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Abstract  

Thanks to the rapid development of cloud datacenter, virtual machine (VM) scheduling has 

become the key to optimizing energy consumption, service-level agreement, network traffic, etc. 

Focusing on the optimization of server CPU utilization, energy consumption, network traffic, 

service performance and so on, the current VM scheduling model often fails to recognize the 

performance interference between VMs as an optimization parameter. In light of the above, this 

paper proposes a VM scheduling model, considering both server power consumption and VM 

performance interference, seeking to lower the energy consumption of the datacenter and the 

interference between VMs. The experimental results demonstrate that the proposed model 

outshines the other two models in server CPU utilization, energy consumption, and VM process 

time. 
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1. Introduction 

Cloud computing has laid the infrastructure, built the platform and prepared the software 

(application) for provision of demand-based service to consumers. Depending on their forms, such 

services are called Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as 

a Service (SaaS). Many computing providers, including Google, Microsoft, Yahoo and the IBM, 

are competing to set up datacenters around the world to provide cloud computing services. 

The cloud datacenters manage to save energy through virtualization. Aside from increasing 

the CPU utilization of the physical host, the technology makes it possible to deploy multiple virtual 

machines (VMs) on one physical host, each of which computes various applications as an 

independent unit. Furthermore, the virtualization helps to merge the application and its execution 

environment into one entity, and configure the entity based on VM images. The VM images are 

usually deployed on the VM manager or VM monitor in the hardware-independent manner. Being 

a software component responsible for hosting a VM, the VM manager serves the upper application 

services by abstracting the virtualized versions of processors and other system devices (I/O devices, 

storage, memory, etc.) from physical resources. 

Despite the adequate isolation provided by VM managers (e.g. security and failure), 

performance interference poses a major challenge to the system running at resource-intensive loads. 

If the same hardware is shared by multiple VMs, the many user mode schedulers will work 

independently without understanding each other, due to the isolation between the VM manager and 

the user. In this case, the performance will be less optimal than that of the single operating system 

running at comparable workloads. The interference between VMs will become increasingly serious 

in the future, as more and more VMs share the same hardware to improve utilization. Such a 

problem can be partially alleviated by bettering VM scheduling and reducing virtualization. 

The remainder of this paper is organized as follows. Chapter 2 reviews the previous research 

related to this paper; Chapter 3 defines energy consumption and performance interference; Chapter 

4 establishes an energy and interference-aware VM scheduling model; Chapter 5 experimentally 

compares the proposed model with other models; Chapter 6 discusses the experimental results; 

Chapter 7 wraps up this research with some valuable conclusions. 

 

2. Literature Review 
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Much research has been done on VM scheduling, server power consumption and VM 

performance interference. Some of the most representative studies are listed below. 

Predicted the degradation of any possible deployment through only a linear number of 

measurements [1], and selected the most efficient consolidation pattern to pursue the required 

performance under resource constraints. An average prediction error of less than 4% was achieved 

across various benchmark workloads, using Xen VM Manger on Intel Core 2 Duo and Nehalem 

quad-core processors. It is demonstrated that the prediction technique can achieve better workload 

deployment for given performance and resource cost objective. 

Based on the classification and regression functions of support vector machines, Sam [2] 

developed a novel approach to cluster and identify several types of applications with distinct 

performance profiles, and introduced several new scheduling techniques to evaluate the proposed 

performance models. The evaluation results show that the overall performance of multiplexed 

workloads is significantly enhanced by integrating such models in the scheduling logic. 

Examined the effect of performance interference from the angle of system-level workload 

features [3]. Two VMs were deployed in a physical host, each of which ran a sample application 

selected from various benchmark and real-world workloads. For each combination, the 

performance metrics and runtime features were collected by an instrumented Xen hypervisor. The 

collected data were then analysed to pinpoint the applications acting as certain types of interference 

sources, and the mathematical models were created to predict the performance of a new application 

based on its workload features. 

Featuring the scalability to model multi-resource systems and flexibility to represent different 

policies and cloud-specific strategies, stochastic reward nets (SRNs) were adopted by Dario Bruneo 

to build an analysis model. The established model was relied on to analyse the behaviour of a cloud 

datacenter against such metrics as utilization, availability, waiting time, and responsiveness. In the 

meantime, a resiliency analysis was conducted in consideration of load bursts. Then, a general 

approach was developed based on system capacity, aiming to help system mangers opportunely set 

the datacenter parameters under different working conditions. 

