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 Spacecraft attitude and orbit control systems have different levels of modes; complex, 

function, and orientation modes. For earth remote sensing satellites, the orbital and target 

orientation modes are designed to create and maintain their attitude during execution of their 

main mission. They should guarantee image quality requirements. In this paper, a complete 

kinematics of fixed ground target tracking with preparation of the needed parameters for 

pointing correction has been presented. The desired orientation parameters related to such 

modes are calculated for the current time and forecasted for the instant of imaging start 

according to the flight task arrays. The relative velocity between the on-ground scene pattern 

and the satellite is calculated and used to determine the required correction of orientation 

parameters to enhance the image quality and pointing accuracy. The detailed steps of 

determination of such parameters are illustrated. A time-optimal control quaternion based 

algorism is used and modified to achieve the required agility performance using the 

maximum system capability through the maneuver direction. It is shown by in-flight case 

study that the proposed algorithm with the prepared correction actions achieve the required 

pointing accuracy and time efficiency, and maintain the system within the permissible limits.  
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1. INTRODUCTION 

 

The attitude and orbit control (AOC) of any satellite, or, in 

general any spacecraft (SC), is performed in a number of 

modes which can be classified from a different points of views. 

From the SC state point of view, SC may be in transfer, initial, 

operating, or survival mode. In the transfer mode, SC angular 

rate is controlled and damped. For initial mode, SC initial 

attitude is determined and the desired initial orientation is 

settled. Survival mode, coarse control, is a safe mode 

implemented under safety aspect. Operating mode, fine 

control, is the normal working mode with the best performance 

and precise orientation. The operation of the AOC system may 

be organized to several levels of modes; complex, functional, 

service and orientation modes. The orientation mode may be; 

damping, inertial orientation, orbital orientation, 3-axis 

stabilized sun orientation, one-axis sun orientation, current 

inertial orientation, target orientation, spin by the velocity, 

instrumental bases spin, or turn mode. Almost, imaging and 

downloading as SC main mission for earth remote sensing 

satellites are executed based on orbital or target mode. 

Generally, SC attitude control is performed as closed loop 

control. The actual attitude is determined and compared with 

the desired to generate the control error. That is the input of 

the controller, while the control torque vector which desired to 

produce along the three SC-body-axes is the controller output.  

The actuators should be able to produce the demanded torque 

in order to achieve the desired attitude. Attitude control aim is 

to achieve and keep the desired orientation parameters, attitude 

quaternion and angular rate, corresponding to the selected 

mode. The objective may be certain attitude and/or attitude 

rate. 

In both cases, it is required to bring the attitude and angular 

rate errors to zero within certain tolerances. Correction of such 

orientation parameters during target mode is essential action 

to achieve the required pointing accuracy and imaging quality. 

The control law as a cascade saturation logic [1] has been 

widely used for large-angle fast acquisition and pointing 

maneuvers. For a given rotational maneuver with certain initial 

and final states of attitude and angular rate, the instantaneous 

variable limit of angular rate is determined based on the 

maneuver braking curve [2]. This curve depends on the control 

capability of the system [3]. Generally, it contains acceleration 

and deceleration phases. By the end of the deceleration phase, 

the desired SC attitude and attitude rate should be reached at a 

specified safe angular rate and angular deceleration achieving 

the required stabilization and pointing accuracy free of 

chattering problem [4]. 

The SC equations of motion are formulated as coupled SC 

orbit and attitude equations [5] in order to achieve the accepted 

accuracy which meets the requirements of the designed 

complex modes [6]; multi-targets tracking and orbit correction. 

This paper presents in detail the calculation of the quaternion 

based desired orientation parameters; attitude quaternion and 

angular rate, related to such modes. These parameters are 

calculated onboard instantaneously and forecasted for the 

instant of imaging start according to the preplanned flight task 

arrays. The desired orientation parameters are corrected based 

on the estimated state vector at imaging start instant. This 

correction enhances the pointing accuracy.  

The following sections are organized as follows: Section II 

explores the basic kinematic and dynamic relations related to 

this topic. Section III shows the used modified quaternion 

based time-optimal control. Section IV introduces the orbital 
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orientation mode and obtains the orbital quaternion and 

angular rate. In section V, the target orientation mode is 

introduced, geodetic coordinate system is utilized, and the 

desired quaternion and angular rate are calculated. Section VI 

illustrates the results of in-flight case study. Section VII 

illustrates the Euler angles representation for the desired and 

actual orientation parameters and the calculated attitude and 

attitude rate errors. Section VIII illustrates the controller limits 

comparison. Finally, section IX summarizes the results and 

conclusion. 

 

 

2. SC ATTITUDE DYNAMICS  

 

2.1 Coordinate systems 

 

The used right-handed coordinate systems are defined as [6]: 

(1) Earth-Centered Inertial Coordinate System (ECI): It 

can be defined as Inertial Coordinate System (ICS), with 

standard epoch J2000, +X axis refers to the spring mean 

equilibrium point, and +Z axis directs to the north celestial 

pole.  

(2) Earth-Centered Earth-Fixed (ECEF) Coordinate 

System: It rotates with the Earth: with +X axis points in the 

direction of the Earth’s prime meridian, +Z axis refers to the 

Earth-pole, +Y axis completes right hand coordinate system 

and lies in plane of geographic equator, and the rotation angle 

is known as the Greenwich Mean Sidereal Time (GMST) 

angle. 

(3) Orbital Coordinate System (OCS): It is centered in 

the SC mass center: with +Y axis is directed along radius-

vector to the center of the Earth, and +X coincides with vector 

of orbital angular rate. 

(4) Target (Object) Coordinate System (OCS-N): It is 

centered in the SC mass center: with +Y axis is directed toward 

the object of imaging, and the projection of axis -Z is perform 

acute angle with the direction of the vector of orbital angular 

rater (angle between -Z axis and orbit plane is equal to the 

required additional turn angle in yaw to prevent smeared 

picture). 

 

2.2 Representation in different coordinate systems 

 

The SC state vector in the ECI system [rECI] can be roughly 

converted to [rECEF] in the ECEF system as follows [3] 

 
[rECEF] = [𝐴𝐺𝐼][rECI]                                                    (1) 

 

 

where [𝐴𝐺𝐼]is the transformation matrix given by  

 

A𝐺𝐼 = [
cosθ𝐺 sinθ𝐺 0
−sinθ𝐺 cosθ𝐺 0
0 0 1

] (2) 

 

θ𝐺 , as illustrated in Figure 1, is the Greenwich sidereal time 

at a specific epoch 

 

θ𝐺 = θ𝐺0 + 𝜔𝑒𝑡 (3) 

 

θ𝐺0 indicates the Greenwich sidereal time at 00:00:00 UT, 

𝜔𝑒 = 7.2921151467𝑒−5[𝑟𝑎𝑑 𝑠⁄ ] is the inertial rotation rate 

of the Earth, and 𝑡 is the time duration since 0 hours UT. 

