
AMSE JOURNALS-AMSE IIETA publication-2017-Series: Advances B; Vol. 60; N°2; pp 463-485

Submitted Mar. 31, 2017; Revised May 22, 2017; Accepted Jun. 08, 2017

Adaptive Multi-copy Layout Algorithm Based on Mass Storage

System

Guosong Jiang*, Qing Zhang

School of Computer Science, Huanggang Normal University, Huanggang 438000, China

(hustjgs@126.com)

Abstract

Large-scale storage systems face significant challenges in reliability and adaptability, thus it

needs reliable, adaptive and effective data layout algorithms. Existing studies only partially meet

these goals. This paper first puts forward a reliable copy data layout algorithm (RCDL) and an

effective adaptive data layout algorithm (ADL), and on this basis, by combining the two algorithms,

this paper proposes a multi-copy adaptive data layout algorithm MCADL, which can achieve better

reliability, adaptability and effectiveness. The RCDL distributes the same copies to different storage

devices to avoid the same replica on adjacent storage devices, thus obtaining higher redundancy

and fault tolerance. The ADL algorithm combines the clustering algorithm with the consistent hash

method, and introduces a small amount of virtual storage devices, greatly reducing the consumption

of storage space. Data are distributed fairly according to the weights of the storage devices, so it is

adaptive to system expansion and reduction. In order to utilize the respective advantages of RCDL

and ADL, MCADL divides data into hot and cold data according to the data access frequency.

RCDL layout is used for hot data and ADL layout is used for cold data. Theoretical and

experimental results show that MCADL can obtain higher redundancy and fault tolerance and can

fairly distribute data and add and remove adaptive storage devices according to the weights of

storage devices, migrate optimal data amount when the scale of the storage system changes, and

can quickly locate data, consuming less storage space.

Key words

Large-scale network storage, Data layout.

463

1. Introduction

A data layout algorithm is mainly used to solve the problem of how to choose the storage

devices to store data and establish the mapping relationship between data collection and storage

devices collection using an effective mechanism and needs to meet certain goals at the same time,

such as fair distribution of data on the storage device, adaptive storage scale changes, same copies

on different storage devices and location of data within a very short period of time and space. How

to effectively lay out data is a major challenge faced by large-scale network storage systems. At

present, most of the data layout algorithms consider only a single copy. However, if only a single

copy is stored, it would be difficult to restore it once damaged, and thus reliability and availability

are affected. A feasible method is to store multiple copies of the data block and distribute the

multiple copies between the storage devices. The placement policy for multiple copies of data

involves the redundancy problem - different copies of each data block should be stored on different

storage devices; in other words, the same copies of the data block cannot be stored on the same

storage device. Some working groups are committed to research on redundant data layout

algorithms. This paper divides such algorithms into two categories: continuous copy layout and

random copy layout.

A continuous copy layout algorithm chooses a storage device to store the master copy of the

data using certain a single-copy layout algorithm, and then stores the rest of the copies on

subsequent storage devices. The continuous copy layout is well applied in P2P systems (such as

CFS [1] and PAST [2]). The same copies are assigned to different storage devices to ensure

redundancy and improve reliability. However, when a storage device fails, the system fault-

tolerance will deteriorate and its reliability will be reduced because the workload of the failed

storage device will be be gathered at an adjacent storage device. Moreover, the continuous copy

layout algorithm cannot adapt to the changes of storage devices. When the collection of storage

devices is changed, the migrated data are concentrated in the peripheral storage devices. A random

copy layout algorithm randomly assigns copies to storage devices [3-6]. When a storage device

fails, the load is randomly dispersed in the system; therefore, the random copy layout has better

fault-tolerance than the continuous copy layout. However, it cannot guarantee the same copies are

placed on different storage devices, reducing the redundancy and leading to low reliability. Another

disadvantage of the random copy layout is the poor adaptivity, because changes in the storage

devices will cause data to reorganize. Some random algorithms can solve the problem of low

redundancy [7-10]. Algorithm recursively places k copies and ensures that the same copies are on

different storage devices. However, when the collection of storage devices is changed, the amount

of data re-organization is k2 times the most optimal strategy. The self-adaptability of RUSH and

464

CRUSH algorithm in terms of addition on a single storage device is both poor. These random

algorithms all try to avoid the redundancy problem, but still have a poor adaptability.

2. Reliable Copy Layout Algorithm

In order to eliminate the defects in the fault tolerance of the continuous copy layout and avoid

the low redundancy problem of the random copy layout, this paper proposes a reliable copy layout

algorithm (RCDL) which assigns copies of data to different storage devices. Its self-adaptivity is

discussed in Section 2.2. First, this section defines three kinds of relevance and redundancy

regarding storage devices and data collection, abstracts the layout problem as RCDL and proves it

to be the NP- hard problem. Then, it weakens the conditions of the problem, abstracts it into a semi-

definite programming problem and uses a polynomial time algorithm to solve the problem. Given

the size of the problem, this paper analyzes the cost of semi-definite programming.

2.1 RCDL Problem

First this paper introduces the definitions related to the RCDL problem. The heterogeneous

mass storage system for large-scale data can be abstracted as a mathematical model. The data and

the storage devices are regarded as a set respectively. The problem is abstracted to how to establish

the mapping between these two sets.

Suppose the data set in storage system is: X0={x1,...,xm}, where m represents the total number

of data, and xi∈x0 represents a data element.

Suppose the storage device space D is {d1,…,dN}, where N represents the total number of

storage devices, and the di represents a storage device. The weight can be expressed as capacity,

bandwidth or a combination of both.

Suppose the current storage device set is D0={d1,…,dN}, where n≤N, and 𝐷0 ⊆ D. Suppose

the capacity of a storage device di∈D0 is Ci, it means the amount of data that can be stored on the

device. For example, if the capacity of a storage device is 5000, then the storage device can store

5000 data. To put it simple, data xi is expressed as i, and the storage device dk as k.

DEF.1 (Correlation between data and storage devices)

∀ 𝑖 ∈ 𝑋0. If i is assigned to storage device k∈D0, then l(i,k)=1; else l(i,k)=0.

DEF.2 (Copy correlation among data elements).

∀𝑖, 𝑗 ∈ 𝑋0, where i≠j. If i and j are the same copies, then rc(i,j)=1; else rc(i,j)=0.

DEF.3 (Location correlation between data elements)

465

∀𝑖, 𝑗 ∈ 𝑋0, where i≠j. If i and j are laid out on different storage devices, then lc(i,j)=1; else

lc(i,j)=0.

DEF.4 (Redundancy)

∀𝑖, 𝑗 ∈ 𝑋0, where i≠j and rc(i,j)=1. Suppose when lc(i,j)=1, the redundancy is λ·degree(i,j),

where λ is the adjustment factor; otherwise, the redundancy is 0. λ is related to the importance of

data, which gives more attention to important data.

The definition of the problem RCDL is as follow:

𝐼𝑃: 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒(∑ 𝜆 ∙ 𝑑𝑒𝑔𝑟𝑒𝑒(𝑖, 𝑗) ∙𝑖,𝑗∈𝑋0⋀𝑖≠𝑗 𝑟𝑐(𝑖, 𝑗) ∙ 𝑙𝑐(𝑖, 𝑗)) (1)

Constraints:

∀ 𝑖 ∈ 𝑋0 : ∑ 𝑙(𝑖, 𝑘)𝑘∈𝐷0
= 1 (2)

∀ 𝑘 ∈ 𝐷0 : ∑ 𝑙(𝑖, 𝑘)𝑖∈𝑋0
≤ 𝐶𝑘 (3)

The problem of the reliable copy layout of RCDL is defined above. In this definition, the goal

of Formula (1) is to maximize redundancy. Constraint (2) ensures that data are only placed on a

single storage device and Constraint (3) ensures that the amount of data on each storage device

does not exceed the capacity of the storage device.

