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Abstract  

For the time fractional sub-diffusion equation with variable coefficients, a quintic spline 

method is presented, along the time direction, the recursion formula obtained from the Lagrange 

interpolation functions is used, along the space direction, the quintic spline interpolation 

functions, which have high order accuracy when being used to approximate smooth functions and 

their 1,2,3 order derivatives, are used as the basis functions. Theoretical analyses and numerical 

examples show that 4 order accuracy in space can be achieved for this scheme. 
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1. Introduction 

When studying diffusion phenomena in highly inhomogeneous media, ones often find that 

traditional integer-order diffusion models always lead to heavy tail phenomena. By comparison, 

corresponding fractional models behave better when describing probability density. Therefore, in 

recent years, the fractional diffusion equation with various boundary conditions and nonlinear 

terms has become more and more important in many fields, such as biology, medicine, fluid 

mechanics, thermodynamics and electrochemical reaction. More and More researchers are 
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focusing on the numerical solution and simulation of fractional models subject to various 

conditions. And many excellent research achievements have been presented, such as the finite 

difference method, the finite element method, the spectral method, the finite volume method and 

so on. However, in these existing literatures we can find most of the numerical methods are 

efficient only for fractional equations with constant coefficients. Therefore, the numerical 

solution of various fractional diffusion equations with variable coefficients remains an important 

area to be studied. 

In this paper, using the quintic spline interpolation functions, which have high order 

accuracy when being used to approximate smooth functions and their derivatives, we study the 

numerical solution of the following fractional diffusion equations with variable coefficients  
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With ( ) the Gamma function. For Equ.(1), we use the quintic spline interpolation 

functions as basis function in space, present a collocation method combining with the L1 

recursion formula in time, analyze the theoretical accuracy, and illustrate the efficiency by some 

numerical examples. 

2. Preparation 

Define respectively 0{ } hN

h i ix == and 0{ } tN
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Let 4

5 5[ , ] { : [0,1], | ,0 1}
i hS a b v v C v P i N=     −  be the space of quintic spline functions, 

where
5P
 
is the set of polynomials of degree 5 , and

1[ , ]i i ix x += . 

For convenience of using quintic spline function as basis function in space, several auxiliary 

nodes 1( 5, , 1, , , 5)i h hx a ih i N N+= + = − − +  are added to the meshes, which leads to a new 

interval  [ 5 , 5 ]I a h b h= − + . 

By the results in, we can immediately obtain the expression of quintic spline function and 

some characteristics as follows: 

For 2, 1, , 1, 2h hi N N= − − + + ，the quintic spline functions are defined as 
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And for enough smooth function ( )u x , there is unique quintic spline function 
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satisfying the following interpolation result. 

Lemma 1 Suppose 4( ) [ , ]u x C a b ,and
 5( )su x S is the quintic spline function defined above 

satisfying 

( ) ( ), 0,1, , , '( ) '( ), ''( ) ''( ), 0,s i i h s i i s i i hu x u x i N u x u x u x u x i N= = = = =

                                   (4)
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In order to deal with the Caputo derivative operator (2), denote by 
1 1( 1) , 1,2, , 1,la l l l N − −= − − = + and let
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Then, the use of piece-wise linear Lagrange interpolation function will result in the 

following recursion formula :

 
Lemma 2  When 2[0, ]u C T , for the Caputo derivative operator (2)，there is a recursion 

formula of the form
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here the remainder term 1( ( ))nR u t + satisfies 
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3. Quintic spline collocation method 

For convenience, let
k
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In (9), the first level  0( , )u x t
 
 can be obtained by calculating the initial condition 

( ,0) ( )u x x=  in (1).  

Let 1( , )s nu x t +  
be the obtained approximation solution. First, substituting all nodes 

0 1, , ,
hNx x x into (9), and considering  (5)  we can get: 
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Second, by the two boundary conditions in (1), the use of first two equations of (5) leads to 
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For obtaining enough linear equations, we take derivative with respect to x  in (9) and have 

3 1 1
1 1 1

1 1

( , ) ( ) ' ( , ) ( , ) '( )
( , ) ( , )

n n
x n n x n

n n

c c
D u x t u x t D u x t r x

k x t k x t

+ +
+ + +

+ +

− − = .                                                (12) 

Taking ,x a x b= = , and dropping the error term 4( )O h ，(12) reads: 
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By (10)-(13), we can obtain the collocation equations 
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A h QB U R+ =                                                                                                                              (14) 

Here , ,A Q B  are all ( 5) ( 5)h hN N+  +
 
-dimensional matrices: 
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In addition，the right term R  and unknown U are respectively 
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For the collocation system (14), we have 

Theorem 1 Suppose model (1) has unique solution, when 
4,2

,( , ) ([ , ] [0, ])x tu x t C a b T  ，the 

approximation solution in (14) satisfies the errors: 

 
4 2|| ( , ) ( , ) || ( )su x t u x t O h  −

− = + .                                                                                                  (15) 
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PROOF When system (1) has unique solution, there is Green function ( , )G x s  at every time 

level. In Level 1n+ ( 0, , 1tn N= − )， for the exact solution 
1( , )nu x t +  

and approximation 

solution 1( , )s nu x t + ，denote by 2

1( , ) ( )x nD u x t x+ = ， 2
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defining the following operator ： 
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Based on the above denotations, (9) can be written as  

 
2 ( , ) ( ) ( ( )) ( )( ( )) 0,xD u F x u x K x I K x  − = − = − =

                                                                     
(16) 

(1) has unique solution, so operator I K−  is reversible. And the reversible is a bounded operator. 