 

 
 

Figure 1. Reference coordinate systems 

 

 
 

Figure 2. Quaternion representation 

 

Table 1. Quaternion description 

 

Abbreviation Quaternion description 

A Quaternion of transition from ICS to BCS 

(orientation of BCS relative to ICS). 

C Target quaternion, Quaternion of transition from 

ICS to target, (orientation of target relative to 

ICS). 

L Calculated orbital quaternion of transition from 

ICS to OCS, using navigation state vector, 

(orientation of orbital coordinate system relative 

to ICS). 

LC Target quaternion, Quaternion of transition from 

OCS to target, (orientation of target relative to 

OCS). 

N Control quaternion, which represents mismatch 

quaternion between desired (calculated) 

orientation and current BCS orientation. 

 

2.3 SC attitude dynamics 

 

By observing the change of attitude matrix over time, the 

kinematic equation can be derived as a relation between the 
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attitude and angular rates. Using the quaternion form the 

kinematics relations are summarized as follows 

 

�̇�𝑣𝑒𝑐 = −(1/2)Ω𝑞𝑣𝑒𝑐 + (1 2⁄ )𝑞4𝜔 

�̇�4 = −(1 2⁄ )𝜔𝑇𝑞𝑣𝑒𝑐  (4) 

 

where 𝜔 = 𝜔𝑏𝐼 = [𝜔1, 𝜔2, 𝜔3]
𝑇 is the SC absolute angular 

velocity, relative to the inertial reference frame (I), projected 

into the SC body coordinate system (b) and measured by rate 

gyros. The components of the quaternions q are defined as 

 

𝑞1 = 𝑒𝑥 sin(∅ 2⁄ ) 
𝑞2 = 𝑒𝑦 sin(∅ 2⁄ ) 

𝑞3 = 𝑒𝑧 sin(∅ 2⁄ ) 
𝑞4 = cos(∅ 2⁄ ) 

(5) 

 

where  𝑒𝑥, 𝑒𝑦 , 𝑒𝑧 are the components of the Euler axis unit 

vector in the reference frame. ∅ is the rotation angle around 

the Euler axis. From equation (5), it is clear that the quaternion 

components satisfy the following constraint 

 

𝑞1
2 + 𝑞2

2 + 𝑞3
2 + 𝑞4

2 = 1 (6) 

 

In general, the quaternion 𝑞 can be defined as 𝑞 =  𝑞𝑠𝑐𝑎𝑙 +
 𝑞𝑣𝑒𝑐  where: 

 

𝑞𝑠𝑐𝑎𝑙  =  𝑞4 is the scalar part of the quaternion 𝑞, 

𝑞𝑣𝑒𝑐 = [𝑞1, 𝑞2, 𝑞3]
𝑇 is the vector part of the quaternion 𝑞. 

 

The transformation of any vector from the reference frame 

(I) to the body frame (b) can be performed using the 

transformation matrix 𝐴𝑏𝐼, which can be written in terms of 

quaternion components as [4] 

 
𝐴𝑏𝐼

= [

𝑞1
2 − 𝑞2

2 − 𝑞3
2 + 𝑞4

2 2(𝑞1𝑞2 + 𝑞3𝑞4) 2(𝑞1𝑞3 − 𝑞2𝑞4)

2(𝑞1𝑞2 − 𝑞3𝑞4) −𝑞1
2 + 𝑞2

2 − 𝑞3
2 + 𝑞4

2 2(𝑞2𝑞3 + 𝑞1𝑞4)

2(𝑞1𝑞3 + 𝑞2𝑞4) 2(𝑞2𝑞3 − 𝑞1𝑞4) −𝑞1
2 − 𝑞2

2 + 𝑞3
2 + 𝑞4

2

] (7) 

 

Equation (7) can be represented using various attitude 

parameters. In general, the descriptions of SC attitude can be 

given via quaternion or Euler angles parameters. Given Euler 

angles, a unique orientation is defined. Given orientation, non-

unique Euler angles can be determined. Although the Euler 

angles representation has a clear physical interpretation in the 

roll, pitch and yaw angles, it unfortunately suffers from 

singularities. The quaternion representation has no 

singularities and no trigonometric functions. 

The dynamic equation of motion is introduced by Euler 

equation and can be summarized as follows 

 

𝐽�̇� = −𝜔 × (𝐽𝜔) + 𝑀 (8) 

  

�̇� = 𝐽−1(−Ω(𝜔)𝐽𝜔 + 𝑀) (9) 

  

𝑀 = 𝑢 + 𝑇𝑑 (10) 

 

where J  is the SC inertia matrix, 𝑀 is the projection of the 

total applied moments about the SC centroid principal axes, 

 𝑢 = [𝑢1, 𝑢2, 𝑢3]
𝑇  is the control torque vector, 𝑇𝑑  is the 

disturbance torques and Ω(𝜔)  is a skew-symmetric matrix 

defined by 

𝛺(𝜔) = [𝜔𝑋] = [

0 −𝜔3 𝜔2
𝜔3 0 −𝜔1
−𝜔2 𝜔1 0

] (11) 

 

 

3. QUATERNION BASED TIME-OPTIMAL CONTROL 

 

Practically, the direct implementation of ideal time-optimal 

switching control logic tends to chattering problem due to time 

delays in the control system and various uncertainties [4]. The 

uncertainties can be in the moment of inertia J and/or actuators 

dynamics where the maximum actuator torque is not exactly 

known. To eliminate this effect, a conventional linear control 

solution will replace the bang-bang solution near the origin. 

 

3.1 Linear quaternion feedback control 

 

In order to achieve the Eigen-axis rotations during the linear 

range, at the end of maneuver, a linear state feedback 

controller is used as follows [1] 

 

𝑢 = −𝐾𝑒 − 𝐷𝑒𝜔 − 𝜇Ω𝐽𝜔 (12) 

 

where e = [𝑞1𝑒 , 𝑞2𝑒 , 𝑞3𝑒]
𝑇 is the vector part of attitude error 

quaternion 𝑞𝑒  between the current orientation  𝑞  and the 

desired orientation 𝑞𝑐, and defined as follows 

 

[

𝑞1𝑒
𝑞2𝑒
𝑞3𝑒
𝑞4𝑒

] =  [

𝑞4𝑐
−𝑞3𝑐
𝑞2𝑐
𝑞1𝑐

𝑞3𝑐
𝑞4𝑐
−𝑞1𝑐
𝑞2𝑐

−𝑞2𝑐
𝑞1𝑐
𝑞4𝑐
𝑞3𝑐

−𝑞1𝑐
−𝑞2𝑐
−𝑞3𝑐
𝑞4𝑐

] [

𝑞1
𝑞2
𝑞3
𝑞4

] (13) 

 

Alternatively, it can define as 

 

𝑞𝑒 = �̃�𝑐 ∘ 𝑞 (14) 

 

The shaped angular rate error vector 𝑒𝜔 is calculated as 

follows 

 

𝑒𝜔 = 𝜔𝐵𝐶𝑆 − 𝜔𝑑𝑒𝑠
𝐵𝐶𝑆 (15) 

 

where 𝜔𝐵𝐶𝑆 is the measured SC absolute angular velocity 

vector projected into BCS and 𝜔𝑑𝑒𝑠
𝐵𝐶𝑆  is the desired angular 

velocity vector calculated according to the orientation mode 

then projected into BCS. 