Theorem 1: RCDL is an NP-hard problem

Proof: consider an instance of RCDL problem. Suppose the storage device set is

D0={d1,…,dN}, the data set is X0={x1,...,xm}, and the capacity of each storage device is C. Suppose

that none of the data sizes is greater than C and data can be freely placed on any storage device,

thus ensuring the data amount on each storage device will not exceed its capacity. We construct an

undirected entitled graph G(V,E), with the data in X0 as a node and the correlation between data as

sides. The weight of each side is 𝜆 ∙ 𝑑𝑒𝑔𝑟𝑒𝑒(𝑖, 𝑗) ∙ 𝑟𝑐(𝑖, 𝑗) ∙ 𝑙𝑐(𝑖, 𝑗), Then, the instance is converted

to seeking the maximum n-separation problem of the graph G. Any instance of the maximum n-

separation problem of the graph G can be used as an instance of RCDL problem. Given the

maximum n-separation problem is NP-hard, the RCDL problem is NP-hard accordingly.

2.2 RCDL Semi-definite Programming Relaxation

The RCDL problem is NP-hard. We can relax the RCDL as a semi-definite programming

466

problem (SDP), which makes the SDP solved in polynomial time. First, we re-define the RCDL

problem. Suppose {a1, a2, …, an} is the n-dimension vector set, where a1=(1,0,…0), a2=(0,1,…0)

and an=(0,0,…1). We modify DEF.1 to DEF.5.

DEF.5 (Correlation between data and storage devices)

∀ 𝑖 ∈ 𝑋0. If i is assigned to storage device k∈D0, then l(i,k)=1; else li=ak. lc(i,k) can be re-

written as (1- li·lj), where li={a1, a2, …, an}. Then we re-write 𝜆 ∙ 𝑑𝑒𝑔𝑟𝑒𝑒(𝑖, 𝑗) ∙ 𝑟𝑐(𝑖, 𝑗) to w(i,j).

The definition of the RCDL problem is equivalent to the following re-definition of the problem

RCDL.

𝐼𝑃′: 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤(𝑖, 𝑗)(1 − 𝑙𝑖 ∙ 𝑙𝑗)𝑖,𝑗∈𝑋0∧𝑖≠𝑗 (4)

Constraints:

∀ 𝑖 ∈ 𝑋0: 𝑙𝑖 ∈ {𝑎1, 𝑎2, ⋯ , 𝑎𝑛} (5)

∀ 𝑘 ∈ 𝐷0 : ∑ 𝑎𝑘 ∙ 𝑙𝑖𝑖∈𝑋0
< 𝐶𝑘 (6)

Suppose 𝑆𝑛−1 = {𝑥 ∈ 𝑅𝑛: |𝑥| = 1} is the unit sphere of n-dimension vectors. We replace li

with vi, and then vi is a vector in Sn-1.

𝑆𝐷𝑃: 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤(𝑖, 𝑗)(1 − 𝑣𝑖 ∙ 𝑣𝑗)𝑖,𝑗∈𝑋0∧𝑖≠𝑗 (7)

Constraints:

∀ 𝑖 ∈ 𝑋0: 𝑣𝑖 ∈ 𝑆𝑛−1 (8)

∀ 𝑘 ∈ 𝐷0 : ∑ 𝑎𝑘 ∙ 𝑣𝑖𝑖∈𝑋0
< 𝐶𝑘 (9)

vi·vj is expressed as Xij, and then X=[Xij] is positive semi-definite. The target of Formula (7)

can be expressed as 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤(𝑖, 𝑗) ∙ (1 − 𝑋𝑖𝑗)𝑖,𝑗∈𝑋0∧𝑖≠𝑗 . This formula is equivalent to

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤(𝑖, 𝑗) ∙ 𝑋𝑖𝑗𝑖,𝑗∈𝑋0∧𝑖≠𝑗 . Constraint (8) can be expressed as ∀ 𝑖 ∈ 𝑋0: 𝑋𝑖𝑖 = 1. We add a

condition 𝑋 ≻ 0 to show that X is positive semi-definite. Then the SDP problem can take four steps

to solve:

467

1. First of all, we solve the semi-definite programming problem as follows, and then get the

matrix X.

𝑆𝐷𝑃′: 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤(𝑖, 𝑗)(1 − 𝑋𝑖𝑗)𝑖,𝑗∈𝑋0∧𝑖≠𝑗 ⟺ 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑊 ∙ 𝑋𝑖,𝑗∈𝑋0∧𝑖≠𝑗 (10)

Constraints:

∀ 𝑖 ∈ 𝑋0: 𝑋𝑖𝑖 = 1 (11)

𝑋 ≻ 0 (12)

2. Suppose A=(v1, v2,…,vm)T. Because X=[Xij]=[vivj], we have X=A·AT. We solve X=A·AT. to

get the matrix A, and thus obtain the vector v1, v2,…,vm∈Sn.

3.Each element in vector vi∈{v1, v2,…,vm } represents the relationship between the data i and

storage device m. We round vi using a rounding algorithm [11], making data only assigned to a

single storage device. First of all, we take n random vectors r1, r2,…,rn from the n-dimensional

space and set 𝑟𝑖 = (𝑟1
𝑖 , 𝑟2

𝑖 , ⋯ , 𝑟𝑛
𝑖) and 1≤i≤n. 𝑟𝑗

𝑖 is a sample obtained from the standard distribution

(0,1), where 1≤j≤n. If the distance from a vector in n random vectors r1, r2,…,rn to vi is the shortest,

then the data i is assigned to this vector.

4. To ensure data are fairly laid out on storage devices, we sort r1, r2,…,rn by the amount of

data obtained by each vector, and meanwhile sort the storage devices by their capacities, and then

distribute the data obtained by vector ri to the corresponding storage device i.

5. We repeat this random rounding process to make the amount of data on each storage device

not exceed its capacity, so condition (6) is met.

2.3 Computing Cost

We measure the computing cost of RCDL by analyzing the five steps to solve SDP. The data

amount and the number of storage devices are m and n, respectively.

In the first step, the variable related to the matrix X is
(𝑚−1)×𝑚

2
, and the number of equations

involved in Constraint (11) is m. In the second step, there are m×n variables and
(𝑚−1)×𝑚

2
 equations.

Because the data amount is much greater than the number of storage devices, the total number of

variables and equations is
𝑚×(𝑚−1)

2
+ 𝑚 + 𝑚 × 𝑛 +

𝑚×(𝑚+1)

2
= 𝑚2 + 𝑚 + 𝑚 × 𝑛 = 𝛰(𝑚2) .

468

The rounding number in the rounding algorithm is m×n, and the complexity of the rounding

algorithm is O(m×n). In the fourth step, the sorting operation of vectors and storage devices can be

done within O(n×logn) time; therefore, the complexity of rounding and sorting is O(m×n). The

rounding algorithm needs to be executed several times to get good fairness.

3. Adaptive Data Layout Algorithm (ADL)

In order to achieve adaptability and efficiency of the layout algorithm, we put forward the

ADL algorithm, which integrates the clustering algorithm and uniform hash method and introduces

a small amount of virtual storage devices, greatly reducing the required storage space. The ADL

algorithm can fairly distribute data and adaptively add/delete storage devices in accordance with

the weights of the storage devices and migrate the least data amount when the storage system scale

is changed, and moreover, locate data quickly and consume less memory space.

3.1 Problem Definition

Suppose the function f0: X0→D0 maps the data set X0 to the storage device set D0. The relative

weight of the storage device i∈D0 is wi, and then the weights of the n storage devices are {w1,

w2,…, wn}, respectively, and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1. The data layout algorithm A can be represented as a

binary function A(x,f), x∈X0, and the parameter f represents a matching function, and A(x,f)= A(x).

