𝑘
−

𝑏𝑢∗2

𝑘
            (4) 

                                                                                                                                    
𝜕𝑇∗

𝜕𝑡∗ + 𝑢∗ 𝜕𝑇∗

𝜕𝑥∗ + 𝑣∗ 𝜕𝑇∗

𝜕𝑦∗ = 𝛼
𝜕2𝑇∗

𝜕𝑦∗2 −
1

𝜌𝐶𝑝

𝜕𝑞𝑟

𝜕𝑦∗ +
𝜈

𝐶𝑝
(

𝜕𝑢∗

𝜕𝑦∗)
2

         (5) 

 
𝜕𝐶∗

 𝜕𝑡∗ + 𝑢∗ 𝜕𝐶∗

𝜕𝑥∗ + 𝑣∗ 𝜕𝐶∗

𝜕𝑦∗ = 𝐷
𝜕2𝐶∗

𝜕𝑦∗2 − 𝐾𝑐(𝐶∗ − 𝐶∞
∗ )         (6) 

 

with the following as the initial and boundary conditions: 

 

𝑡∗ ≤ 0: 𝑢∗ = 0, 𝑣∗ = 0, 𝑇∗ = 𝑇∞
∗ , 𝐶∗

= 𝐶∞
∗    𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥∗ 𝑎𝑛𝑑 𝑦∗ 

  𝑡∗ > 0: 𝑢∗ = 𝑢𝑜
∗ , 𝑣∗ = 0, 𝑇∗ = 𝑇𝑤

∗ ,       𝐶∗ = 𝐶𝑤
∗     𝑎𝑡 𝑦∗ = 0 

  𝑢∗ = 0, 𝑇∗ = 𝑇∞
∗ ,𝐶∗ = 𝐶∞

∗     𝑎𝑡 𝑥∗ = 0 

   𝑢∗ → 0, 𝑇∗ → 𝑇∞
∗ ,𝐶∗ → 𝐶∞

∗    𝑎𝑠 𝑦∗ → ∞.            (7) 

 

where 𝑢∗ and 𝑣∗ implies the velocities in 𝑥∗ and 𝑦∗ directions, 

𝑇∗ and 𝐶∗ are fluid temperature and concentration of the fluid, 

𝜌, 𝑔, 𝑡, 𝛽𝑇 , 𝛽𝐶 , 𝜎, 𝑘, 𝑏, 𝐷, 𝐶𝑝, 𝛼, 𝐵𝑜, 𝐾𝑐 , 𝑞𝑟 , 𝜈, 

𝜏𝑥𝑦  are density, gravitational acceleration, time, thermal 

volumetric coefficient, concentration volumetric coefficient, 

electric conductivity, permeability, Darcy-Forchheimer, 

concentration diffusivity, specific heat at constant pressure, 

thermal diffusivity, magnetic field, chemical reaction, 

radiative heat flux, kinematic viscosity and stress tensor 

parameters respectively. 

From equation (1), Eyring-Powell non-Newtonian fluid 

model modified after Manisha and Timol [1], Malik et al. [2] 

is expressed as 

 

𝜏𝑥𝑦 = 𝜇
𝜕𝑢∗

𝜕𝑦∗ +
1

𝑎
𝑠𝑖𝑛ℎ−1 (

1

𝑐

𝜕𝑢∗

𝜕𝑦∗)           (8) 

 

where the first and second term in the series expansion of  

 

sin ℎ−1 (
1

𝑐

𝜕𝑢∗

𝜕𝑦∗) ≅
1

𝑐

𝜕𝑢∗

𝜕𝑦∗ −
1

6
(

1

𝑐

𝜕𝑢∗

𝜕𝑦∗)
3

, |
1

𝑐

𝜕𝑢∗

𝜕𝑦∗| ≪ 1              (9) 

 

substituting equation (9) into equation (8), 

 

𝜏𝑥𝑦 =  𝜇
𝜕𝑢∗

𝜕𝑦∗ +
1

𝑎𝑐

𝜕𝑢∗

𝜕𝑦∗ −
1

6𝑎
(

1

𝑐

𝜕𝑢∗

𝜕𝑦∗)
3

         (10) 

 

This study concerns an optically thick limit boundary layers. 