The feedback controller for Eigen-axis rotations consists of 

linear attitude error feedback −𝐾𝑒 and linear body-rate error 

feedback  −𝐷𝑒𝜔 . In order to counteract the effect of the 

gyroscopic coupling torque a nonlinear body-rate feedback 

term −𝜇Ω𝐽𝜔 can be added. Where μ=1 means that the control 

torque exactly counteracts the gyroscopic coupling torque, 

while 𝜇 = 0 means that only quaternion feedback and linear 

rate feedback are used. This controller is a time invariant 

closed loop controller in which no reference trajectory is 

calculated in advance for the mid-time until reaching the 

required final attitude, and the control at any time is calculated 

as a function of the current measured attitude and angular rate 

without any use of time dependent gains or functions. The 

gains 𝐾 and 𝐷 are 3X3 controller gain matrices should be 

properly determined or designed. These gains are selected 

according to Wie [1] as: 𝐷 = 𝑑𝐽and 𝐾 = 𝑘𝐽, where 𝑑 and 𝑘 

are scalars for the Eigen-axis rotation. 
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3.2 Time-optimal control 

 

For fast orientation within specified maximum slew rate, the 

control torque input 𝑢 can be calculated using the following 

saturation control logic [1] 

 

𝑢 = −𝐽{2𝑘 (𝑒) + 𝑑𝐿𝑖
𝑠𝑎𝑡 𝑒𝜔} (16) 

 

For achieving rapid transient settlings for large attitude-

error signals, the attitude error saturation limits 𝐿𝑖  are 

determined following [1] as 

 

𝐿𝑖 = (𝑑 2𝑘⁄ )𝑚𝑖𝑛 {√4𝑎𝑖|𝑒𝑖|, |𝜔𝑖|𝑚𝑎𝑥} 
(17) 

 

where |𝜔𝑖|𝑚𝑎𝑥  is the maximum angular rate about each 

control axis, 𝑎𝑖 = 𝑈 𝐽𝑖𝑖⁄  is the maximum control acceleration 

components, and 𝑈  is the same saturation limit for each 

control channel. The control torque is constrained 

symmetrically in 3 axes as follows 

 

−𝑈 ≤ 𝑢𝑖(𝑡) ≤ +𝑈               𝑖 = 1,2,3 (18) 

 

3.3 Modified time-optimal control 

 

In order to achieve the agility performance and guarantee 

the largest magnitudes of body rate and acceleration along the 

worst direction, different saturation limits  𝑈 = [𝑈1, 𝑈2, 𝑈3]
𝑇 

are utilized [7-11]. The maximum control acceleration 

components in equation (17) are initially modified to 𝑎𝑖 =
𝑈𝑖 𝐽𝑖𝑖⁄  and an alternative definition of the normalized 

saturation function is used as follows 

 

(𝑢) =𝜎
𝑠𝑎𝑡 {

𝑢 𝑖𝑓 𝜎 ≤ 1

𝑢 𝜎⁄ 𝑖𝑓 𝜎 > 1
} (19) 

 

where 

 

𝜎 = ‖𝑋𝑢‖∞ = 𝑚𝑎𝑥{|𝑋𝑢|𝑖} (20) 

 

𝑋 = 𝑑𝑖𝑎𝑔(1 𝑈1⁄ , 1 𝑈2⁄ , 1 𝑈3⁄ ) (21) 

 

Practically, the maximum torque which can be achieved in 

each control channel 𝑈 = [𝑈1, 𝑈2, 𝑈3]
𝑇cannot be achieved at 

the same moment. So, the corresponding maximum control 

acceleration components 𝑎𝑒𝑖  in each control axis are not freely 

independent and it can be calculated using the quaternion-error 

vector 𝑒 = (𝑒1, 𝑒2, 𝑒3) as follows 

 

𝑎𝑒𝑖 = 𝑎𝑚𝑎𝑥𝑝𝑝𝑖   (22) 

𝑎𝑚𝑎𝑥𝑝 =
1

√
𝑝1
2

𝑎1
2 +

𝑝2
2

𝑎2
2 +

𝑝3
2

𝑎3
2

 

(23) 

 

where 𝑎𝑚𝑎𝑥𝑝  is the magnitude of the maximum control 

acceleration in the maneuver direction and �̂� = [𝑝1, 𝑝2, 𝑝3]
𝑇 is 

the Eigen-axis unit vector in the maneuver direction calculated 

by 

 

�̂� =

{
 

 −
𝑠𝑔𝑛(𝑒)

√3
𝑖𝑓 ‖𝑒‖ ≤ 𝜀

−
𝑒

‖𝑒‖
𝑖𝑓 ‖𝑒‖ > 𝜀

}
 

 
 (24) 

 

where 𝜀 is small positive number in order of 1−4 defining the 

final part of maneuver. Figure 3 illustrates the torque envelope 

of octahedron pyramid configuration reaction wheels cluster 

in comparison with the corresponding outer and inscribed 

ellipsoids. The maximum control acceleration 𝑎𝑒  is 

determined in the maneuver direction corresponding to the 

maximum (outer) torque ellipsoid defined by  𝑈 =
[𝑈1, 𝑈2, 𝑈3]

𝑇. Due to the uncertainty in the torque generation, 

𝑎𝑒  value should be reduced corresponding to the inscribed 

torque ellipsoid, while, the saturation limits stay 

corresponding to the outer torque ellipsoid. 

Figure 3 illustrates that the maximum torque (outer) 

ellipsoid, contains unreachable torque values larger than the 

envelope capacity. Also it illustrates the unused portion from 

the torque envelope in case of inscribed ellipsoid. The attitude 

error saturation limits 𝐿𝑖  that are defined previously in 

equation (17) are redefined as 

 

𝐿𝑖 = (𝑑 2𝑘⁄ )𝑚𝑖𝑛{�̇�𝑒𝑖 , |𝜔𝑖|𝑚𝑎𝑥} (25) 

 

where the constrained attitude rate ėei is defined as 

 

�̇�𝑒𝑖 =
√

4|𝑒𝑖||𝑝𝑖|

√
𝑝1
2

𝑎𝑒1
2 +

𝑝2
2

𝑎𝑒2
2 +

𝑝3
2

𝑎𝑒3
2

                                                  (26) 

 

 
(a) 3D_View 
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(b) Pitch-Yaw 

 
(c) Yaw-Roll 

 
(d) Pitch-Roll 

 

Figure 3. 8-wheel outer & inscribed ellipsoids 

 

Alternatively, it may be defined using Bailey patent [12] as 

 

�̇�𝑒𝑖 =
√

4𝑒𝑖
2

√
𝑒1
2

𝑎𝑒1
2 +

𝑒2
2

𝑎𝑒2
2 +

𝑒3
2

𝑎𝑒3
2

 
(27) 

 