The data x assigned to the storage device is identified by the value of A(x,f).

DEF.6 (Fairness)

Let the storage device set of storage system be D0={d1,d2,…,dn}, the relative weight of the

storage device di∈D0 be wi, and the data set be X0={x1,x2,…,xm}, and suppose the function f0:

X0→D0 map the data set X0 to the storage device set D0, ∀ 𝑥 ∈ 𝑋0, and that the probability that the

layout algorithm A assigns the data X to the device di ∈ D0 is p. ∀ 𝜀 > 0 , and if

|𝑝(𝐴(𝑥, 𝑓0) = 𝑑𝑖) − 𝑤𝑖| < 𝜀, then the algorithm A is fair [12].

The fairness of the algorithm makes the probability of the data x∈X0 assigned to the storage

device di∈D0 infinitely close to the relative weight of the device di, thus ensuring the data are fairly

distributed to each storage device.

DEF.7 (Adaptive)

Let the storage device set of the storage system be D0={d1,d2,…,dn}, the relative weight of the

storage device di∈D0 be wi and data set be X0={x1,x2,…,xm}, and suppose the function f0: X0→D0

maps the data set X0 to the storage device set D0. If the layout algorithm A meets the following two

requirements:

469

(1) The current storage device set D0 becomes D+={d1,d2,…,dn+1}. Suppose the function f+:

X0→D+ maps the data set X0 to the storage device set D+. ∀ 𝑥 ∈ 𝑋0, and if 𝐴(𝑥, 𝑓+) = 𝑓+(𝑥) ∈ 𝐷0, then

𝐴(𝑥, 𝑓+) = 𝐴(𝑥, 𝑓0);

(2) The current storage device set D0 becomes 𝐷− = {𝑑1, 𝑑2, ⋯ , 𝑑𝑖−1, 𝑑𝑖+1, ⋯ , 𝑑𝑛}. Suppose

the function 𝑓−: 𝑋0 ⟶ 𝐷− maps the data set X0 to the storage device set 𝐷− . ∀ 𝑥 ∈ 𝑋0, and if

𝐴(𝑥, 𝑓0) = 𝑓0(𝑥) ∈ 𝐷−, then 𝐴(𝑥, 𝑓0) = 𝐴(𝑥, 𝑓−).

Then the layout algorithm A is adaptive.

When the storage system scale is changed, due to its adaptability, the layout algorithm makes

the migrated data only move from the non-changed storage devices to the newly added storage

devices or move from the deleted storage devices to the non-changed storage devices, and there is

no data migration among the non-changed storage devices, thus ensuring the least amount of data

migrated

When the storage device dn+1 is added, the storage device set D0 becomes 𝐷+ =

{𝑑1, 𝑑2, ⋯ , 𝑑𝑛+1},, and data migrate only from a storage device in D0 to the storage device dn+1,

and there is no data migration among storage devices in D0. When the storage device di is deleted,

the storage device set D0 becomes 𝐷− = {𝑑1, 𝑑2, ⋯ , 𝑑𝑖−1, 𝑑𝑖+1, ⋯ , 𝑑𝑛}, and data migrate only

between the storage device di and the storage devices in 𝐷−, and there is no data migration among

storage devices in 𝐷−.

This method makes the amount of data migration equal to the data amount on the added or

deleted storage device, and the system can still compute the data location using the algorithm A

after data migration without increasing any new rules, thus the algorithm A can adapt to the changes

of the storage system scale, which are transparent to users. A user only needs to modify the system’s

configuration file about system scale, and then correctly position data according to the algorithm

A. In the isomorphic-consistent hash mechanism, in order to solve the heterogeneous problem of

data layout, we need to introduce the corresponding virtual storage devices according to the weights

of storage devices. If the weight difference between storage devices is very big, then we need to

introduce a large number of virtual storage devices.

In the worst case, if the weight of a storage device in system is very small and there are large

differences between its weight and those of other storage devices, then the number of virtual storage

devices introduced to system cannot be tolerated by system memory space. In this paper, the ADL

algorithm consists of three steps:

(1) First, classify the storage device set usoffing the clustering algorithms and make the weight

differences among storage devices in each class within a preset range.

470

(2) After completion of the clustering, the layout mechanism between classes in accordance

with the weights of the class divides the interval [0,1] into a plurality of sub-intervals, allocates a

sub-interval to each class and assigns the data to a sub-interval to the corresponding class.

(3) The inner layout mechanism of each class uses the consistent hash method to re-distribute

data to specific storage devices.

The following respectively introduces the clustering algorithm, distribution mechanism among

the classes and layout mechanism within the class.

3.2 Effective Adaptive Data Layout Algorithm (ADL)

DEF.8 (Distance between the storage devices)

The weights of di and dj in the storage device set D0 are wi and wj respectively, and then the

distance between di and dj is 𝑤𝑖𝑗 = |𝑤𝑖 − 𝑤𝑗|.

DEF.9 (Distance from storage device to class)

Let the storage device class be S and the clustering center be di, where di∈S, and then the

distance from the storage device dj to class S is equal to the distance from the storage device dj to

di.

The goal of clustering algorithm is to make the distance from the storage device in each class

to its cluster center less than the preset value. We can calculate the distance from a storage device

to the cluster center according to the distance formula in Definition 8.

Suppose the intra-class distance threshold value is T. Compare the distance from the storage

device to the cluster center with T and determine which class the storage device falls within or take

it the center of a new class. First, take any one storage device di as the cluster center of the first

class S1. For example, take d1 as the center of the class S1, and compute the distance from the next

storage device d2 to 1D . If the value is less than or equal to T, d2will be normalized to the class S1;

otherwise, d2 will be the center of the new class S2. Suppose we have k cluster centers. Compute

the minimum distance from the unsorted storage device di to k cluster centers. If this value is greater

than T, make the storage device di as the center of the new class Sk+1; otherwise assign the storage

device to the class nearest to the device in class k. Repeat the process until all storage devices are

classified into each class. The clustering algorithm divides the storage device set D0={d1,d2,…,dn}

into a 𝑔 class set C={D1,D2,…,Dg}. Suppose the class Dj is {𝐷𝑖
𝑗
; 𝑖 = 1,2, ⋯ , 𝑛𝑗}, where 1≤j≤𝑔, then

∑ 𝑛𝑗
𝑔
𝑗=1 = 𝑛. Suppose the weight of the class Dj is wj, then 𝑤𝑗 = ∑ 𝑤𝑖

𝑛𝑗

𝑖=1
, and the total weight of 𝑔

classes is ∑ 𝑤𝑗
𝑔
𝑖=1 = 1. The problem is transformed into distributing data in the heterogeneous class

set C. In order to fairly distribute data in the class set 𝐶 = {𝐷1, 𝐷2, ⋯ , 𝐷𝑔}, the interval [0,1] is re-

471

divided into multiple sub-intervals according to the weight of each class in C, and the sub-interval

of the class Dj is 𝐼𝑗 = (∑ 𝑤𝑖
𝑗−1
𝑖=1 ∙ ∑ 𝑤𝑖

𝑗
𝑖=1). The inter-class allocation algorithm DPBC (Data Placement

between Classes) maps the data x∈X0 to the interval [0,1] using the hash function ℎ2: 𝑋 → [0,1].

If h2(x)∈Ij, then assign X to the sub-interval Ij. By the probability theory, it is known that the data

amount falling into each interval is proportional to the interval size. Thus data can be evenly

distributed to the class set 𝐶 = {𝐷1, 𝐷2, ⋯ , 𝐷𝑔}.