If there are sufficiently small temperature differences within 

the flow, then expressing quartic temperature function as a 

linear function of temperature according to Raptis and Perdikis 

[20], the Taylor series for 𝑇∗4 ignoring terms of higher order 

can be written as: 

 

𝑇∗4  ≈ 4𝑇∞
∗3 − 3𝑇∞

∗4          (11) 

 

Substituting equation (11) into (2) yields the following 

result for energy equation 

 
𝜕𝑇∗

𝜕𝑡∗ + 𝑢
𝜕𝑇∗

𝜕𝑥
+ 𝑣

𝜕𝑇∗

𝜕𝑦
= 𝛼

𝜕2𝑇∗

𝜕𝑦∗2 +
𝜈

𝜌𝐶𝑝
(

𝜕𝑢∗

𝜕𝑦∗)
2

+
16𝜎𝑇∞

∗3

3𝑘1𝜌𝑐𝑝

𝜕2𝑇∗

𝜕𝑦∗2

             (12) 

 

Hence, the governing dimensional equations becomes 

 
𝜕𝑢∗

𝜕𝑥∗ +
𝜕𝑣∗

𝜕𝑦∗ = 0;            (13) 

 
𝜕𝑢∗

𝜕𝑡∗ + 𝑢∗ 𝜕𝑢∗

𝜕𝑥∗ + 𝑣∗ 𝜕𝑢∗

𝜕𝑦∗ =
1

𝜌

𝜕

𝜕𝑦∗ [ 𝜇
𝜕𝑢∗

𝜕𝑦∗ +
1

𝑎𝑐

𝜕𝑢∗

𝜕𝑦∗ −
1

6𝑎
(

1

𝑐

𝜕𝑢∗

𝜕𝑦∗)
3

] +

𝑔𝛽𝑇(𝑇∗ − 𝑇∞
∗ ) + 𝑔𝛽𝑐(𝐶∗ − 𝐶∞

∗ ) −
𝜎𝐵0

2𝑢∗

𝜌
−

𝜈𝑢∗

𝑘
−

𝑏𝑢∗2

𝑘

             (14)

                                                                                                                                         
𝜕𝑇∗

𝜕𝑡∗ + 𝑢
𝜕𝑇∗

𝜕𝑥
+ 𝑣

𝜕𝑇∗

𝜕𝑦
= 𝛼

𝜕2𝑇∗

𝜕𝑦∗2 +
𝜈

𝜌𝐶𝑝
(

𝜕𝑢∗

𝜕𝑦∗)
2

+
16𝜎𝑇∞

∗3

3𝑘1𝜌𝑐𝑝

𝜕2𝑇∗

𝜕𝑦∗2

            (15) 

 
𝜕𝐶∗

 𝜕𝑡∗ + 𝑢∗ 𝜕𝐶∗

𝜕𝑥∗ + 𝑣∗ 𝜕𝐶∗

𝜕𝑦∗ = 𝐷
𝜕2𝐶∗

𝜕𝑦∗2 − 𝐾𝑐(𝐶∗ − 𝐶∞
∗ )       (16) 

 

Transforming the dimensional governing equations (13), 

(14), (15) and (16) with the following non-dimensional 

quantities 

 

𝑋 =
𝑥∗𝑢0

∗

𝜈
, 𝑌 =

𝑦∗𝑢0
∗

𝜈
, 𝑈 =

𝑢∗

𝑢0
∗  , 𝑡 =

𝑡∗𝑢0
∗2

𝜈
, 𝑇 =

𝑇∗−𝑇∞
∗

𝑇𝑤
∗ −𝑇∞

∗ , 𝐶 =

𝐶∗−𝐶∞
∗

𝐶𝑤
∗ −𝐶∞

∗ , 𝑅𝑒 =
𝑢0

∗ 𝑙

𝜈
, 𝐸𝑐 =

𝑢0
∗2

𝐶𝑝(𝑇𝑤
∗ −𝑇∞

∗ )
, 𝑃𝑟 =

𝜈

𝛼
, 𝑀 =

𝜎𝐵0
2𝜐

𝜌𝑢0
∗2 , A =

1

𝑎𝜇𝑐
, 𝑆𝑐 =

𝜈

𝛼
, 𝐷𝑎 =

𝑘

𝑙2 , 𝑅 =
𝑘1𝑘

4𝜎𝑇∞
∗3 , 𝐺𝑟 =

𝑔𝛽𝑇(𝑇𝑤
∗ −𝑇∞

∗ )