The control torque input 𝑢  can be calculated using the 

saturation control logic shown in (16) and limited using the 

normalized saturation function shown in (20). However, 

equation (21) is modified as follows 

 

𝑋 = 𝑑𝑖𝑎𝑔(1 𝑈𝑒1⁄ , 1 𝑈𝑒2⁄ , 1 𝑈𝑒3⁄ ) (28) 

 

where 𝑈𝑒 = [𝑈𝑒1 , 𝑈𝑒2 , 𝑈𝑒3]
𝑇  is the new proposed saturation 

limit corresponding to the maneuver direction through the 

maximum (outer) torque ellipsoid. The proposed 

instantaneously saturation limit is defined as follows 

 

𝑈𝑒 =
�̂�𝑢

√
𝑝𝑢1
2

𝑈1
2 +

𝑝𝑢2
2

𝑈2
2 +

𝑝𝑢3
2

𝑈3
2

 
(29) 

 

where �̂�𝑢 = [𝑝𝑢1, 𝑝𝑢2, 𝑝𝑢3]
𝑇  is the Eigen-axis unit vector in 

𝑢 direction calculated as follows 

 

�̂�𝑢 =
𝑢

‖𝑢‖
 (30) 

 

 

4. ORBITAL ORIENTATION MODE 

 

The desired SC attitude in this mode is OCS. In this mode, 

the orientations of SC axes are defined as 

- axis ‘‘YSC’’ is directed to the center of the Earth; 

- axis ‘‘ХSC’’ is directed along the vector of SC orbital 

angular rate; 
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- axis ‘‘-ZSC’’ is at acute angle to the direction of SC 

velocity vector 

In this mode, SC orientation control is performed relative to 

ICS. The error quaternion  𝑁 = 𝑞𝑒 , as shown in Figure 4, 

represents the attitude error between the current orientation 

𝐴 = 𝑞 and the desired orientation 𝐿 = 𝑞𝑐 and defined as 

 

𝑁 = �̃� .  𝐴 (31) 

 

The desired SC angular rate projected in BCS is 𝜔𝑜𝑟𝑏
𝐵𝐶𝑆and 

defined as 

 

𝜔𝑜𝑟𝑏
𝐵𝐶𝑆 = 𝑁 ∙ 𝜔𝑜𝑟𝑏

𝑂𝐶𝑆 ∙ 𝑁 (32) 

 

where 𝜔𝑜𝑟𝑏  
𝑂𝐶𝑆 is the desired SC angular rate in OCS and will be 

calculated in the following sections. 

 

 
 

Figure 4. Error quaternion in orbital orientation mode 

 

4.1 Calculation of orbital quaternion 

 

The transformation from J2000 to ECEF (WGS) is defined 

in equation (2) by the transformation matrix  A𝐺𝐼 . It can be 

redefined using the quaternion form by the quaternion 𝐺 

which determined by the rotation of the initial quaternion 

𝑞𝑖𝑛 = [cos(θ𝐺0 2⁄ ) , 0, 0, sin(θ𝐺0 2⁄ )]𝑇 using the quaternion 

𝑞𝑟𝑜𝑡𝐺 = [cos(ω𝑒𝑡 2⁄ ) , 0, 0, sin(ω𝑒𝑡 2⁄ )]𝑇 as follows 

 

𝐺 = 𝑞𝑖𝑛 ∙ 𝑞𝑟𝑜𝑡𝐺  (33) 

 

The SC state, extracted from GPS data in WGS, consists of 

the position vector 𝑅 = [𝑅𝑋, 𝑅𝑌, 𝑅𝑍]
𝑇 and the SC velocity 

vector 𝑉 = 𝑉𝑟
𝐺  (without taking into account the Earth 

rotation).The SC velocity vector in WGS frame 𝑉𝑎
𝐺 taking into 

account the Earth rotation is defined as 

 

𝑉𝑎
𝐺 = 𝑉𝑏

𝐺 + 𝑉𝑟
𝐺                                                                   (34) 

 

𝑉𝑎
𝐺 = 𝜔𝐺/𝐼 × 𝑅 + 𝑉𝑟

𝐺                                                  (35) 

 

where 𝜔𝐺 𝐼⁄ = [0,0, 𝜔𝑒]
𝑇is Earth mean angular velocity. 

 

 
 

Figure 5. SC state vector in OCS in circular orbit 

 

The determination of quaternion Q of transition from OCS 

to WGS needs two unit vectors measured in the WGS and 

known in the reference frame OCS. These two unit vectors are 

the unit vectors of R, Va
G which are measured and calculated 

respectively, in WGS and known in OCS as [0, −1, 0]  and 

[0, 0, −1]  respectively, as shown in Figure 5. The 

quaternion Q of transition from OCS to WGS is determined as 

follows 

 

𝑖̂ =
𝑢

|𝑢|
 

𝑗̂ =
(𝑢 × 𝑣)

|𝑢 × 𝑣|
 

�̂� = 𝑖̂ × 𝑗̂ 
𝑀𝑊𝐺𝑆 = [𝑖̂𝑊𝐺𝑆 𝑗�̂�𝐺𝑆 �̂�𝑊𝐺𝑆] 

𝑀𝑂𝐶𝑆 = [𝑖̂𝑂𝐶𝑆 𝑗�̂�𝐶𝑆 �̂�𝑂𝐶𝑆] 
𝑀𝑊𝐺𝑆 = 𝑀𝑄 . 𝑀𝑂𝐶𝑆 

𝑀𝑄 = 𝑀𝑊𝐺𝑆𝑀𝑂𝐶𝑆
−1  

(36) 

 

where  𝑀𝑂𝐶𝑆  must be non-singular. Applying transformation 

from matrix representation to quaternion representation [3], 

the quaternion  Q of transition from OCS to WGS can be 

determined from matrix 𝑀𝑄  of transformation from OCS to 

WGS. 

 

 
 

Figure 6. Orbital quaternion L 

 

The orbital quaternion 𝐿, quaternion of transition from ICS 

to OCS, as shown in Figure 6, is calculated as follows 

 

𝐿 = 𝐺 ∙ �̃� (37) 

 

4.2 Calculation of SC desired angular rate 

 

The orbital radius 𝑅𝑂𝐶𝑆, shown in Figure 5, is defined as 

 

𝑅𝑂𝐶𝑆 = [0,−√𝑅𝑋
2 + 𝑅𝑌

2 + 𝑅𝑍
2, 0]

𝑇

 (38) 

 

The SC velocity vector in WGS frame 𝑉𝑎
𝐺  taking into 

account the earth rotation is projected into OCS as follows 

 

𝑉𝑂𝐶𝑆 = 𝑄 ∙ 𝑉𝑎
𝐺 ∙ �̃� (39) 

 

Considering the 𝑉𝑋
𝑂𝐶𝑆 component to be zero, the desired SC 

velocity in OCS is [0, 𝑉𝑌
𝑂𝐶𝑆, 𝑉𝑍

𝑂𝐶𝑆]𝑇 . The desired SC orbital 

angular rate in OCS is 𝜔𝑜𝑟𝑏
𝑂𝐶𝑆 defined as 

 