Suppose the function 𝑓𝑐: 𝑋0 → 𝐶 represents mapping the data set X0 to the class set C, then the

DPBC can be expressed as the function DPBC(x,f0), where 𝐷𝑃𝐵𝐶(𝑥, 𝑓𝑐) = 𝑓𝑐(𝑥).

The inter-class allocation mechanism fairly distributes data to each class, and at the same time

adds a new class, migrating the optimum data amount to allow data distribution to achieve fairness

again. We also need a layout mechanism within class to fairly assign data distributed to each class

to each storage device in the class, and migrate the least data amount when the storage scale is

changed.

After clustering the storage device set in the storage system, the storage device capacity of

each class is little different, and thus there will not be too many virtual storage devices introduced

while the consistent hash mechanism within class is used. The intra-class layout algorithm DPIC

(Data Placement in Class) adopts the consistent hash mechanism standard [13]. Suppose the

interval of the class Dj is Ij, and the data set falling into the class Dj is Xj according to the DPBC

algorithm. The hash values of the data elements in Xj are gathered in the interval Ij in [0,1], which,

under the state of local aggregation, are not in uniform distribution in interval [0,1]. In order to

ensure fairness, recalculate the hash values of the data elements in Xj using ℎ3: 𝑋𝑗 → [0,1], make

the data elements in Xj fairly distributed in the interval [0,1]. ∀ 𝑑𝑖
𝑗

∈ 𝐷𝑗, and map 𝑑𝑖
𝑗
 to one point

in [0,1] using ℎ1: 𝐷𝑗 → [0,1]. Because the element in Dj is unevenly distributed in the interval [0,1],

the corresponding virtual storage device for each storage device needs to be introduced. According

to the clustering algorithm, it is known that the weight difference between any two storage devices

in Dj is less than 2T. We ignore the weight difference between storage devices, and then the number

of introduced virtual storage devices for each storage device is the same. According to Literature

[13], in order to ensure fairness, the number of introduced virtual storage devices for each storage

device is klog|N|. Copy each storage device klog|N| times, and then use h1 to map each virtual

storage device to the interval [0,1]. ∀ 𝑥 ∈ 𝑋𝑗. Suppose the distance from X to a storage device 𝑑𝑖
𝑗

is |ℎ3(𝑥) − ℎ1(𝑑𝑖
𝑗
)| . Calculate the distance from X to each storage device (including virtual

storage devices), and allocate the data to the nearest storage device.

472

Suppose the function 𝑓𝑗: 𝑋𝑗 → 𝐷𝑗 represents mapping the data set Xj to the class set Dj, then

the DPIC can be expressed as the function DPIC(x,fj), where 𝐷𝑃𝐼𝐶(𝑥, 𝑓𝑗) = 𝑓𝑗(𝑥).

3.3 Data Re-organization

The storage system can batch increase storage devices at one time during extension. Usually

the capacities and performance of these storage devices are very similar, which can be categorized

as a new class; therefore the inter-class distribution mechanism needs to adapt to the storage scale.

Storage devices in class are not allocated according to the physical locations; therefore deleting the

whole storage devices in class does not have generality, which is not considered here. The situation

of adding and deleting a single storage device will be described in data migration within class. The

following discusses the data transport process of batch-adding storage devices. In the initial case,

the clustering algorithm divides the storage device set in the system into 𝑔 classes, and the interval

[0,1] is divided into 𝑔 sub-intervals. The storage devices are batch-added as a new class 𝐷𝑔+1.

Since the class 𝐷𝑔+1 is introduced, the weights of all classes in the system are changed, and thus

the interval needs to be re-distributed in accordance with the new class weight. Suppose the weight

of the class Dj is wj, where 1 ≤ 𝑗 ≤ 𝑔. In order to achieve the fairness of data distribution, the class

Dj needs to migrate (𝑤𝑗 − 𝑤𝑗
′)𝑚 data to the class 𝐷𝑔+1, where m represents the total data amount.

The interval Ij of Class Dj is divided into [∑ 𝑤𝑖
𝑗−1
𝑖=1 , ∑ 𝑤𝑖 + 𝑤𝑗

′𝑗−1
𝑖=1) and [∑ 𝑤𝑖 + 𝑤𝑗

′𝑗−1
𝑖=1 , ∑ 𝑤𝑖

𝑗
𝑖=1),

where the interval [∑ 𝑤𝑖 + 𝑤𝑗
′𝑗−1

𝑖=1 , ∑ 𝑤𝑖
𝑗
𝑖=1) is assigned to the class 𝐷𝑔+1, and then the sub-interval

𝐼𝑔+1 corresponding to class 𝐷𝑔+1 is ⋃ [∑ 𝑤𝑖 + 𝑤𝑗
′𝑗−1

𝑖=1 , ∑ 𝑤𝑖
𝑗
𝑖=1)

𝑔
𝑗=1 , and the data falling within the

interval are migrated to the class 𝐷𝑔+1. In this way, the data are fairly re-distributed in 𝑔 + 1

classes. It can be seen from the above migration process that there is only migration of the old data

to the new class, and no migration between the old classes, so the data migration amount is equal

to the data amount of the new class. Thus, the inter-class allocation algorithm can effectively ensure

the fairness and has a good self-adaptability. Add a new class, and divide the interval of the existing

classes according to the weights, assign the redundant interval of each class to the new class, and

at the same time migrate the data falling into the interval to the new class. When the storage system

scale is changed, like adding a new storage device 𝑑𝑛𝑗+1
𝑗

, use ℎ1: 𝐷𝑗 → [0,1] to map 𝑑𝑛𝑗+1
𝑗

 to a

certain point in the interval [0,1]. For data X on the left neighbor and right neighbor of this point,

if X is closer to the point, it is migrated to the new storage device. Thus the migration result is the

same as the calculation result by the layout algorithm. Similarly, when the old storage device 𝑑𝑖
𝑗
 is

deleted, for data on the storage device, calculate the distance to the left neighbor and right neighbor

473

and migrate the data to the nearest neighbor. Repeat the same process for virtual storage devices

which add new storage devices or delete storage devices. The processing for virtual storage devices

can make data distribution after migration achieve fairness again. From the above migration

process, it can be seen that the data migrate only between added or deleted storage devices and

unchanged storage devices, and does not introduce additional data migration between unchanged

storage devices.

3.4 Theoretical Analysis

1. Adaptivity

In the clustering algorithm, storage devices are gathered to each class according to its weight.

Storage devices within class are not allocated according to the physical location; therefore, deleting

the whole storage devices in class does not have generality, which is not considered here. The

storage system can batch increase storage devices at one time during extension. Usually the

capacity and performance of these storage devices are very similar, which can be categorized as a

new class. For the situation where a single storage device is added, first determine which class the

storage device falls within, and then migrate the data within class. While deleting the single storage

device, make adjustments within the class. Although migrating data only within class will lose the

whole fairness, there are much more storage devices within class, and adding storage devices will

barely change the weight of this class. Thus, whether a storage device in a class is added or deleted,

the weight of each class hardly changes, and the data are still fairly distributed in all classes. The

following discusses the self-adaptivity of the ADL algorithm with two cases.

(1) When storage devices are batch-added, their capacity and performance are similar.