𝑢0
∗3 , 𝐺𝑚 =

𝑔𝛽𝑐(𝐶𝑤
∗ −𝐶∞

∗ )

𝑢0
∗3 , F=

𝑢0
∗4

2𝜌𝑎𝜈3𝑐3 , 𝛾 =
𝐾𝑐ℎ2

𝜐
         (17) 

 

Gives the following set of non-dimensional equations 

 
𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0                                     (18) 

 
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
= [1 + 𝐴 − 𝐹 (

𝜕𝑈

𝜕𝑌
)

2

]
𝜕2𝑈

𝜕𝑌2 + 𝐺𝑟𝑇 + 𝐺𝑚𝐶 −

𝑀𝑈 −
𝑈

𝐷𝑎𝑅𝑒2 −
𝐹𝑠𝑈2

𝐷𝑎𝑅𝑒
          (19) 

 
𝜕𝑇

𝜕𝑡
+ 𝑈

𝜕𝑇

𝜕𝑋
+ 𝑉

𝜕𝑇

𝜕𝑌
=

1

𝑃𝑟
(1 +

4

3𝑁
)

𝜕2𝑇

𝜕𝑌2 + 𝐸𝑐 (
𝜕𝑈

𝜕𝑌
)

2

       (20) 

 
𝜕𝐶

𝜕𝑡
+ 𝑈

𝜕𝐶

𝜕𝑋
+ 𝑉

𝜕𝐶

𝜕𝑌
=

1

𝑆𝑐

𝜕2𝐶

𝜕𝑌2 − 𝛾𝐶         (21) 
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with the following as non-dimensional initial and boundary 

conditions 

 

𝑡 ≤ 0:   

𝑈 = 0, 𝑉 = 0, 𝑇 = 0, 𝐶 = 0∀𝑋 𝑎𝑛𝑑 𝑌  

𝑡 > 0:  

𝑈 = 1, 𝑉 = 0, 𝑇 = 1, 𝐶 = 1𝑎𝑡 𝑌 = 0            

𝑈 = 0, 𝑇 = 0, 𝐶 = 0, 𝑎𝑡 𝑋 = 0       

U→ 0, 𝑇 → 0,        𝐶 → 0 𝑎𝑠 𝑌 → ∞                                   (22)                  

 

where T implies the non-dimensional temperature, C denotes 

the non-dimensional concentration, Da implies the Darcy 

number, Gr and Gm stands for thermal and modified Grashof 

numbers respectively, N stands for thermal radiation 

parameter, Fs denotes the Darcy -Forchheimer inertia number, 

Pr is the Prandtl number, 𝛾  stands for chemical reaction 

parameter, Sc implies the Schimdt number, Re stands for 

Reynold number, U and V denotes dimensionless velocities in 

X and Y directions, A and F are the properties of Eyring-

Powell parameter. 

 

 

3. SOLUTION METHOD 

 

Solution to this problem is carried out using Crank-Nicolson 

implicit finite difference approach. The corresponding finite 

difference equations to the non- dimensional governing 

equations (18), (19), (20) and (21) under (22) are given as: 

 
𝑈𝑖,𝑗

𝑘+1−𝑈𝑖−1,𝑗
𝑘+1 +𝑈𝑖,𝑗

𝑘 −𝑈𝑖−1,𝑗
𝑘 +𝑈𝑖,𝑗−1

𝑘+1 −𝑈𝑖−1,𝑗−1
𝑘+1 +𝑈𝑖,𝑗−1

𝑘 −

𝑈𝑖−1,𝑗−1
𝑘

4∆𝑋
+

𝑉𝑖,𝑗
𝑘+1−𝑉𝑖,𝑗−1

𝑘+1 +𝑉𝑖,𝑗
𝑘 −𝑉𝑖,𝑗−1

𝑘

2∆𝑌
= 0                 (23) 

 

𝑈𝑖,𝑗
𝑘+1−𝑈𝑖,𝑗

𝑘

∆𝑡
+ 𝑈𝑖,𝑗

𝑘
(𝑈𝑖,𝑗

𝑘+1−𝑈𝑖−1,𝑗
𝑘+1 +𝑈𝑖,𝑗

𝑘 −𝑈𝑖−1,𝑗
𝑘 )