Based on Lemma 1, it has truncation error 4( )O h  in the process of (10)-(14), hence, there is 

4( )( ( )) ( )I K x O h− = .                                                                                                                          (17) 

Based on(16) and (17), we obtain 

4( )( ( ) ( )) ( )I K x x O h − − = , 

Again based on the bounded reversibility of Operator I K− , there is 

4|| ( ) ( ) || ( )x x O h  − = ， 

Therefore, we get the equality 

4

1 1|| ( , ) ( , ) || || ( , )( ( ) ( )) || ( ).
b

n s n
a

u x t u x t G x s x x ds O h + + − = − =  

By combining with the Lemma 2, we complete the proof of the theorem 1. 

4. Numerical examples 

In order to investigate the theoretical analysis results about the efficiency of the presented 

quintic spline collocation method, in this section, by using the Matlab R2010, some numerical 

examples are provided. In all given results, Table 1 lists the corresponding precision with every 
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space step and fixed time step. We take the fractional order as 0.01 =  to minimize the impacts 

from the time direction. Table 2 and Table 3 list the corresponding precision with every time step 

and fixed space step. Here we take the fractional order 0.01,0.5,0.99 = to check the impact of 

the fractional order on the precision. In all tables, the errors are calculated in terms of infinite 

norm, we use cE to represents the errors at all collocation nodes.  Here the computational formula 

of the convergence rate is: 

log( ( / 2) / ( )) / log(2)c cRate E N E N= . 

Example 1. 3( , ) (cos ), ( , ) , 1, 0, 1x x tu x t t x e k x t e T a b+= + = = = = ，and 

3 3(4)
( , ) (cos ) ( cos ) .

(4 )

x x x tf x t t x e t e x e



− +
= + − −
 −  

Example 2. 2.1 4.1( , ) , ( , ) cos( ), 1, 1, 0u x t t x k x t x t T a b= = + = = − = , and 

2.1 4.1 2.1 2.1(3.1)
( , ) 12.71 cos( )

(3.1 )
f x t t x t x x t



−
= − +
 −

. 

Table 1. Errors ( 1/10000, 0.01 = = ) along the space direction

M                          Example 1                                                       Example 2 

cE             Rate       CPUtime (second)       cE                 Rate       CPUtime (second)    
8       5.1240e-7                            2.1345                       1.5812e-6                                2.1109 

16    3.2854e-8 3.9631        4.2521                       1.0216e-7      3.9521             4.2385 

32     2.1225e-9 3.9522        8.5219                      6.5361e-9      3.9663                8.4326 

64     1.3670e-10 3.9567       16.9823                    4.2886e-10    3.9299                16.9327  

 

Table 2. Errors ( 1/ 64h = ) along the time direction in EXAMPLE 1 

N                        0.01 =
                          

0.5 =
                     

0.99 =  

cE
        

 Rate                    cE
            

Rate              cE
                 

 Rate 
200            2.1335e-5    2.5355e-4                 5.7342e-3 

400           5.5157e-6 1.9516 9.0358e-5  1.4885 2.9032e-3 0.9819 

800          1.4257e-6 1.9519 3.2181e-5        1.4894 1.4672e-3 0.9846 

1600 3.6638e-7        1.9603         1.1450e-5 1.4909 7.4035e-4          0.9868 

3200 9.4166e-8 1.9601 4.0721e-6        1.4915           3.7235e-4          0.9915 

 

Table 3.  Errors ( 1/ 64h = ) along the time direction in EXAMPLE 2 

N                     0.01 =
                          

0.5 =
                             

0.99 =  

cE              Rate                 cE
          

 Rate                  cE
                 

Rate 
200 5.6360e-5 2.8473e-4                              6.2834e-3 

400 1.4693e-5       1.9395 1.0215e-4     1.4789 3.2201e-3 0.9644 
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800 3.7891e-6       1.9552 3.6449e-5      1.4867 1.6373e-3 0.9758  

1600       9.7496e-7       1.9584         1.2993e-5      1.4881 8.2921e-4 0.9815 

3200 2.5061e-7        1.9599        4.6292e-6      1.4889 4.1897e-4 0.9849 

 

        The experimental results from Table 1, Table 2 and Table 3 show that, when solution 

function 4,2

,( , ) ([ , ] [0, ])x tu x t C a b T  , quintic spline collocation scheme (14) achieves accuracy of 

4( )O h  and 
2( )O  −

 along the time and space direction respectively.  These numerical results are 

in agreement with the theoretical results of Theorem 1. 

5. Conclusion 

By combing with the L1 recursion formula in time and quintic spline functions in space, we 

have introduced a collocation method for the the fractional sub-diffusion equation with variable 

coefficients. Theoretical analysis and numerical experiments show this method can achieve the 

precision 4 2( )O h  −+  under certain smooth conditions with the theoretical analysis.  
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