Suppose the class set 𝐶 = {𝐷1, 𝐷2, ⋯ , 𝐷𝑔} becomes 𝐶1 = {𝐷1, 𝐷2, ⋯ , 𝐷𝑔, 𝐷𝑔+1}, and the current

storage device set D0 becomes 𝐷0
′ . For any class Dj∈C, recalculate the weight of the Dj according

to the weight of 𝐷𝑔+1, which will become smaller. Split the interval of the class Dj according to the

weight difference and distribute the redundant interval to 𝐷𝑔+1, and migrate the data falling into

the redundant interval to 𝐷𝑔+1. After the migration, suppose the function 𝑓0
′: 𝑋0 → 𝐷0

′ represents

mapping the data set X0 to the new storage device set 𝐷0
′ . As can be seen from the migration process,

Dj just moves the data out to 𝐷𝑔+1, and there is no data moving into Dj and no data moving into the

storage device 𝑑𝑖
𝑗
 in Dj. If a data is stored on the device 𝑑𝑖

𝑗
 in Dj after the migration, then the data

is also stored on the device 𝑑𝑖
𝑗
 in Dj before migration; in other words, if 𝐴𝐷𝐿(𝑥, 𝑓0

′) = 𝑑𝑖
𝑗
, and

𝑑𝑖
𝑗

∈ 𝐷𝑗 , then 𝐴𝐷𝐿(𝑥, 𝑓0) = 𝑑𝑖
𝑗
. Because 𝑑𝑖

𝑗
∈ 𝐷𝑗 , and 𝐷𝑗 ∈ 𝐷0, we have 𝑑𝑖

𝑗
∈ 𝐷0. If 𝐴𝐷𝐿(𝑥, 𝑓0

′) =

𝑑𝑖
𝑗
, and 𝑑𝑖

𝑗
∈ 𝐷0 , then 𝐴𝐷𝐿(𝑥, 𝑓0) = 𝑑𝑖

𝑗
= 𝐴𝐷𝐿(𝑥, 𝑓0

′). Batch-deleting storage devices is not a

474

general case, so we do not take it into consideration. By Definition 7, it can be seen that the ADL

algorithm is adaptive.

(2) Next we consider adding and removing a single storage device. When a single storage

device is added, the clustering algorithm first determines which class that storage device falls

within and a new storage device will be added to the class. Then 𝐷𝑗 = {𝑑𝑖
𝑗
; 𝑖 = 1,2, ⋯ , 𝑛𝑗} becomes

𝐷𝑗
′ = {𝑑𝑖

𝑗
; 𝑖 = 1,2, ⋯ , 𝑛𝑗 , 𝑛𝑗 + 1}, and the whole storage device set D0 becomes 𝐷0

" . Map the new

storage device 𝑑𝑛𝑗+1
𝑗

 to a point on the ring [0,1], and migrate part of the data in the left or right

neighbor to this point. For several virtual nodes falling into this node, the same data migration

method is also used. After the migration, suppose the function 𝑓0
": 𝑋0 → 𝐷0

" represents mapping the

data set X0 to the new storage device set 𝐷0
" . As can be seen from the migration process, for any

storage device 𝑑𝑖
𝑗

∈ 𝐷𝑗 , the data only migrate to the new storage device 𝑑𝑛𝑗+1
𝑗

, and there is no data

migrating into the mapping point and the virtual storage device of 𝑑𝑖
𝑗
. If a data is stored on 𝑑𝑖

𝑗
 in

class Dj after the migration, the data is also stored on 𝑑𝑖
𝑗
 before the migration. And for any other

class 𝐷𝑘 ⊂ 𝐷0 and 𝐷𝑘 ≠ 𝐷𝑗, the data position in Dk has not changed. if a data is stored on 𝑑𝑖
𝑘 in

class Dk after the migration, then the data is also stored on 𝑑𝑖
𝑘 before migration. To sum up the

above, if a data is stored on di in class D0 after the migration, then the data is also stored on di

before the migration. Therefore, for 1 ≤ 𝑡 ≤ 𝑔 , if 𝐴𝐷𝐿(𝑥, 𝑓0
") = 𝑑𝑖

𝑡 , and 𝑑𝑖
𝑡 ∈ 𝐷𝑡 , then

𝐴𝐷𝐿(𝑥, 𝑓0) = 𝑑𝑖
𝑡. Because 𝑑𝑖

𝑘 ∈ 𝐷𝑘, and 𝐷𝑘 ⊂ 𝐷0, we have 𝑑𝑖
𝑘 ∈ 𝐷0. Therefore, if 𝐴𝐷𝐿(𝑥, 𝑓0

") =

𝑑𝑖
𝑡, and 𝑑𝑖

𝑡 ∈ 𝐷0, then 𝐴𝐷𝐿(𝑥, 𝑓0) = 𝑑𝑖
𝑡. By Definition 2, it can be seen that the ADL algorithm is

adaptive. When a storage device is removed from the class Dj, the whole storage device set D0

becomes 𝐷0
′′′. After a similar approach is used to migrate data, suppose the function 𝑓0

′′′: 𝑋0 → 𝐷0
′′′

represents mapping the data set X0 to the new storage device set 𝐷0
′′′, the following can also be

proved: for 1 ≤ 𝑡 ≤ 𝑔, if 𝐴𝐷𝐿(𝑥, 𝑓0) = 𝑑𝑖
𝑡, and 𝑑𝑖

𝑡 ∈ 𝐷0, then 𝐴𝐷𝐿(𝑥, 𝑓0
") = 𝑑𝑖

𝑡 = 𝐴𝐷𝐿(𝑥, 𝑓0). By

Definition 7, it can be seen that the ADL algorithm is adaptive.

2. Performance analysis

The ADL algorithm can preprocess the clustering process. One clustering result can be reused

for data layout, and thus we do not consider the clustering time in analyzing the time complexity

of ADL. The clustering algorithm divides the storage device set into several classes based on the

distance threshold within the class. It assigns the interval [0,1] to each class in accordance with the

class weight. When arranging the data X among classes, we first traverse all intervals to decide

which interval the data X should fall into according to the h(x) value. Suppose the total number of

intervals is I, in the initial classification, each class has an interval, so 𝐼 = 𝑔. With the addition of

475

classes, the value of I is constantly increasing. The tree data structure is adopted to save intervals

and traversing of I values can be done within O(logI) time. When the classes are increased for the

first time, 𝐼1 = 𝑔 + 𝑔 = 2𝑔. When they are increased for the second time, 𝐼2 ≤ 2𝑔 + (𝑔 + 1).

When they are increased for the s-th time, 𝐼𝑠 ≤ 𝐼𝑠−1 + (𝑔 + 𝑠 − 1). After the clustering algorithm

is adopted, compared with the number of storage devices, the class number is greatly reduced.

When the PB scale system is running, the number is limited in the bulk purchase of hundreds of

storage devices, thus the value of I does not become greater. Using the consistent hash positioning

mechanism within class from the literature, we can calculate the data location within O(1) time.

Thus, using the ADL algorithm to locate a data requires O(logI) time, where I represents the interval

number in the current system. Next, we discuss the storage requirements of the ADL algorithm.