𝜔𝑜𝑟𝑏
𝑂𝐶𝑆 = [

𝑉𝑍
𝑂𝐶𝑆

𝑅𝑌
𝑂𝐶𝑆 , 0, 0]

𝑇

 (40) 

 

During the orbital orientation mode, the SC motion 

parameters (linear and orientation) can be determined at the 

current time instant (𝑇𝐶) based on the SC motion parameters 

calculated from the latest updated state vectors extracted from 

GPS data at time instants (𝑇0)  and (𝑇𝑃) . The orbital SC 

angular acceleration at time instant (𝑇0)  is calculated as 

follows 

𝛼𝑋
𝑂𝐶𝑆 =

𝜔𝑜𝑟𝑏,𝑋
𝑂𝐶𝑆 (𝑇0) − 𝜔𝑜𝑟𝑏,𝑋

𝑂𝐶𝑆 (𝑇𝑃)

𝑑𝑇0𝑃
 (41) 
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The SC acceleration at time instant (𝑇0) is calculated as 

 

𝑎𝑂𝐶𝑆 =
𝑉𝑂𝐶𝑆(𝑇0) − 𝑉

𝑂𝐶𝑆(𝑇𝑃)

𝑑𝑇0𝑃
 (42) 

 

where  𝑑𝑇0𝑃 = 𝑇0 − 𝑇𝑃  is the time difference between the 

latest two available SC state vectors extracted from GPS data. 

The calculated orbital quaternion 𝐿(𝑇𝐶)  at the current time 

instant (𝑇𝐶)  is determined by rotating the initial orbital 

quaternion 𝐿(𝑇0) at the time instant (𝑇0)  by the quaternion 

𝑞𝑟𝑜𝑡𝐿 = [cos(θ𝐿 2⁄ ) , sin(θ𝐿 2⁄ ) , 0,0 ]𝑇 as follows 

 
𝐿(𝑇𝐶) = 𝐿(𝑇0) ∙ 𝑞𝑟𝑜𝑡𝐿  (43) 

 

where 

 

θ𝐿 = 𝜔𝑜𝑟𝑏,𝑋
𝑂𝐶𝑆 (𝑇0)𝑑𝑇𝐶0 +

1

2
𝛼𝑋
𝑂𝐶𝑆𝑑𝑇𝐶0

2
                      (44) 

  

𝑑𝑇𝐶0 = 𝑇𝐶 − 𝑇0                                                                  (45) 

 

The desired SC orbital angular rate in OCS at the current 

time instant (𝑇𝐶) is 𝜔𝑜𝑟𝑏
𝑂𝐶𝑆(𝑇𝐶) defined as 

 

𝜔𝑜𝑟𝑏
𝑂𝐶𝑆(𝑇𝐶) = [𝜔𝑜𝑟𝑏,𝑋

𝑂𝐶𝑆 (𝑇0) + 𝛼𝑋
𝑂𝐶𝑆𝑑𝑇𝐶0, 0, 0]

𝑇
 (46) 

 

Substituting 𝐿(𝑇𝐶)  and 𝜔𝑜𝑟𝑏
𝑂𝐶𝑆(𝑇𝐶)  in equations (31), and 

(32), the error quaternion 𝑁and the desired SC orbital angular 

rate projected in BCS are obtained. 

  

 

5. TARGET MODE 

 

In this mode, the SC desired orientation is the target frame 

OCS-N to be tracked. The SC orientation control is performed 

relative to ICS. The error quaternion 𝑁 = 𝑞𝑒 which represents 

the attitude error between the current orientation 𝐴 = 𝑞 and 

the desired orientation 𝐶 = 𝑞𝑐, shown in Figure 7, is defined 

as 

 

𝑁 = �̃� .  𝐴 (47) 

 

The desired SC angular rate projected in BCS is defined as 

 

𝜔𝐶
𝐵𝐶𝑆 = 𝑁 ∙ 𝜔𝐶

𝑂𝐶𝑆−𝑁 ∙ 𝑁 (48) 

 

where 𝜔𝐶
𝑂𝐶𝑆−𝑁is the absolute angular rate (relative to ICS) of 

the desired target frame (OCS-N) projected in OCS-N. 

 

 
 

Figure 7. Error quaternion in target orientation mode 

 

During imaging (tracking mode), 𝜔𝐶
𝑂𝐶𝑆−𝑁 stills constant 

while the desired orientation quaternion 𝐶 = 𝑞𝐶  is updated. 

This updating requires solving the following kinematic 

equation of motion 

�̇�𝑣𝑒𝑐𝐶 = −
1

2
Ω(𝜔𝐶

𝑂𝐶𝑆−𝑁)𝑞𝑣𝑒𝑐𝐶 +
1

2
𝑞4C𝜔𝐶

𝑂𝐶𝑆−𝑁                    (49) 

 

�̇�4C = −
1

2
(𝜔𝐶

𝑂𝐶𝑆−𝑁)𝑇𝑞𝑣𝑒𝑐𝐶                                     (50) 

 

where 

 

Ω(𝜔𝐶
𝑂𝐶𝑆−𝑁)

= [

0 −𝜔3𝐶
𝑂𝐶𝑆−𝑁 𝜔2𝐶

𝑂𝐶𝑆−𝑁

𝜔3𝐶
𝑂𝐶𝑆−𝑁 0 −𝜔1𝐶

𝑂𝐶𝑆−𝑁

−𝜔2𝐶
𝑂𝐶𝑆−𝑁 𝜔1𝐶

𝑂𝐶𝑆−𝑁 0

] 
(51) 

 

Before the tracking mode and during the SC maneuver 

toward the sighting point, the SC motion parameters that 

calculated from the latest updated state vector extracted from 

GPS data at time instant (𝑇0) are used as initial conditions to 

calculate the motion parameters at the starting instant of 

imaging at time instant (𝑇𝑁)  as described in the following 

sections. 

 

5.1 Calculation of target position and velocity vectors in 

WGS 

 

The geodetic coordinate system characterizes a coordinate 

point near the earth’s surface in terms of longitude, latitude, 

and height (or altitude), which are respectively denoted 

by 𝜆, 𝜑, and ℎ. Let a starting point of the on-ground scene 

pattern is the point 𝑃 represented in the geodetic system as 

 

𝑃𝑔𝑒𝑜𝑑 = [
𝜆
𝜑
ℎ

] (52) 

 

The position vector of the starting point of imaging in WGS 

is 𝑅𝑃
𝑊𝐺𝑆 defined as [13] 

 

R𝑃
WGS = [

(𝑁𝐸 + ℎ) cos 𝜑 cos 𝜆
(𝑁𝐸 + ℎ) cos 𝜑 sin 𝜆

[𝑁𝐸(1 − 𝑒
2) + ℎ] sin𝜑

] (53) 

 

where 𝑒 is the first eccentricity and 𝑁𝐸  is the prime vertical 

radius of curvature. These parameters based on the WGS84 are 

defined as 

 