From robust analytical methods, C. Delimitrou derived the Paragon, an online scalable 

datacenter scheduler aware of heterogeneity and interference. Instead of profiling each application 

in details, the Paragon leverages the existing information in the system on the previously scheduled 

applications. With the aid of collaborative filtering techniques, the scheduler can quickly and 

accurately classify an unknown incoming workload based on the heterogeneity and interference in 

multiple shared resources, and the resemblances to the previous applications. The classification 

allows Paragon to schedule applications in a manner that minimizes interference and maximizes 
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server utilization. After the initial application deployment, Paragon will monitor application 

behaviour and adjust the scheduling decisions at runtime to avoid performance degradations. 

In order to predict application performance, [6] established the mathematical relationship 

between high-level performance and low-level CPU multiplexing, and designed a synthetic 

workload with controllable CPU demands to emulate interference workloads in the cloud. The 

measurements started in a controlled environment to reveal the impact of CPU allocation on 

application performance. The measured results verified the interdependency between CPU steal 

time and application performance, and confirmed the effect of the percentage of CPU steal time on 

application performance, even when the workloads of equal parameters were submitted for 

processing on the same system platform. 

Proposed by Ron C. Chiang, the novel task and resource allocation control framework 

TRACON mitigates the interference from concurrent data-intensive applications and elevates the 

overall system performance. Based on the modelling and control techniques from statistical 

machine learning, the framework consists of three major components: 1) the interference prediction 

model that infers application performance from the observed resource consumption of different 

VMs, 2) the interference-aware scheduler designed to apply the model to effective resource 

management, and 3) the task and resource monitor that collects application features at the runtime 

for model adaption. 

Dug deep into the performance isolation effect of virtualization technology on various 

microarchitectural resources [8]. The method is to map the Cloud Suite benchmarks to different 

sockets, different cores of the same chip, and different threads of the same core. Besides, the 

scholars investigated the correlation between performance variation and resource contention by 

changing VM mapping policies according to different application features. 

Put forward the architecture and principles of energy-efficient cloud computing [9], and, on 

this basis, presented open research challenges, resource provisioning and allocation algorithms for 

energy-efficient management of cloud computing environments. In addition, the scholars rolled out 

the energy-aware resource allocation heuristics for supplying datacenter resources to client 

applications, and succeeded in delivering the negotiated quality of service (QoS) at improved 

energy efficiency of the datacenter. 

Proposed the MADLVF algorithm to overcome such problems as resource underutilization 

[10], high energy consumption, and large CO2 emissions. Comparing the algorithm with the 

traditional MADRS algorithm, they concluded that the MALVF algorithm outperforms its 

traditional counterpart in energy consumption and the number of VM migrations. 
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Probing into the power-efficient and resource-guaranteed VM placement and routing problem 

(PER-TTA) for dynamically arriving TTA requests, [11] suggested using the multi-component 

utilization-based power model to minimize the total power consumption, and adopted the Least-

Active Most-Utilized policy, which avoids powering on new devices by maximizing the resource 

utilization of the powered-on devices. In this way, the PER-TTA was transformed into a mixed-

integer linear programming (MILP) optimization problem. 

 

3. Methodology 

3.1 Energy Consumption 

The energy consumption of the physical server can be calculated by CPU utilization, as shown 

in Equation (1). 
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where 𝑃𝑖(𝑢) is the power of the physical server at a certain time; 𝑃𝑖
𝑚𝑎𝑥 is the maximum power of 

server i; ri was the ratio of minimum power to maximum power of server i; ui is the CPU utilization 

of server i. 

The energy consumption of server i is expressed in equation (2). 
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where 𝐸𝑖  is the energy consumption of server i at time [𝑡1, 𝑡𝑛]; 𝑃 (𝑢𝑖(𝑡𝑗)) is the power of server i 

at time 𝑡𝑗. 

 

3.2 Performance Interference 

Whereas the single VMs on the same server compete for physical resources, the performance 

degradation parameter should be introduced to calculate the resource competition interference 

between the VMs, and the resulting additional VM management. 