According to the clustering algorithm, we can find that the weight differences between storage

devices in class are within a preset range. During intra-class layout, ignore the weight differences

between storage devices, and the number of virtual storage devices for each storage device is the

same. Compared with the improved simple consistent hash method, the number of virtual storage

devices is greatly reduced. In the ADL algorithm, the total number of intervals assigned to all

classes is I, and each interval needs to be expressed with logI bits. For any class 𝐷𝑗{𝑑𝑖
𝑗
; 𝑖 =

1,2, ⋯ , 𝑛𝑗 } ∈ 𝐶{𝐷1, 𝐷2, ⋯ , 𝐷𝑔}, suppose the weight of the storage device 𝑑𝑖
𝑗
 is 𝑤𝑗

𝑖, and the storage

device with the smallest weight is 𝑤𝑗
𝑚𝑖𝑛, then the class Dj needs ∑

𝑤𝑗
𝑖

𝑤𝑗
𝑚𝑖𝑛 𝑘 𝑙𝑜𝑔|𝑁|

𝑛𝑗

𝑖=1
 virtual storage

devices. Because the weight differences between storage devices in class are not big,

∑
𝑤𝑗

𝑖

𝑤𝑗
𝑚𝑖𝑛 𝑘 𝑙𝑜𝑔|𝑁|

𝑛𝑗

𝑖=1
 is approximately equal to 𝑛𝑗𝑘 𝑙𝑜𝑔|𝑁|. The largest number of storage devices

in class is 𝑛𝑚𝑎𝑥 = max
𝑗

𝑛𝑗 , where 1 ≤ 𝑗 ≤ 𝑔. The class with the largest number of storage devices

requires 𝑙𝑜𝑔(𝑛𝑚𝑎𝑥𝑘 𝑙𝑜𝑔|𝑁|) bits to represent a virtual storage device. In the whole set of storage

devices, representing a virtual storage device requires (𝑙𝑜𝑔 𝐼 + 𝑙𝑜𝑔(𝑛𝑚𝑎𝑥𝑘 𝑙𝑜𝑔|𝑁|)) bits. In the

improved simple consistent hash method, distinguishing all the virtual storage devices needs

𝑙𝑜𝑔 (∑
𝑤𝑖

𝑤𝑚𝑖𝑛
𝑘 𝑙𝑜𝑔|𝑁|𝑛

𝑖=1) bits. When there are relatlvely large differences between the

performance and capacities of the storage devices in the storage system, for the 1≤i≤n, the majority

values of the
𝑤𝑖

𝑤𝑚𝑖𝑛
 are great. Since the number of storage devices in the mass storage system is

hundreds or thousands, and per the above discussion, the value of I will not become very large,

(𝑙𝑜𝑔 𝐼 + 𝑙𝑜𝑔(𝑛𝑚𝑎𝑥𝑘 𝑙𝑜𝑔|𝑁|)) is far less than 𝑙𝑜𝑔 (∑
𝑤𝑖

𝑤𝑚𝑖𝑛
𝑘 𝑙𝑜𝑔|𝑁|𝑛

𝑖=1) . Therefore, the ADL

algorithm reduces a lot of storage space.

476

3. Fairness

LEMMA.1 (the inter-class algorithm DPBC is fair)

Proof: Suppose the function 𝑓𝑐: 𝑋0 → 𝐶 represents mapping the data set X0 to the class set

𝐶{𝐷1, 𝐷2, ⋯ , 𝐷𝑔} within the inter-class mechanism, then the inter-class algorithm DPBC can be

expressed as a function of 𝐷𝑃𝐵𝐶(𝑥, 𝑓𝑐), where 𝐷𝑃𝐵𝐶(𝑥, 𝑓𝑐) = 𝑓𝑐(𝑥). The interval distributed to

the class 𝐷𝑗 ∈ 𝐶{𝐷1, 𝐷2, ⋯ , 𝐷𝑔} is Ij. Suppose the length of the interval Ij is |Ij|, and the relative

weight of the class Dj is wj. DPBC assigns the interval to classes according to the relative weights

of classes, and thus |Ij|=wj. Per the probability theory, it can be found that ∀ 𝑥 ∈ 𝑋0, and that the

probability of X falling into the interval Ij is |Ij|, namely, the probability of X assigned to the class

Dj is |Ij|. Therefore, 𝑝(𝐷𝑃𝐵𝐶(𝑥, 𝑓𝑐) = 𝑓𝑐(𝑥) = 𝐷𝑗) = |𝐼𝑗| = 𝑤𝑗 ,that is, |𝑝(𝐷𝑃𝐵𝐶(𝑥, 𝑓𝑐) = 𝐷𝑗) −

𝑤𝑗| = 0. So, ∀ 𝜀 > 0, |𝑝(𝐷𝑃𝐵𝐶(𝑥, 𝑓𝑐) = 𝐷𝑗) − 𝑤𝑗| < 𝜀. According to Definition 6, the algorithm

DPBC is fair, and X0 is fairly distributed in the class set C.

LEMMA.2 (the intra-class algorithm DPIC is fair)

Proof: for any Dj∈C, where 1 ≤ 𝑗 ≤ 𝑔, suppose the function 𝑓𝑗: 𝑋𝑗 → 𝐷𝑗 represents mapping

the data set Xj to the storage device set Dj within the intra-class mechanism, then the intra-class

algorithm DPIC can be expressed as a function of 𝐷𝑃𝐼𝐶(𝑥, 𝑓𝑖), where 𝐷𝑃𝐼𝐶(𝑥, 𝑓𝑖) = 𝑓𝑖(𝑥). Per

Literature, 𝑝(𝑓𝑗(𝑥) = 𝑑𝑖
𝑗
) =

1

𝑛𝑗
, where 𝑑𝑖

𝑗
∈ 𝐷𝑗 . Because the relative weight of 𝑑𝑖

𝑗
 in the Dj is 𝑤𝑖

𝑗
,

which is equal to
1

𝑛𝑗
, and 𝐷𝑃𝐼𝐶(𝑥, 𝑓𝑗) = 𝑓𝑗(𝑥), we have 𝑝(𝐷𝑃𝐼𝐶(𝑥, 𝑓𝑗) = 𝑓𝑗(𝑥) = 𝑑𝑖

𝑗
) =

1

𝑛𝑗
= 𝑤𝑖

𝑗
.

i.e. |𝑝(𝐷𝑃𝐼𝐶(𝑥, 𝑓𝑗) = 𝑑𝑖
𝑗
) − 𝑤𝑖

𝑗
| = 0. So, ∀ 𝜀 > 0, |𝑝(𝐷𝑃𝐼𝐶(𝑥, 𝑓𝑗) = 𝑑𝑖

𝑗
) − 𝑤𝑖

𝑗
| < 𝜀. According

to Definition 6, the DPIC algorithm is fair, and Xj is fairly distributed in the storage device set Dj.

Theorem 2: the ADL algorithm is fair

Proof: suppose the function 𝑓0: 𝑋0 → 𝐷0 represents mapping the data set X0 to the storage

device set D0 within the layout mechanism proposed by this paper, then the ADL algorithm can be

expressed as a function of 𝐴𝐷𝐿(𝑥, 𝑓0) , where 𝐴𝐷𝐿(𝑥, 𝑓0) = 𝑓0(𝑥) . The ADL algorithm is

composed by the DPBC algorithm and the DPIC algorithm. Therefore, we have ∀ 𝑥 ∈ 𝑋0. Suppose

𝐴𝐷𝐿(𝑥, 𝑓0) = 𝑓0(𝑥) = 𝑑𝑖, then there exists 𝐷𝑗 ∈ 𝐶, making 𝐷𝑃𝐵𝐶(𝑥, 𝑓𝑐) = 𝐷𝑗 , 𝐷𝑃𝐼𝐶(𝑥, 𝑓𝑖) = 𝑑𝑖
𝑗
,

and 𝑑𝑖
𝑗

= 𝑑𝑖. Thus,

𝑝(𝐴𝐷𝐿(𝑥, 𝑓0) = 𝑑𝑖) = 𝑝(𝐴𝐷𝐿(𝑥, 𝑓𝑐) = 𝐷𝑗) ∙ 𝑝(𝐴𝐷𝐿(𝑥, 𝑓𝑗) = 𝑑𝑖) (13)

According to Lemma 1, ∀ 𝜀1 > 0, and there is

477

|𝑝(𝐷𝑃𝐵𝐶(𝑥, 𝑓𝑐) = 𝐷𝑗) − 𝑤𝑗| < 𝜀1 (14)