𝑒 =
√𝑅𝐸𝑎

2 −𝑅𝐸𝑏
2

𝑅𝐸𝑎
= 0.08181919                                            (54) 

 

𝑁𝐸 =
𝑅𝐸𝑎

√1−𝑒2 sin2 𝜑
                                                                (55) 

 

where the semi-major axis  𝑅𝐸𝑎 = 6378137[𝑚] , the semi-

minor axis 𝑅𝐸𝑏 = 𝑅𝐸𝑎(1 − 𝑓) = 6356752[𝑚] , and the 

flattening factor 𝑓 = 1/298.257223563. The velocity vector 

of the starting point of imaging due to earth rotation velocity 

in WGS is 𝑉𝑃
𝑊𝐺𝑆determined as follows 

 

𝑉𝑃
𝑊𝐺𝑆 = 𝜔𝐺 𝐼⁄ × 𝑅𝑃

𝑊𝐺𝑆 (56) 

 

5.2 Calculation of target quaternion and desired angular 

rate 

 

Knowing the estimated time of imaging start  𝑇𝑁 , the 

quaternion 𝐺𝑁  shown in Figure 8 (the quaternion of 
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transformation from J2000 to WGS at instant of imaging start) 

is calculated according to equation (33). The orbital quaternion 

𝐿𝑁 at time instant (𝑇𝑁) is determined by rotating the initial 

orbital quaternion 𝐿 at the time instant (𝑇0)  by the rotation 

quaternion 𝑞𝑟𝑜𝑡𝐿𝑁 = [cos(θ𝐿𝑁 2⁄ ) , sin(θ𝐿𝑁 2⁄ ) , 0,0 ]𝑇  as 

follows; 

 

𝐿𝑁(𝑇𝑁) = 𝐿(𝑇0) ∙ 𝑞𝑟𝑜𝑡𝐿𝑁 (57) 

 

where 

 

θ𝐿𝑁 = 𝜔𝑜𝑟𝑏,𝑋
𝑂𝐶𝑆 (𝑇0)𝑑𝑇𝑁0 +

1

2
𝛼𝑋
𝑂𝐶𝑆𝑑𝑇𝑁0

2
                      (58) 

 

𝑑𝑇𝑁0 = 𝑇𝑁 − 𝑇0                                                                (59) 

 

 
 

Figure 8. Target quaternion CN 

 

The quaternion 𝑄𝑁 of transition from OCS to WGS at the 

time of imaging start 𝑇𝑁 is determined as follows 

 

𝑄𝑁 = 𝐿�̃� ∙ 𝐺𝑁 (60) 

 

The desired SC orbital angular rate in OCS at the time 

instant (𝑇𝑁) is defined as 

 

𝜔𝑜𝑟𝑏
𝑂𝐶𝑆(𝑇𝑁) = [𝜔𝑜𝑟𝑏,𝑋

𝑂𝐶𝑆 (𝑇0) + 𝛼𝑋
𝑂𝐶𝑆𝑑𝑇𝑁0, 0, 0]

𝑇
 (61) 

 

The orbital radius which represents the position vector of 

SC in OCS at the time instant (𝑇𝑁) is defined as 

 

𝑅𝑂𝐶𝑆(𝑇𝑁) = [0, 𝑅𝑌
𝑂𝐶𝑆(𝑇0) + 𝑉𝑌

𝑂𝐶𝑆(𝑇0)𝑑𝑇𝑁0

+
1

2
𝑎𝑌
𝑂𝐶𝑆𝑑𝑇𝑁0

2, 0]
𝑇

 

(62) 

 

The desired SC velocity in OCS at the time instant (𝑇𝑁) is 

defined as 

 

𝑉𝑂𝐶𝑆(𝑇𝑁) = [0, 𝑉𝑌
𝑂𝐶𝑆(𝑇0)
+ 𝑎𝑌

𝑂𝐶𝑆𝑑𝑇𝑁0, 𝑉𝑍
𝑂𝐶𝑆(𝑇0)

+ 𝑎𝑍
𝑂𝐶𝑆𝑑𝑇𝑁0]

𝑇 

(63) 

 

The position and velocity vectors of the starting point of the 

on-ground scene pattern (target), taking into account the earth 

rotation velocity, are projected into OCS as follows 

 

𝑅𝑃
𝑂𝐶𝑆 = 𝑄𝑁 ∙ R𝑃

WGS ∙ 𝑄�̃� (64) 

  

𝑉𝑃
𝑂𝐶𝑆 = 𝑄𝑁 ∙ V𝑃

WGS ∙ 𝑄�̃� (65) 

 

The relative position vector between the target and the SC 

at the time instant (𝑇𝑁) is defined as 

 

𝑅𝑟𝑒𝑙
𝑂𝐶𝑆(𝑇𝑁) = 𝑅𝑃

𝑂𝐶𝑆−𝑅𝑂𝐶𝑆(𝑇𝑁) (66) 

  

where |𝑅𝑟𝑒𝑙
𝑂𝐶𝑆(𝑇𝑁)| is the distance from SC center of mass to 

the earth surface at the target point. The relative velocity 

vector between the target velocity due to earth rotation (fixed 

target) and the SC velocity at the target point is defined as 

 

𝑉𝑟𝑒𝑙
𝑂𝐶𝑆 = 𝑉𝑃

𝑂𝐶𝑆 − [𝑉𝑂𝐶𝑆(𝑇𝑁)

+ 𝜔𝑜𝑟𝑏
𝑂𝐶𝑆(𝑇𝑁) × 𝑅𝑟𝑒𝑙

𝑂𝐶𝑆(𝑇𝑁)] 
(67) 

 

Determination of the quaternion LCN of transition from 

OCS to OCS-N needs two unit vectors calculated in OCS and 

known in the reference frame OCS-N. These two unit vectors 

are the unit vectors of  Rrel
OCS(TN)  and Vrel

OCS  which are 

calculated in OCS and considered being in OCS-N in [0, 1, 0] 
and [0, 0, 1] directions, respectively. The quaternion LCN  of 

transition from OCS to OCS-N is determined as follows 

 

𝑖̂ =
𝑢

|𝑢|
 

𝑗̂ =
(𝑢 × 𝑣)

|𝑢 × 𝑣|
 

�̂� = 𝑖̂ × 𝑗̂ 
𝑀𝑂𝐶𝑆 = [𝑖̂𝑂𝐶𝑆 𝑗�̂�𝐶𝑆 �̂�𝑂𝐶𝑆] 

𝑀𝑂𝐶𝑆−𝑁 = [𝑖�̂�𝐶𝑆−𝑁 𝑗�̂�𝐶𝑆−𝑁 �̂�𝑂𝐶𝑆−𝑁] 
𝑀𝑂𝐶𝑆 = 𝑀𝐿𝐶𝑁. 𝑀𝑂𝐶𝑆−𝑁 

𝑀𝐿𝐶𝑁 = 𝑀𝑂𝐶𝑆𝑀𝑂𝐶𝑆−𝑁
−1  

(68) 

