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The transient flow formation due to sudden application of constant circumferential pressure 

gradient in an annulus partially filled with porous material has been considered. An exact 

solution of the governing equations has been obtained in Laplace domain using Laplace 

transform technique. Using suitable transformations, the equations are converted into 

standard Bessel equations whose solutions are available in the literature. The solutions to the 

Bessel equations are then inverted to the time domain using Riemann-sum approximation 

approach. The implicit finite difference scheme has also been employed in solving the 

governing equations in other to establish the accuracy of the Riemann-sum approximation 

approach for both transient and steady state solutions. The obtained solutions are then 

analysed for various dimensionless parameters entering the unified problem. There is a clear 

indication that large value of Da enhances the permeability of the porous region. Also, thin 

clear fluid region boosts τ1 but has no significant influence on τλ. While thin porous region

enhances skin friction at both surfaces.  
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1. INTRODUCTION

Transport processes in horizontal coaxial impermeable and 

non-rotating cylinders filled with composite fluid containing 

clear fluid and fluid-saturated porous material has been of 

interest in many research. This can be attributed to its immense 

applications in engineering such as thermal insulation, crude 

oil extraction processes and in biomedical systems where 

circumferential flow appear in most of the apparatuses 

conveying fluids. A theoretical investigation of laminar steady 

flow in a cylindrical annulus, due to a constant circumferential 

pressure gradient, was first studied by Dean [1], using the thin 

gap approximation. Analytical study on oscillatory flow in 

various geometries has been investigated by a number of 

researchers, due to an imposed oscillatory pressure gradient 

such as in a parallel plates by Dryden et al. [2], in circular 

geometry by Richardson and Tyler [3], Gupta and Gupta [4], 

Samal and Biswal [5]. In a rectangular geometry by Drake [6], 

Fan and Chao [7]. In an elliptical geometry by Khamrui [8], 

Haslam and Zamir [9]. Most importantly in an annular 

geometry by Tsangaris [10]. Recently, Tsagaris and Vlachakis 

[11] obtained an analytical solutions of the equations of

motion of a Newtonian fluid for the fully developed laminar

flow between two concentric cylinders when an oscillating

circumferential pressure gradient of cyclic frequency and

amplitude is imposed (finite gap oscillating Dean flow) and

obtained that an increase of the reduced frequency causes a

reduction of the velocity amplitude. Tsangaris et al. [12]

extended the problem to the case when the walls of the

cylinders are porous. The influence of the stress jump

condition at the porous/clear fluid interface for steady fully

developed fluid flow in a composite channel partially filled

with porous material was studied by Kuznetsov [13]. Later on,

Avramenko and Kuznetsov [14] studied start-up flow in a 

channel or pipe occupied by a fluid-saturated porous medium. 

They investigated the response of incompressible fluid in a 

parallel-plate channel or circular pipe occupied by a fluid-

saturated porous medium to a suddenly applied time-

dependent pressure drop.  

Using semi-analytical approach, Jha and Odengle [15] 

examined unsteady Couette flow in a composite channel 

partially filled with porous material. They employed the 

implicit finite difference scheme in solving the governing 

equations and further presented a table to establish the 

accuracy of the Riemann-sum approach. A year later, they 

performed a similar analysis in a concentric cylinder, where 

the flow is induced by pressure gradient applied in the axial 

direction (See Jha and Odengle [16])). They obtained that the 

adjustable coefficient in the stress jump condition (β) plays an 

important role in flow formation.  

Paul and Singh [17] discussed laminar fully developed free 

convection flow between two coaxial vertical cylinders 

partially filled with a porous matrix when the cylinders are 

kept at different temperatures they observed that velocity is 

influenced by the shear stress jump at the interface while the 

stability of viscous flow in a curved channel driven by a 

constant azimuthal pressure gradient was examined by Gibson 

and Cook [18]. They considered two cases of disturbances 

(axisymmetric and asymmetric) for finite-gap width and the 

narrow-gap limit and obtained that as the gap width decreases 

the critical mode of instability changes so that there is a 

transition from axisymmetric instabilities. Most recently, the 

effect of a radial temperature gradient on the stability of 

viscous flow between two porous concentric cylinders driven 

by a constant azimuthal pressure gradient was investigated by 

Deka et al. [19] using the usual Runge-Kutta scheme 
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combined with a shooting method. It is found that for a given 

value of N the radially outward flow has a stabilizing effect 

and the stabilization is more as the gap between the cylinders 

increases. 

Andersson and Tiseth [20] considered start-up flow in a 

pipe following the sudden imposition of a constant flow rate. 

They detected that the start-up time required to reach steady 

state was significantly shorter than if the start-up flow ensued 

from a sudden constant pressure gradient and also obtained 

that the solution obtained those not display the “Annular Jet 

Effect” seen experimentally in the work of Kataoka et al. [21].  

The analytical solution of time dependent, laminar, viscous 

flow of an incompressible, Newtonian fluid driven by a 

harmonically oscillating pressure gradient in  straight elliptic 

coaxial cylinders was investigated by Gupta et al. [22] and also 

presented a stepwise procedure for their evaluation for large 

complex arguments typically associated with viscous flows. 