Suppose 𝑉𝑀𝑖  and 𝑉𝑀𝑗  are deployed on the same server, 𝑃𝐷𝑖,𝑗 is used as the performance 

degradation parameter between the two VMs, and the process time for running only one VM 𝑉𝑀𝑖 

is denoted by T. Hence, the process time of 𝑉𝑀𝑖 is T ∗ (1 + 𝑃𝐷𝑖,𝑗) when 𝑉𝑀𝑖 and 𝑉𝑀𝑗 share the 

same server. Assuming that 𝑉𝑀𝑖 sharing the same server with the set 𝑉𝑀𝑠𝑒𝑡, then the performance 
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degradation parameter of 𝑉𝑀𝑖 can be expressed as follows: 

 

1)1(*...*)1(*)1( ,2,1,,  niiiseti PDPDPDPD                                                                      (3) 

 

where 𝑃𝐷𝑖,𝑛 is the performance degradation parameter of 𝑉𝑀𝑖 and 𝑉𝑀𝑛 in the VM set. If the VMs 

on the same server have the same performance degradation parameters, equation (3) can be 

rewritten as 𝑃𝐷𝑖,𝑠𝑒𝑡 = (1 + 𝑃𝐷)𝑛 − 1, and the process time of 𝑉𝑀𝑖 can be expressed as 𝑇𝑖
𝑃𝐷 =

𝑇𝑖 ∗ (1 + 𝑃𝐷𝑖,𝑠𝑒𝑡). In this research, the VM performance degradation is calculated based on the 

competition time of the VM: 
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where 𝑇𝑖 is the process time of VM i running in the server alone; 𝑇𝑖
𝑃𝐷is the process time of VM i 

running in the server with other VMs; 𝐶𝑖
𝑃𝐷 is the interference cost of VM i. 

According to the performance interferences between the VMs in Figure 1, the starting times 

of 𝑉𝑀1, 𝑉𝑀2 and 𝑉𝑀3 are 0, 0 and 2, respectively. Figure 1 shows that the time for running 𝑉𝑀1, 

𝑉𝑀2  and 𝑉𝑀3  alone on the same server is 4, 2 and 2, respectively. Figure 2 assumes the 

performance degradation parameters between the three VMs as 𝑃𝐷1,2 = 𝑃𝐷2,1 = 𝑃𝐷1,3 = 𝑃𝐷3,1 =

𝑃𝐷2,3 = 𝑃𝐷3,2 = 1 . Therefore, when the running time varies from 0 to 2, 𝑉𝑀1  and 𝑉𝑀2  run 

simultaneously on the same server, with 𝑉𝑀1 completing 1/4 of entire task and 𝑉𝑀2 completing 

1/2 of entire task. When the running time falls between 2 and 6, 𝑉𝑀1 , 𝑉𝑀2  and 𝑉𝑀3  run 

simultaneously on the same server, with 𝑉𝑀1 completing 1/2 of entire task, 𝑉𝑀2 completing the 

entire task, and 𝑉𝑀3 completing 1/2 of entire task. When the running time ranges from 6 to 8, 𝑉𝑀1 

and 𝑉𝑀3 run simultaneously on the same server, with 𝑉𝑀1 completing 3/4 of entire task, and 𝑉𝑀3 

completing the whole task. When the running time fluctuates in the interval [8, 9], only 𝑉𝑀1 runs 

on the server and completes the entire task. 
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Fig.1. The VM Running alone on the Server                  Fig.2. VM Performance Interference 

 

4. VM Scheduling Model 

This paper proposes an energy and interference-aware scheduling model for the VMs 

(EIAVMS), considering both energy consumption and performance interference. In addition to the 

energy consumption of server, the EIAVMS takes account of the performance interference cost of 

each VM under the server. The objective function is expressed as: 
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where n is the number of servers in the cloud datacenter; m is the number of the VMs; 𝐸𝑖 is the 

energy consumption of server i; 𝐶𝑗
𝑃𝐷 is the performance interference cost of 𝑉𝑀𝑗 on server i; b is 

the weight of VM performance interference cost. 

Therefore, the purpose of VM scheduling is to minimize energy consumption and performance 

interference cost: 
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where 𝑉𝑗
𝑐𝑝𝑢

, 𝑉𝑗
𝑚𝑒𝑚  and 𝑉𝑗

𝑠𝑡𝑜𝑟𝑒  are the CPU capacity, the memory capacity, and the hard drive 

capacity requested by the 𝑉𝑀𝑗 , respectively; 𝐶𝑖
𝑐𝑝𝑢

, 𝐶𝑖
𝑚𝑒𝑚and 𝐶𝑖

𝑠𝑡𝑜𝑟𝑒  are the CPU capacity, the 

memory capacity, and the hard drive capacity of server I; 𝑃𝑖,𝑗 = (0,1) is the deployment of 𝑉𝑀𝑗 on 

the server i. 
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In essence, equation (6) sets out the constraint on VMs allocation: the sum of CPU capacity, 

memory capacity, and hard drive capacity requested by VMs located on the server should not 

exceed the sum of such capacities of the server. 

 

5. Simulation and Comparison 

In this research, the CloudSim platform was adopted to simulate the cloud computing 

environment, and the proposed EIAVMS model was analysed and compared with the IQR and 

MAD models in terms of CPU utilization, energy consumption and VM process time. 