 

where 𝑀𝑂𝐶𝑆−𝑁 must be non-singular. Using the transformation 

from the matrix representation to quaternion representation [3], 

the quaternion 𝐿𝐶𝑁 of transition from OCS to OCS-N can be 

determined from the matrix 𝑀𝐿𝐶𝑁 of transformation from OCS 

to OCS-N. The projection of the relative velocity vector 𝑉𝑟𝑒𝑙
𝑂𝐶𝑆 

on OCS-N is determined as follows 

 

𝑉𝑟𝑒𝑙
𝑂𝐶𝑆−𝑁 = 𝐿𝐶�̃� ∙ 𝑉𝑟𝑒𝑙

𝑂𝐶𝑆 ∙ 𝐿𝐶𝑁 (69) 

 

The relative velocity vector 𝑉𝑟𝑒𝑙
𝑂𝐶𝑆−𝑁  should be 

perpendicular to the target line of sight. So, it is set 

to  𝑉𝑟𝑒𝑙
𝑂𝐶𝑆−𝑁 = [𝑉𝑟𝑒𝑙,𝑋

𝑂𝐶𝑆−𝑁, 0, 𝑉𝑟𝑒𝑙,𝑍
𝑂𝐶𝑆−𝑁] . The projection of the 

desired SC orbital angular rate on OCS-N is determined as 

follows 

 

𝜔𝑜𝑟𝑏
𝑂𝐶𝑆−𝑁(𝑇𝑁)  = 𝐿𝐶�̃� ∙ 𝜔𝑜𝑟𝑏

𝑂𝐶𝑆(𝑇𝑁)  ∙ 𝐿𝐶𝑁 (70) 

 

The relative velocity vector 𝑉𝑟𝑒𝑙
𝑂𝐶𝑆−𝑁 is used to calculate the 

required pitch retarding angular rate to correct 𝜔𝑜𝑟𝑏
𝑂𝐶𝑆−𝑁  in 

order to increase the image exposer time [14]. Another yaw 

additional turn rate is added to prevent blurring of image. Both 

corrections modify the 𝜔𝑜𝑟𝑏
𝑂𝐶𝑆−𝑁 before starting of imaging as 

 

𝜔𝐶
𝑂𝐶𝑆−𝑁 = 𝜔𝑜𝑟𝑏

𝑂𝐶𝑆−𝑁(𝑇𝑁) + 𝜔corr
𝑂𝐶𝑆−𝑁 (71) 

 

where 𝜔𝑐orr
𝑂𝐶𝑆−𝑁 is the equivalent corrective turn rate including 

pitch slowing down and yaw rate corresponding to the 

additional turns. The quaternion of transition from ICS to 

target frame OCS-N (target quaternion) at the starting instant 

of imaging is predicted as  

 

𝐶𝑁 = 𝐿𝑁 ∙ 𝐿𝐶𝑁 (72) 
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Before the imaging and during the SC maneuver toward the 

sighting point, the desired SC angular rate 𝜔𝐶
𝐵𝐶𝑆 projected in

BCS is calculated according to equation (48) using the 

corrected desired SC angular rate 𝜔𝐶
𝑂𝐶𝑆−𝑁 given by equation

(71). The instantaneous desired target quaternion 𝐶 is 

determined as follows 

𝐶 = 𝐿 ∙ 𝐿𝐶𝑁 (73) 

where 𝐿 is the instantaneous orbital quaternion. 

Then the equivalent corrective quaternion  qcorr , which

includes the pitch slowing down and yaw additional turn, is 

added as 

𝐶 = 𝐶 ∙ 𝑞𝑐𝑜𝑟𝑟 (74) 

In addition to any corrective quaternion may be set from the 

control ground station.  

During imaging, 𝜔𝐶
𝑂𝐶𝑆−𝑁 is maintained constant at its value

at the starting instant of imaging while the desired orientation 

quaternion 𝐶 is updated as illustrated in equations (49) to (51). 

6. PRACTICAL CASE STUDY

For the rigid SC under consideration, the nominal inertia 

matrix in units of [𝐾𝑔.𝑚2] is

𝐽 = [
430 −2 4
−2 250 3
4 3 425

] (75) 

The SC state vector can be extracted from the given two line 

element (TLE) 

1 29283U 06022G   06177.28732010  .00766286 

10823-4  13334-2 0   101 

2 29283  51.5595 213.7903 0202579  95.2503 

267.9010 15.73823839  1061 

(76) 

Taking damping ratio  𝜁 ≈ 0.9  and the natural frequency 

𝜔𝑛 ≈ 0.45 [𝑟𝑎𝑑/𝑠] yields the positive scalars 𝑘 ≈ 0.4 [𝑠−2]
and 𝑑 ≈ 0.8[𝑠−1].

The maximum angular rate |𝜔𝑖|𝑚𝑎𝑥  is assumed to be 85%

of the high accuracy range (3 [𝑑𝑒𝑔 𝑠⁄ ]) of measuring angular 

velocity using star trackers. The maximum saturation torque 

limits in each control channel 𝑈 = (1,0.5,1)[N.m].  
The maximum control acceleration in the maneuver 

direction 𝑎𝑚𝑎𝑥𝑝  is chosen to be 60% of allowable limit to

accommodate the nonlinear nature of quaternion-based phase-

plane dynamics, actuator dynamics, and control acceleration 

uncertainty. The simulation is carried out using time-optimal 

nonlinear three-axis quaternion feedback control logic.  

The simulation is performed for realistic mission with many 

closely placed ground targets. The mission plan includes: 

normal scene imaging (twice) and stereo pair imaging 

(consists of two scenes) with the following Euler angles sets; 

[0; -4; -22], [20; -4; -18], [-25; -3; -2], and [25; -3; -1] [deg]. 

Figure 9. Corrected desired SC angular rate projected on 

OCS-N 

Figure 10. Corrected desired SC angular rate projected on 

OCS 

Figure 9 shows the corrected desired SC angular rate 

projected on OCS-N corresponding to the mentioned multi-

target mode. The applied corrective rate in this case study is in 

yaw channel with zero corrective rates in pitch channel (no 

need to increase the exposer time/design aspect). In Figure 9, 

the correction clearly appears in ωC,Y
OCS−N  yaw channel (red,

dash-dot line) just before and during each scene then the value 

of ωC
OCS−N jump to the next target value. 

Figure 10 shows the corrected desired SC angular rate 

projected on OCS where the dominant component is ωorb,X
OCS  in 

pitch channel due to SC orbital movement. 

257



 

 
 

Figure 11. Target quaternion relative to ICS 
 

Figure 11 shows the target quaternion C, calculated using 

equation (73), then corrected according to equation (74) before 

imaging start, and propagated using equations (49) to (51) 

during the imaging. 