2∆𝑋
+

𝑉𝑖,𝑗
𝑘

(𝑈𝑖,𝑗+1
𝑘+1 −𝑈𝑖,𝑗−1

𝑘+1 +𝑈𝑖,𝑗+1
𝑘 −𝑈𝑖,𝑗−1

𝑘 )

4∆𝑌
= [1 + 𝐴 −

𝐹 (
𝑢𝑗+1

𝑘 −𝑢𝑗−1
𝑘

2∆𝑦
)

2

]
𝑈𝑖,𝑗−1

𝑘+1 −2𝑈𝑖,𝑗
𝑘+1+𝑈𝑖,𝑗+1

𝑘+1 +𝑈𝑖,𝑗−1
𝑘 −𝑈𝑖,𝑗

𝑘 +𝑈𝑖,𝑗+1
𝑘

2(∆𝑌)2 −

1

2𝐷𝑎𝑅𝑒2 (𝑈𝑖,𝑗
𝑘+1 + 𝑈𝑖,𝑗

𝑘 ) −
𝐹𝑠𝑈𝑖,𝑗

𝑘

2𝐷𝑎𝑅𝑒
(𝑈𝑖,𝑗

𝑘+1 + 𝑈𝑖,𝑗
𝑘 ) +

𝐺𝑟

2
(𝑇𝑖,𝑗

𝑘+1 +

𝑇𝑖,𝑗
𝑘 ) +

𝐺𝑚

2
(𝐶𝑖,𝑗

𝑘+1 + 𝐶𝑖,𝑗
𝑘 ) −

𝑀

2
(𝑈𝑖,𝑗

𝑘+1 + 𝑈𝑖,𝑗
𝑘 )          (24) 

                             

𝑇𝑖,𝑗
𝑘+1−𝑇𝑖,𝑗

𝑘

∆𝑡
+ 𝑈𝑖,𝑗

𝑘
(𝑇𝑖,𝑗

𝑘+1−𝑇𝑖−1,𝑗
𝑘+1 +𝑇𝑖,𝑗

𝑘 −𝑇𝑖−1,𝑗
𝑘 )

2∆𝑋
+

𝑉𝑖,𝑗
𝑘

(𝑇𝑖,𝑗+1
𝑘+1 −𝑇𝑖,𝑗−1

𝑘+1 +𝑇𝑖,𝑗+1
𝑘 −𝑇𝑖,𝑗−1

𝑘 )

4∆𝑌
=  

1

𝑃𝑟
(1 +

4

3𝑁
)

𝑇𝑖,𝑗−1
𝑘+1 −2𝑇𝑖,𝑗

𝑘+1+𝑇𝑖,𝑗+1
𝑘+1 +𝑇𝑖,𝑗−1

𝑘 −𝑇𝑖,𝑗
𝑘 +𝑇𝑖,𝑗+1

𝑘

2(∆𝑌)2 +

𝐸𝑐 (
𝑈𝑖,𝑗+1

𝑘 −𝑈𝑖,𝑗−1
𝑘

2ΔY
)

2

                      (25) 

 

𝐶𝑖,𝑗
𝑘+1−𝐶𝑖,𝑗

𝑘

∆𝑡
+ 𝑈𝑖,𝑗

𝑘
(𝐶𝑖,𝑗

𝑘+1−𝐶𝑖−1,𝑗
𝑘+1 +𝐶𝑖,𝑗

𝑘 −𝐶𝑖−1,𝑗
𝑘 )

2∆𝑋
+

𝑉𝑖,𝑗
𝑘

(𝐶𝑖,𝑗+1
𝑘+1 −𝐶𝑖,𝑗−1

𝑘+1 +𝐶𝑖,𝑗+1
𝑘 −𝐶𝑖,𝑗−1

𝑘 )

4∆𝑌
=  

1

𝑆𝑐

𝐶𝑖,𝑗−1
𝑘+1 −2𝐶𝑖,𝑗

𝑘+1+𝐶𝑖,𝑗+1
𝑘+1 +𝐶𝑖,𝑗−1

𝑘 −𝐶𝑖,𝑗
𝑘 +𝐶𝑖,𝑗+1

𝑘

2(∆𝑌)2 −
𝛾

2
(𝐶𝑖,𝑗

𝑘+1 + 𝐶𝑖,𝑗
𝑘 )