Per Lemma 2, ∀ 𝜀2 > 0, and there is

|𝑝(𝐷𝑃𝐼𝐶(𝑥, 𝑓𝑗) = 𝑑𝑖
𝑗
) − 𝑤𝑖| < 𝜀2 (15)

where wj denotes the weight of Dj relative to D0, and wi represents the proportion accounted for by

di in Dj. Then, the weight of di in D0 is wj·wi, so,

|𝑝(𝐴𝐷𝐿(𝑥, 𝑓0) = 𝑑𝑖) − 𝑤𝑗 ∙ 𝑤𝑖|

= |𝑝(𝐷𝑃𝐵𝐶(𝑥, 𝑓𝑐) = 𝐷𝑗) ∙ 𝑝(𝐷𝑃𝐼𝐶(𝑥, 𝑓𝑗) = 𝑑𝑖) − 𝑤𝑗 ∙ 𝑤𝑖|

= | 𝑝(𝐷𝑃𝐼𝐶(𝑥, 𝑓𝑗) = 𝑑𝑖) ∙ (𝑝(𝐷𝑃𝐵𝐶(𝑥, 𝑓𝑐) = 𝐷𝑗) − 𝑤𝑗) + 𝑤𝑗 ∙ (𝑝(𝐷𝑃𝐼𝐶(𝑥, 𝑓𝑗) = 𝑑𝑖) − 𝑤𝑖)|

≤ |𝑝(𝐷𝑃𝐼𝐶(𝑥, 𝑓𝑗) = 𝑑𝑖) ∙ (𝑝(𝐷𝑃𝐵𝐶(𝑥, 𝑓𝑐) = 𝐷𝑗) − 𝑤𝑗)| + |𝑤𝑗 ∙ (𝑝(𝐷𝑃𝐼𝐶(𝑥, 𝑓𝑗) = 𝑑𝑖) − 𝑤𝑖)|

< 𝑝(𝐷𝑃𝐼𝐶(𝑥, 𝑓𝑗) = 𝑑𝑖) ∙ 𝜀1 + 𝑤𝑗 ∙ 𝜀2

Because 𝑝(𝐷𝑃𝐼𝐶(𝑥, 𝑓𝑗) = 𝑑𝑖) ∈ [0,1], and 𝑤𝑗 ∈ [0,1], according the arbitrariness of 𝜀1 > 0

and 𝜀2 > 0 and Definition 6, it can be seen that the ADL algorithm is fair.

4. Experimental and Results Analysis

The RCDL algorithm has considered the copy correlation between data during data layout and

stores as many copies of the same data as possible on different storage devices to obtain higher

redundancy. At the same time, RCDL fairly distributes data in accordance with the capacity of the

storage device. But the computational overhead of the algorithm is high – it saves data through

tables and matches storage device information and position data, which requires querying the match

table, consuming large amount of time and memory space. In order to solve the heterogeneous

storage environment, ADL adopts the clustering algorithm to classify storage devices to ensure that

the capacities of the storage devices in same class are within the preset range. Then it uses the

interval hash to distribute data between classes, and uses the consistent hash method within class.

ADL has very good fairness and adaptability and by introducing a small number of virtual storage

devices, it greatly reduces the storage space. ADL can use a predefined function to calculate data

location, thus it does not need to look up table. But ADL does not consider the copy problem. If

the same copies are in the same storage device, it will tend to reduce the redundancy. In order to

478

make up the shortcomings of RCDL and ADL, we combine RCDL and ADL and call it MCADL.

The RCDL computational cost, query cost and storage cost are related to the data amount, so

limiting the data amount can reduce these costs. At present, in a large number of data-intensive

applications, the popularity of data shows high skewness. For example, the popularity of web

objects presents the ZIPF distribution. Thus we divide the data into hot data and cold data according

to the data access frequency, and use RCDL only for a small amount of hot data and use the ADL

for cold data, in this way to solve the overhead problems of RCDL and also make up for the defect

that ADL ignores data copies. In order to evaluate the performance of MCADL, we evaluate it in

a simulated environment. The initial storage device set is configured as 20, and the capacities of

four storage devices are 1000, those of three are 2000, those of three are 4000, those of four are

6000, those of three are 8000 and those of three are 9000. We send 400000 data, and replicate

80000 data 5 times. It is assumed that the data access obeys the ZIPF distribution. The data are

divided into hot data and cold data. The data with the highest access frequencies are hot data, and

the rest are cold data. The value of can be adjusted. Suppose 2000K , then the 2000 more frequently

accessed hot data are laid out by RCDL, and the rest are laid out by ADL. Based on the

configuration, we set a series of experiments to evaluate various characteristics of MCADL, such

as redundancy, fault tolerance and adaptability. All of the experiments are run on the 2.4 GHz intel

dual-core machine.

Fig.1. Redundancy of RR and MCADL.

4.1 Redundancy

Redundancy can reflect the reliability of a storage system. We compare the redundancy of

three kinds of algorithms: (1) MCADL; (2) continuous layout CD; (3) random copy layout RR.

Because the CD lays out copies on continuous storage devices, it does not have the same copies on

the same storage device, and thus, it can obtain the highest redundancy. With CD as the reference

standard, we define the redundancy factor of MCADL:

479

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦𝑀𝐶𝐴𝐷𝐿 =
𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑀𝐶𝐴𝐷𝐿

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝐶𝐷

The redundancy factor of RR is:

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦𝑅𝑅 =
𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑅𝑅

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝐶𝐷

Figure 1 shows the comparison of MCADL with RR. MCADL can obtain higher redundancy.

At the same time, we find that the redundancy of MCADL is very close to the optimal value, and

that with the number of storage devices increasing, its redundancy also increases. A large-scale

network storage system includes hundreds of thousands of storage devices, so MCADL can be

effectively used in a large-scale network storage system.

4.2 Fault Tolerance

We use the fault tolerance to describe the distribution of the copies from the failed storage

device onto the other storage devices. When a storage device fails, and other storage devices store

a copy of this storage device, the load on the failed storage device will be positioned to other storage

devices. So fault-tolerance can reflect the storage load balancing during device failures.

Fig.2. Copy Distribution during a Device Failure.

Figure 2 shows the copy distribution on other storage devices when the storage device 16 fails.

From Figure 2, it can be seen that, MCADL can fairly distribute load from the storage device 16 to

other storage devices. This figure also shows CD allocates the load on the storage device 16 to the

480

adjacent four storage devices. The fault-tolerance of RR is also displayed. The high column

indicates that the corresponding storage device has more load from the failed storage device and

the low column indicates the corresponding storage device has less load from the failed storage

device.

From Figure 2, it can be seen that the fault tolerance of MCADL is far better than that of CD,

and also better than that of RR.

4.3 Fairness

We send 100000, 200000, 300000, 400000 and 600000 data respectively to the storage devices

to test the data distribution within class and between classes.

Figure 3 (a) is an inter-class data distribution map, where the x-axis indicates the different data

amounts sent, and the y-axis represents the occupancy rate of each class, which is the ratio of the

data amount assigned to the class to its weight. As can be seen from Figure 3 (a), when 100,000

data are sent, the occupancy rate of each class is about 10%, and data are fairly distributed among

various classes. When 200,000, 300,000, 400,000, and 600,000 data are sent respectively, the

occupancy rate of each class is almost the same. Due to the limitation of the data amount, the

occupancy rate of each class are not completely identical, but very close to each other, Figure 3 (a)

shows that the differences are very small, and in terms of statistical significance, the occupancy

rate of each class is equal.

The next step is to test the fairness of data distribution within class. The experiment uses the

second class as an example. When different data amounts are sent, the data amount that the second

class acquires is respectively 6144, 12217, 18614, 24665 and 37081. The data are assigned to each

storage device in lass 2 according to the intra-class layout mechanism.

Figure 3 (b) shows the occupancy rate of each storage device in lass 2. The occupancy rate of

a storage device is equal to the ratio of the data amount assigned to the storage device to its weight.