 

5.1 Parameter Setting 

The experiments were performed in the cloud datacenter consisting of 500 servers and 500 

VMs. The configuration parameters of the servers and the VMs are presented in Tables 1 and 2, 

respectively. 

 

Tab.1. Server Configuration Parameter 

Parameter Host1 Host2 

MIPS 1860 2660 

PES(Number) 2 2 

RAM(MB) 4096 4096 

BW(Gbit/s) 1 1 

STORAGE(TB) 1 1 
 

Tab.2. Vm Configuration Parameter 

Parameter Vm1 Vm2 Vm3 Vm4 

MIPS 2500 2000 1000 500 

PES(Number) 1 1 1 1 

RAM(MB) 870 1740 1740 613 

BW(Mbit/s) 100 100 100 100 

STORAGE(TB) 2.5 2.5 2.5 2.5 

 

5.2 Results Analysis 

1. The average CPU utilization at different numbers of servers and VMs: to obtain the average 

CPU utilization of the three models (IEAVMS, IQR, MAD), the first experiment was conducted 

with different numbers of servers and VMs on the cloud platform. The result shows that the average 

CPU utilization of the EIAVMS fell between 40% and 45%, while that of the IQR and MAD ranged 

from 35% to 38%. The proposed model is obviously more effective than the other two models in 

average CPU utilization (Figure 3). 
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Fig.3. Average CPU Utilization of Datacenter at Different Numbers of Servers and VMs 

 

2. The average CPU utilization at different times with a fixed number of servers and VMs: to 

test the average CPU utilization of the three models at different times, the second experiment was 

carried out with a certain number of servers and VMs on the cloud platform. According to the 

experimental results, the EIAVMS still maintained a higher average CPU utilization (35%~70%) 

than the IQR and MAD models (28%~60%) (Figure 4). Moreover, the average CPU utilization of 

the EIAVMS model always stayed in a relatively middle position, indicating that the CPU 

utilization is neither too high nor too low. This is because the EIAVMS model can effectively 

optimize the performance interference problem between the VMs. 

 

 

Fig.4. Average CPU Utilization of Datacenter at Different Times 

 

3. The energy consumption of cloud datacenter with different numbers of servers and VMs: 

to check the datacenter energy consumption of the three models, the third experiment was 

performed with different numbers of servers and VMs on the cloud platform. It is observed that the 

proposed model consumed 7.23%~10.21% less energy than the IQR model, and 7.23%~10.21% 

less energy than the MAD model (Figure 5). 
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Fig.5. Energy Consumption of Datacenter at Different Numbers of Servers and VMs 

 

4. The average VM process time with different numbers of servers and VMs: to ascertain the 

average VM process time of the three models, the fourth experiment was implemented with 

different numbers of servers and VMs on the cloud platform. It can be seen that the average VM 

process time of the EIAVMS model is shorter than the IQR and MAD models in most cases. The 

time-saving phenomenon is attributable to the consideration of both energy consumption and 

performance interference in the proposed model. Hence, a low energy consumption of the cloud 

datacenter and a high CPU utilization can shorten the VM process time (Figure 6). 

 

 

Fig.6. Average process time of VMs at different numbers of servers and VMs 

 

5. The process time of different VMs with a fixed number of servers and VMs: to identify the 

VM process time of the three models, the fifth experiment was executed with a fixed number of 

servers and VMs on the cloud platform. It is concluded that the proposed model boasts a shorter 

VM process time and better effect than the other two models in most cases (Figure 7). 
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Fig.7. VM Process Time at a Fixed Number of Servers and VMs 

 

6. Discussion 

Probing into the problem of server energy consumption and VM performance interference, the 

author developed the VM scheduling model EIAVMS to optimize the server energy consumption 

and VM performance interference. Considering both the energy consumption of server and the 

interference between the VMs on a single server, the proposed model reduced the energy 

consumption of the server, improved the average CPU utilization of the server, shortened the 

average process time of the VM, and prevented CPU utilization of individual servers from 

highlighting. 

 

Conclusion 

This paper is an indepth exploration of server energy consumption and interference between 

VMs. The VM scheduling model EIAVMS was proposed to optimize server energy consumption 

and VM performance interference. Then, the cloud computing software Cloud Sim was introduced 

to compare the EIAVMS, IQR and MAD models in terms of average server CPU utilization, energy 

consumption and VM process time. The experiment results prove that the proposed model is more 

efficient than the IQR and MAD models in all three aspects. 
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