                   (26)  

 

multiplying equations (23), (24), (25) and (26) by ∆𝑡  for 

simplicity, the equations are arranged so that velocities, 

temperature and concentration involving present time step 

(k+1) are on the left while those of previous time step (k) are 

on the right hand side. Hence, the equations form tri-diagonal 

matrix system. The finite difference equations (23), (24), (25) 

and (26) in tridiagonal matrix system of equation is as follows: 

 

−𝑉𝑖,𝑗−1
𝑘+1 + 𝑉𝑖,𝑗

𝑘 = 𝐹1                         (27) 

 

−𝐴2𝑈𝑖,𝑗−1
𝑘+1 + 𝐵2𝑈𝑖,𝑗

𝑘+1 + 𝐷2𝑈𝑖,𝑗+1
𝑘+1 = 𝐹2                       (28) 

 

−𝐴3𝑇𝑖,𝑗−1
𝑘+1 + 𝐵3𝑇𝑖,𝑗

𝑘+1 + 𝐷3𝑇𝑖,𝑗+1
𝑘+1 = 𝐹3                       (29) 

 

−𝐴4𝐶𝑖,𝑗−1
𝑘+1 + 𝐵4𝐶𝑖,𝑗

𝑘+1 + 𝐷4𝐶𝑖,𝑗+1
𝑘+1 = 𝐹4                       (30) 

 

where 

 

𝐴2 = 𝐸3 + 𝐸6, 𝐵2 = 1 + 𝐸2 + 2𝐸6 + 𝐸7 + 𝐸8 + 𝐸9 + 𝐸10, 𝐷2

= 𝐸3 − 𝐸6 

𝐴3 = 𝐸3 + 𝐸10, 𝐵3 = 1 + 𝐸2 + 2𝐸10, 𝐷3 = 𝐸3 − 𝐸10  

𝐴4 = 𝐸3 + 𝐸12, 𝐵4 = 1 + 𝐸2 + 2𝐸12 + 𝐸13, 𝐷4 = 𝐸3 − 𝐸12

                         (31) 

 

And 

 

𝐹1 = 𝐸1 [

𝑈𝑖,𝑗
𝑘+1 − 𝑈𝑖−1,𝑗

𝑘+1 + 𝑈𝑖,𝑗
𝑘 − 𝑈𝑖−1,𝑗

𝑘

+𝑈𝑖,𝑗−1
𝑘+1 − 𝑈𝑖−1,𝑗−1

𝑘+1 + 𝑈𝑖,𝑗−1
𝑘 −

𝑈𝑖−1,𝑗−1
𝑘

] + 𝑉𝑖,𝑗−1
𝑘+1 − 𝑉𝑖,𝑗

𝑘

              (32) 

 

𝐹2 = (𝐸3 + 𝐸6)𝑈𝑖,𝑗−1
𝑘 + (1 − 𝐸2 − 2𝐸6 − 𝐸7 − 𝐸8 − 𝐸9 −

𝐸10)𝑈𝑖,𝑗
𝑘 − (𝐸3 − 𝐸6)𝑈𝑖,𝑗+1

𝑘 + 𝐸4[𝑇𝑖,𝑗
𝑘+1 + 𝑇𝑖,𝑗

𝑘 ] + 𝐸5[𝐶𝑖,𝑗
𝑘+1 +

𝐶𝑖,𝑗
𝑘 ] + 𝐸2𝑈𝑖−1,𝑗

𝑘+1 + 𝐸2𝑈𝑖−1,𝑗
𝑘            (33) 

 

𝐹3 = (𝐸3 + 𝐸10)𝑇𝑖,𝑗−1
𝑘 + (1 − 𝐸2 − 2𝐸10)𝑇𝑖,𝑗

𝑘 − (𝐸3 −

𝐸10)𝑇𝑖,𝑗+1
𝑘 + 𝐸2𝑇𝑖−1,𝑗

𝑘+1 + 𝐸2𝑇𝑖−1,𝑗
𝑘 + 𝐸11[𝑈𝑖,𝑗+1

𝑘 − 𝑈𝑖,𝑗−1
𝑘 ]