 

 

7. EULER ANGLES REPRESENTATION AND 

ATTITUDE ERRORS CALCULATION 

 

For Euler angles representation, the SC desired orientation 

relative to OCS is represented in Figure 12 by the quaternion 

LC  of transition from OCS to OCS-N. Also the actual SC 

orientation relative to OCS is represented in Figure 13 by the 

quaternion LB  of transition from OCS to BCS. These 

quaternions are calculated according to the following 

equations (extracted from Figure 14) as 

 

𝐿𝐶 = �̃� ∙ 𝐶 (77) 

  

𝐿𝐵 = 𝐿𝐶 ∙ 𝑁     or  𝐿𝐵 = �̃� ∙ 𝐴 (78) 

 

where 𝐴 is the current attitude quaternion relative to ICS. 

The quaternions 𝐿𝐶  and 𝐿𝐵  can be converted to 𝐸𝐴(𝐿𝐶) 
and 𝐸𝐴(𝐿𝐵)  respectively where EA(∗)  is the Euler angles 

representation for attitude quaternion (∗) defined by  rotation 

sequence (3-1-2) Roll, Pitch, and Yaw angles ( EA =
[Pitch, Yaw, Roll]T) [6]. Figure 15 and Figure 16 illustrate the 

Euler angles representation for desired and actual SC 

orientation respectively corresponding to this multi-target 

mode.  

The SC absolute angular rate projected on the BCS (ωBCS) 

corresponding to this multi-target mode is illustrated in Figure 

17. This figure illustrates that SC angular rates during the three 

maneuvers did not reach to maximum angular rate |𝜔𝑖|𝑚𝑎𝑥. 

The SC absolute angular rate is represented via Euler rate 

by projection on OCS as illustrated in Figure 18 using the 

following equation 

 

𝐸�̇� = [�̇�, �̇�, �̇�]𝑇 = 𝜔𝑂𝐶𝑆 = 𝐿𝐵 ∙ 𝜔𝐵𝐶𝑆 ∙ 𝐿�̃� (79) 

 

 
 

Figure 12. Target quaternion relative to OCS (quaternion 

LC) 
 

 
 

Figure 13. SC actual orientation relative to OCS (quaternion 

LB) 

 

 
 

Figure 14. LC and LB quaternions 
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Figure 15. Euler angles representation for desired SC 

orientation 

 

 
 

Figure 16. Euler angles representation for actual SC 

orientation 
 

 
 

Figure 17. SC absolute angular rate projected on the BCS 

 
 

Figure 18. SC absolute angular rate projected on the OCS 

 

 
 

Figure 19. Control error 

 

 
 

Figure 20. Attitude error 
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Considering ideal attitude determination sensors, the 

control error shown in Figure 19 is determined as the 

difference between target (desired) attitude and estimated 

attitude. The attitude error/pointing accuracy shown in Figure 

20 is determined as the difference between the current and 

target (desired) attitude as follows 

 

𝐴𝑒 = 𝐸𝐴(𝐿𝐵) − 𝐸𝐴(𝐿𝐶)or   𝐴𝑒 = 𝐸𝐴(𝑁) (80) 

 

The overall attitude error during multi-target mode period is 

illustrated in Figure 20.  

Figures 20 to 22 make zoom in the stabilization period 

before 2nd scene imaging. Figure 22 shows the attitude 

error/pointing accuracy in the three channels (pitch, yaw, and 

roll) and illustrates that the largest error is in pitch channel. 

Figure 23 illustrates that, the mean value of attitude error in 

pitch channel is Ae = −0.006094[deg] = −0.366[arcmin]  
and the stability (peak to peak motion) is Se =
0.000712[deg]= 0.043[arcmin]. These values are within the 

required 0.05[deg] accuracy and 0.0167[deg] stability. 

 

 
 

Figure 21. Zoom in attitude error from 140:230[s] 
 

 
 

Figure 22. Zoom in attitude error from 160:230[s] 

 
 

Figure 23. Attitude error in pitch channel from 160:230[s] 

 

 
 

Figure 24. Rate error 

 

 
 

Figure 25. Zoom in rate error from 150:230[s] 
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Figure 26. Zoom in rate error from 160:230[s] 

 

The SC Euler rate error during multi-target mode is shown 

in Figure 24 to Figure 26. The SC Euler rate error is 

determined as the difference between the true (current) rate 

and target (desired) rate on OCS as 

 

𝐸�̇�𝑒 = [�̇�, �̇�, �̇�]
𝑇 = 𝜔𝑂𝐶𝑆 − 𝜔𝐶

𝑂𝐶𝑆 (81) 

 

The overall rate error during multi-target mode period is 

illustrated in Figure 24. Figure 25 and Figure 26 make zoom 

in the stabilization period before 2nd scene imaging. Figure 26 

illustrates that, the angular rate error is not worse 

than  0.0001[deg s⁄ ]  which is within the allowable 

0.001[deg s⁄ ] rate error. 

 

 

8. CONTROLLER LIMITS COMPARISON 

 

Eigen-axis outer ellipsoid, Eigen-axis inscribed ellipsoid, 

independent axes outer ellipsoid, and independent axes 

inscribed ellipsoid are different limits used for the controller 

output torque  𝑢 . The SC angular rate stabilization time for 

some dominant maneuver directions are determined for these 

limits. Table 2 shows one of these simulations results for 

desired rotation angles equals 10*[0.9239; 0; 0.3827] [deg]. In 

general, it can be concluded that, using the inscribed ellipsoid 

either with Eigen-axis or independent limits reduces the 

capability and tends to slow orientation. Using the Eigen-axis 

outer ellipsoid increases the used capability while the Eigen-

axis is maintained. 

 

Table 2. Stabilization time for different controller limit 

 

controller output torque limit 
stabilization 

time [sec] 

Eigen-axis 
0.75 𝑈𝑒(Inscribed ellipsoid) 42.22 

 𝑈𝑒(Outer ellipsoid) 31.06 

Independent 

axes 

𝑈 (Outer ellipsoid) 31.26 

0.75 𝑈 (Inscribed ellipsoid) 40.19 

 

 

9. CONCLUSIONS 

 

A complete kinematics of fixed ground target tracking has 

been presented. The desired SC velocity and angular rate are 

defined in OCS. The target quaternion is updated during 

imaging. The SC motion parameters at the starting instant of 

imaging are calculated during the SC maneuver toward the 

sighting point. The position and velocity vectors for each of 

target and SC at the imaging start instant are determined in 

OCS and the relative position and velocity vectors are 

determined. The quaternion of transition from OCS to OCS-N 

is calculated using these relative vectors. The projection of the 

relative velocity vector and the desired SC angular rate on 

OCS-N are determined. The relative velocity vector is used to 

calculate the required pitch retarding angular rate to correct the 

desired angular rate in order to increase the image exposer 

time. The non-linear tracking control algorithm presented in 

[1] by Wie is modified and tolerated to guarantee the largest 

magnitudes of body acceleration along the worst direction. 

The proposed controller cares about fast ground-target 

tracking. The simulation results also show well and 

considerable robustness behavior of the proposed controller. 

The results ensure that pointing accuracy, stability, and 

angular rate error in three channels are within the allowable 

0.05 [deg], 0.0167[deg], and 0.001[deg s⁄ ]  limits, 

respectively. Momentum monitoring ensures that the system 

is kept well away below the permissible limits. 
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