As can be seen from Fig. 3 (b), when 100,000 data are sent, the occupancy rate of each storage

device in Class 2 is about 10%, but the deviations from 10% are larger than in the inter-class case,

which is because the data amount is smaller.

When other different data amounts are sent, the occupancy rate of each storage device in Class

2 also fluctuates around the mean value. In terms of statistical significance, the occupancy rate of

each storage device is equal. Figure 3 shows that the distribution of data on the storage devices is

fair, and therefore the ADL algorithm is fair.

481

(a) Inter-class (b) Intra-class.

Fig.3. Data Distribution.

Figure 4 shows the re-distribution of data when the storage system scale changes. Based on

the above experiments, we still send 400,000 data as the precondition and adding three storage

devices for consecutively four times. The inter-class data re-distribution is shown in Figure 4 (a),

where the x-axis indicates the number of classes in the system, and the y-axis represents the

occupancy rate of each class. With the increase of classes, the occupancy rate of each class becomes

smaller.

From Figure 4 (a), it can be seen that,when a new class is added, the occupancy rate of each

class is almost the same. After storage devices whose weight is 2000 are added or deleted

successively, the re-distribution of data is shown in Figure 4 (b). The x-axis represents the number

of storage devices in the class and the y-axis represents the occupancy rate of each storage device.

(a) After the addition of a class (b) After the addition of delection of a device

Fig.4. Data Re-distribution

When storage devices are added successively the occupancy rate gradually becomes smaller;

and when storage devices are deleted continuously, the occupancy rate gradually becomes larger.

It can be seen from Figure 4 (b) that, when a single storage device is added or deleted, the

482

occupancy rate of each storage device is almost the same. Figure 4 shows that, after the storage

scale changes, the ADL algorithm can satisfy the fairness of data distribution again.

4.4 Adaptivity

Next, we test the adaptability of the MCADL algorithm in three cases - adding a single class,

adding and deleting a single storage device. Three storage devices are added for consecutively 4

times and in each batch the weight increase of storage devices are respectively 10000, 12000, 14000

and 16000. According to the clustering algorithm, each batch increases storage device points in a

class. The experiment sends 400000 data as the precondition. Figure 5 (a) shows the data migration

amount and theoretical migration amount after new classes are added. It can be seen that, with the

new classes added, the migration data amount is very close to the theoretical value. Figure 5 (b)

shows data migration amount and theoretical migration amount when storage devices (with a

weight of 2000) are added and deleted (with a weight of 2000). It can be seen from figure 5 that

the MCADL algorithm has good adaptability.

(a) Batch addition of devices (b) Addition or delection of devices.

Fig.5. Adaptivity of the Algorithm When Devices Are Changed.

5. Summary

Currently, most of the layout algorithms only consider the distribution of a single copy, and

the redundancy or fault tolerance of multi-copy layout algorithms is poor. In order to make up for

the defects in multi-copy layout, this paper puts forward a multi-copy adaptive data layout

algorithm (MCADL), combining the reliable copy layout algorithm (RCDL) and the effective

adaptive data layout algorithm (ADL). RCDL aims at placing the same copies on different storage

devices and at the same time, it satisfies fairness, increases redundancy and improves fault

tolerance. It not only makes up the fault tolerance problem of the continuous copy layout, but also

avoids the low redundancy of the random copy layout.

483

This paper formally defines the RCDL problem, and proves that any instance of the maximum

n-separation problem can be converted to the RCDL problem, and thus the RCDL problem is NP-

hard. Then this paper uses the semi-definite programming relaxation method to weaken the

conditions of the RCDL problem, and by solving the semi-definite programming problem, it gets

the approximate solution of the RCDL problem. In order to reduce the calculation cost, and time

cost of RCDL, the proposed algorithm uses RCDL to lay out the hottest K data and uses ADL to

lay out other data. ADL combines the clustering algorithm and the consistent hash algorithm. First,

it clusters the storage device set by weight, which makes the weight differences between storage

devices in the same class less than the pre-set value. Then according to the weights of classes, it

assigns the sub-intervals in the interval [0, 1], and distributes the data mapped into the sub-intervals

to the corresponding classes to ensure that the data are fairly assigned to classes, and that only the

number of sub-intervals is related to the number of classes. The proposed algorithm uses the

consistent hash method within each class to distribute data to storage devices within the class. As

the weight differences between storage devices within the class are very small, t we do not need to

introduce a large number of virtual storage devices, thus solving the problem of space waste

brought by the simple improved consistent hash method. The amount of the migrated data when

the storage scale changes is equal to the optimal data amount. The time of data positioning is only

related to the number of classes. The theoretical and experimental analysis shows that, MCADL

has higher redundancy and better fault tolerance, fairness and adaptability.

Acknowledgments

This work is supported by Research Project of Hubei Provincial Education Department

(No.D20152903,15Y159), Foundation of Huanggang Normal University (No. Xfg: 2015A11,

2014015103), Thanks to the reviewers for the valuable and helpful comments to improve the

quality of the manuscript.

References

1. F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, I. Stoica, Wide–area cooperative storage with

CFS, 2001, In Proceedings of the 18th ACM Symposium on Operating Systems Principles, pp.

202–215.

2. A. Rowstron, P. Druschel, Storage management and caching in PAST, a large–scale, persistent

peer–to–peer storage utility, 2001, In Proceedings of the 18th ACM Symposium on Operating

Systems Principles.

484

3. S. Ghemawat, H. Gobioff, S.T. Leung, The google file system, 2003, In Proceedings of the

19th ACM Symposium on Operating Systems Principles, New York: ACM Press, pp. 19–22.

4. J. Kubiatowicz, D. Bindel, Y. Chen, OceanStore: An architecture for global–scale persistent

storage, 2000, ASPLOS.

5. R. Renesse, Efficient reliable Internet storage, 2004, In Proceedings of the dependable

distributed data management workshop.

6. R.J. Honicky, E.L. Miller, A fast algorithm for online placement and reorganization of

replicated data, 2003, In Proceedings of the 17th International Parallel & Distributed Processing

Symposium, pp. 57-66.

7. R.J. Honicky, E.L. Miller, Replication under scalable hash: a family of algorithms for scalable

decentralized data distribution, 2004, In Proceedings of the 18th International Parallel and

Distributed Processing Symposium. pp. 96-105.

8. S.A. Weil, S.A. Brandt, E.L. Miller, C. Maltzahn, CRUSH: controlled, scalable and

decentralized placement of replicated data, 2006, In Proceedings of Super Computing.

9. A. Brinkmann, S. Effert, F.M. Heide, C. Scheideler, Dynamic and redundant data placement,

2007, In Proceedings of the 27th International Conference on Distributed Computing Systems.

pp. 29-38.

10. S. Weil, A. Leung, S.A. Brandt, C. Maltzahn, RADOS: A fast, scalable, and reliable storage

service for petabyte–scale storage clusters, 2007, In Proceedings of the ACM petascale data

storage workshop.

11. A. Frieze, M. Jerrum, Improved approximation algorithms for MAX k–CUT and MAX

BISECTION, 1997, Algorithmica.

12. A. Brinkmann, K. Salzwedel, C. Scheideler, Compact, adaptive placement schemes for non–

uniform distribution requirements, 2002, In Proceedings. of the 14th ACM Symposium on

Parallel Algorithms and Architectures, Winnipeg, Manitoba, Canada, pp. 53-62.

13. D. Karger, E. Lehman, T. Leighton, M. Levine, Consistent hashing and random trees:

Distributed caching protocols for relieving hot spots on the World Wide Web, 1997, In

Proceedings of the 29th ACM Symposium on Theory of Computing, pp. 654-663.

485