2

              (34) 

 

𝐹4 = (𝐸3 + 𝐸12)𝐶𝑖,𝑗−1
𝑘 + (1 − 𝐸2 − 2𝐸12 − 𝐸13)𝐶𝑖,𝑗

𝑘 − (𝐸3 −

𝐸12)𝐶𝑖,𝑗+1
𝑘 + 𝐸2𝐶𝑖−1,𝑗

𝑘+1 + 𝐸2𝐶𝑖−1,𝑗
𝑘            (35) 

 

Also 

 

𝐸1 = −
∆𝑌

2∆𝑋
, 𝐸2 =

∆𝑡

2∆𝑋
𝑈𝑖,𝑗

𝑘  , 𝐸3 =
∆𝑡

4∆𝑌
𝑉𝑖,𝑗

𝑘  , 𝐸4 =
∆𝑡𝐺𝑟

2
 , 𝐸5 =

∆𝑡𝐺𝑚

2
 𝐸6 =

𝐻𝑖∆𝑡

2(∆𝑌)2  , 𝐸7 =
∆𝑡

2𝐷𝑎𝑅𝑒2  , 𝐸8 =
∆𝑡𝐹𝑠

2𝐷𝑎𝑅𝑒
 𝑈𝑖,𝑗

𝑘  , 𝐸9 =

∆𝑡𝑀

2
 , 𝐸10 =

1

𝑃𝑟
[1 +

4

3𝑁
]

∆𝑡

2(∆𝑌)2  , 𝐸11 =  
∆𝑡

4(∆𝑌)2 𝐸𝑐 , 𝐸12 =

 
∆𝑡𝛾

2
, 𝐻𝑖 = [1 + 𝐴 − 𝐹 (

𝑢𝑗+1
𝑘 −𝑢𝑗−1

𝑘

2∆𝑦
)

2

]              (36)  

 

Along 𝑋 direction is defined a grid point 𝑖 while 𝑗 and 𝑘 are 

the grid points along 𝑌  and 𝑡  directions. Dividing 𝑋  and 𝑌 

into 𝑀 and 𝑁 grid gave a well-spaced points. Mesh sizes were 

taken to be ∆𝑋=0.05, ∆𝑌=0.25 and ∆𝑡=0.01 and a rectangle 

with maximum value for X = 1.05 and maximum value for 

Y=5.25 while Ymax lie outside the boundary layers of 

momentum, energy and concentration. 

At a particular time during computations, the coefficients 

𝑈𝑖,𝑗
𝑘  and 𝑉𝑖,𝑗

𝑘  in the finite difference equation were taken to be 

constants. From the initial conditions at all grid points, the 
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values of C, T, U and V are known. For the calculations of C, 

T, U and V at present time (k+1), the known values at previous 

time level (k) are used as follows: 

The tri-diagonal system of equations (30) appearing at every 

internal nodal point particularly on a i −  level was solved 

using Thomas algorithm. The solution  provided helps in the 

computation of Concentration (C) values particularly on a 

i − level at time (k+1) at every nodal point. The same 

procedure used to compute C values using equation (30) was 

repeated for Tri diagonal system of equations (29) to compute 

the values for temperature (T) at time (k+1) level. The results 

gotten from the computations of concentration (C) and 

Temperature (T) at time (k+1) level are used in equation (28) 

to compute the values of velocity (U) at time (k+1) level. 

By so doing, computations of values for C, T and U are 

known on a particular i −  level and the procedure was 

repeated severally at various i − levels. This approach gave 

the values of C, T and U at all grid point. 

 The computation of values for V is carried out explicitly at 

every nodal point using equation (27) on a particular i − level 

at time (k+1). 

 

 

4. DISCUSSION OF RESULTS 

 

Computation is conducted to examine the influence of fluid 

parameters graphically on velocity, temperature and 

concentration profiles. Default values are given as: A =2, F 

=0.5, Gr=2, Gm=2, M=2,  γ=1 , Da=0.2, Fs=0.2 Re=1, Pr=1.0, 

N=3.0, Ec=0.002, Sc=1.0 and all graph corresponds to these 

values except otherwise stated. To check the correctness of 

this work, it was compared with the Newtonian work of Anwar 

et al. (2008) by setting the non-Newtonian parameters to zero 

and it was found to be in good agreement as seen in figure 1. 

 

 
 

Figure 1. Velocity profile for various values of Gr, Gm, Sc 

and N at A=F=0 

 

Figures 2, 3 and 4 display the influence of magnetic field 

parameters on fluid velocity, temperature and concentration 

profiles respectively. A rise in magnetic field values causes 

velocity profile to decrease. The reduction experienced is as a 

result of the presence of Lorentz force with its power exerting 

force that reduces the motion of the fluid. Temperature and 

concentration distribution was seen to increase with increase 

in magnetic field in figures 3 and 4 respectively.  

 
 

Figure 2. Velocity profile for various values of magnetic 

field parameter 

 
 

Figure 3. Temperature profile for various values of magnetic 

field parameter 

 

 
 

Figure 4. Concentration profile for various values of 

magnetic field parameter 

 

The influence of increasing thermal radiation values N on 

velocity distribution is presented in figure 5. A rise in N 
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reduces velocity profile which is therefore accompanied by 

reduction in momentum boundary layers. Figures 6 and 7 

display the temperature and concentration fields for various 

radiation parameter N. These plots show a decrease in 

temperature profile as N increases and an increase in the fluid 

concentration as thermal radiation increases in figures 6 and 7 

respectively. This is because with higher values of N, smaller 

radiation flux is experienced and the rate at which energy is 

being transported to the fluid decreases. 

Figure 5. Velocity profile for various values ofthermal 

radiation parameter 

Figure 6. Temperature profile for various values of thermal 

radiation parameter 

Figure 7. Concentration profile for various values of thermal 

radiation parameter 

Figure 8, 9 and 10 represents the effects of Schmidt number 

Sc on the velocity, temperature and concentration distributions 

respectively. Velocity and concentration decreases as a result 

of increase in Schmidt number which causes a reduction in 

velocity, diffusivity and the concentration boundary layer 

thickness. This is because the thickness ratio for the viscous 

and concentration boundary layer is measured by Schmidt 

number. With larger Sc, low diffusion property is experienced 

which implies that concentration boundary layer becomes 

thinner than the velocity boundary layer thickness in the fluid. 

An Increase in Schmidt number amounts to slight increases in 

the fluid temperature.   

Figure 8. Velocity profile for various values of Schmidt 

number 

Figure 9. Temperature profile for various values of Schmidt 

number 

Figure 10. Concentration profile for various values of 

Schmidt number 
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Figure 11 shows the influence of thermal Grashof number 

Gr on the velocity profile. With a rise in Gr, velocity profile 

experienced an increase and this increase boosts the buoyancy 

force with an increase in the wall velocity and smoothly 

descends towards zero. 

 
 

Figure 11. Velocity profile for various values of thermal 

Grashof number 

 

Figure 12 presents temperature profile for thermal Grashof 

number Gr. Temperature profile smoothly decreases from 1 at 

the peak down the free stream. Concentration of the fluid also 

decreases down the stream as shown on figure 13. 

 
 

Figure 12. Temperature profile for various values of thermal 

Grashof number 

 

 
 

Figure 13. Concentration profile for various values of 

thermal Grashof number 

Figures 14 and 15 illustrate the importance of modified 

Grashof number Gm on the distribution of velocity and 

temperature respectively. Effect of modified Grashof number 

Gm on the velocity profile is seen to accelerate the magnitude 

of velocity. This is as a result of its property which gives the 

relative importance of buoyancy force to the viscous forces. 

Increasing Gm amounts to a decreased temperature field and 

increased velocity field down the free stream. 

 

 
 

Figure 14. Velocity profile for various values of modified 

Grashof number 

 
 

Figure 15. Temperature profile for various values of 

modified Grashof number 

 

Figures 16 and 17 depict various Prandtl number Pr values 

on velocity and temperature fields respectively. Pr is the ratio 

of momentum diffusivity to thermal diffusivity. A rise in Pr 

numbers decreases significantly the velocity and temperature 

profiles. This is because smaller values of Pr increases the 

thermal conductivity of the fluid which indicates that heat is 

able to diffuse away from the heated surface more rapidly than 

higher values of Pr and temperatures across the boundary layer 

reduces more for higher Pr values. 

Figures 18 and 19 show the influence of Eckert number on 

the velocity and temperature profiles. Increasing Eckert 

number causes a reduction in both the velocity and 

temperature profiles with significant changes in the 

momentum and thermal boundary layer thicknesses. 

Figure 20 represents the velocity profile for non-Newtonian 

fluid parameter A. Parameter A causes a retarding effect on 
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the rate of flow and thereby reduces the fluid velocity giving 

significant changes in the momentum boundary layer 

thickness. Figure 21 exhibits the influence of the non-

Newtonian Parameter F on the velocity field. It was observed 

that increasing F causes the fluid velocity to increase. 

 
 

Figure 16. Velocity profile for various values of Prandtl 

number 

 
 

Figure 17. Temperature profile for various values of Prandtl 

number 

 
 

Figure 18. Velocity profile for various values of Eckert 

number 

 
 

Figure 19. Temperature profile for various values of Eckert 

number 

 
 

Figure 20. Velocity profile for various values of Eyring-

Powell parameter A 

 

 
 

Figure 21. Velocity profile for various values of Eyring-

Powell parameter F 
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The variations of velocity and temperature with Darcy-

Forchheimer number Fs are presented on figures 22 and 23 

respectively. As Fs increases, an increase in the fluid 

temperature and a reduction in the velocity of the fluid was 

experienced because increasing permeability increases the 

flow resistance reducing the fluid velocity and increasing its 

temperature. 

 

 
 

Figure 22. Velocity profile for various values of Darcy-

Forchheimer number 

 
 

Figure 23. Temperature profile for various values of Darcy-

Forchheimer number 

 

 

5. CONCLUSION 

 

In this work, non-Newtonian fluid properties in a Darcy-

Forchheimer porous medium is investigated with focus on a 

numerical analysis of Eyring-Powell flow. The unsteady state 

problem is considered under the influence of thermal radiation 

and transversely applied magnetic field. The equations 

governing the problem were non-dimensionalzed and solved 

using Crank-Nicolson concept with MATLAB Programming 

package. The study revealed that increasing thermal Grashof 

number, non-Newtonian Parameter F and modified Grashof 

number Gm causes an increase in velocity distribution while 

velocity was reduced with a rise in magnetic field 

parameter,Eckert number, Schmidt number, non-Newtonian 

Parameter A, thermal radiation parameter, Darcy-Forchheimer 

number and Prandtl Number. Temperature rises as Schmidt 

number and magnetic field increases while it decreases as 

Prandtl number, thermal Grashof number, modified Grashof 

number, thermal radiation number and viscous dissipation 

parameter increases. Increasing thermal Grashof number, 

Schmidt number and magnetic field causes a decrease in 

concentration profile. 
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NOMENCLATURE 

 

t*          Dimensional time 

t               Non-dimensional time 

x*, y*  Dimensional coordinates along and normal 

to the plate 

u*, v*   Dimensional velocities in x*and y* 

directions   

g          gravitational acceleration 

k          permeability 

u          Velocity in the x direction 

v          Velocity in the y direction 

N          Thermal radiation parameter 

P*          Dimensional pressure 

P           Non-dimensional fluid pressure 

X, Y     Non-dimensional coordinate along and 

normal to the plate 

U, V     Non-dimensional velocities in X and Y 

directions 

N          Thermal radiation parameter 

P*          Dimensional pressure 

P          Dimensionless fluid pressure 

T*         Dimensional temperature of fluid 

T          Dimensionless temperature of fluid  

C*         Dimensional concentration of fluid 

C          Non-dimensional concentration of fluid  

A, F      Eyring-Powell parameters 

𝐵0        Applied magnetic field 

𝐶𝑝        specific heat at constant pressure 

Da        Darcy number 

Ec         Eckert number 

Gr         Thermal Grashof number 

Pr          Prandtl number 

qr          radiative heat flux 

Re         Reynolds number 

Tw        Temperature of the plate 

Cw        Concentration of the plate 

 

Greek alphabets 

 

𝜌   density 

𝜎   Stefan-Boltzmann constant 

𝑎, 𝑐         characteristic of Eyring-Powell model 

𝜇        Viscosity  

𝜏𝑥𝑦        stress tensor 

𝛽𝑇  𝑎𝑛𝑑 𝛽𝐶  thermal volumetric coefficient and 

concentration volumetric coefficient
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