Other related articles include the work of (Mishra and Roy 

[23], Chikh et al. [24], Chikh et al. [25], Chandrasekhar [26], 

Rajgopal et al. [27], Biswal and Mishra [28], Qi and Jin [29], 

Nazar et al. [30]). 

The unique feature of this work is to present the semi-

analytical solution of the circumferential pressure driven flow 

and the influence of shear stress jump condition at the interface 

between a clear fluid and fluid-saturated porous material. We 

also set to investigate the impact of variation of the interfacial 

radial distance on the flow formation. In this research, the 

solutions of the governing equations are obtained by using the 

Laplace transform technique, while the Riemann-sum 

approximation approach is used to invert the Laplace-domain 

solution to time-domain. 

 

 

2. MATHEMATICAL ANALYSIS 

 

Consider the motion of transient, fully developed and 

incompressible circumferential flow due to Azimuthal 

pressure gradient between two co-axial-horizontal cylinders 

containing fluid and porous layer separated by a permeable 

thin interface with fluid occupying the interval 𝑟𝑖 ≤ 𝑟′ ≤ 𝑑′ 

while the interval  𝑑′ ≤ 𝑟′ ≤ 𝑟0  is occupied by a fluid-

saturated porous material of uniform permeability. ri and r0 

are the radii of the inner and the outer cylinder respectively as 

shown in Fig. 1. The circumferential velocity component of 

the fluid is proved to be a function of the radial coordinate r′ 

and time t  only. Following the work of Tsangaris and 

Vlachakis [11], the fundamental model governing the present 

physical situation in dimensional form can be written as 

follows. 

 

 
 

Figure 1. Flow configuration and coordinate system 

𝜕𝑢𝑝
′

𝜕𝑡′ = 𝜈𝑒𝑓𝑓 [
𝜕2𝑢𝑝

′

𝜕𝑟′2 +
1

𝑟′

𝜕𝑢𝑝
′

𝜕𝑟′ −
𝑢𝑝

′

𝑟′2] −
𝜈

𝑘′ 𝑢𝑝
′ −

1

𝜌

𝜕𝑝

𝜕𝜃

1

𝑟′ for 𝑟𝑖 ≤

𝑟′ ≤ 𝑑′                                                                                  (1) 

 
𝜕𝑢𝑓

′

𝜕𝑡′ = 𝜈 [
𝜕2𝑢𝑓

′

𝜕𝑟′2 +
1

𝑟′

𝜕𝑢𝑓
′

𝜕𝑟′ −
𝑢𝑓

′

𝑟′2] −
1

𝜌

𝜕𝑝

𝜕𝜃

1

𝑟′ for 𝑑′ ≤

𝑟′ ≤ 𝑟0                                         (2) 

 

The initial and the no-slip condition at the surfaces for the 

problem under consideration are 

 

𝑡′ ≤ 0: 𝑢𝑝
′ = 𝑢𝑓

′ = 0 for 𝑟𝑖 ≤ 𝑟′ ≤ 𝑟0 

𝑡′ > 0: [
𝑢𝑝

′ = 0 𝑎𝑡 𝑟′ = 𝑟𝑖

𝑢𝑓
′ = 0 𝑎𝑡 𝑟′ = 𝑟0

]            (3) 

 

With the dimensional matching condition at the interface 

given as 

 

𝑡′ > 0 : [

𝑢𝑝
′ = 𝑢𝑓

′ = 𝑢𝑖
′                                                 

𝜈𝑒𝑓𝑓 [
𝜕𝑢𝑝

′

𝜕𝑟′ −
𝑢𝑝

′

𝑟′ ] − 𝜈 [
𝜕𝑢𝑓

′

𝜕𝑟′ −
𝑢𝑓

′

𝑟′ ] =
𝛽𝜈

√𝑘′
𝑢𝑝

′
] at 𝑟′ =

𝑑′ 

 

Introducing the following dimensionless quantities in Eqs. 

(1) – (3) 

 

𝑅 =
𝑟′

𝑟𝑖

 ; 𝑡 =
𝜈𝑡′

𝑟𝑖
2

 ;  𝛾 =
𝜈𝑒𝑓𝑓

𝜈
 ; 𝐷𝑎 =

𝑟𝑖
2

𝑘′
 ; 𝑈𝑝 = 𝑈𝑓

=
(𝑢𝑝

′  ;  𝑢𝑓
′ )

𝑈0

 ; 

𝑈0 = −𝑟𝑖
𝜕𝑝

𝜕𝜃

1

𝜌𝜈
;  𝑑 =

𝑑′

𝑟𝑖
 ;  𝜆 =

𝑟0

𝑟𝑖
 ;  𝑈𝑖 =

𝑢𝑖
′

𝑈0
            (4) 

 

Equations (1) and (2) can be written in dimensionless form 

as  

 
𝜕𝑈𝑝

𝜕𝑡
= 𝛾 [

𝜕2𝑈𝑝

𝜕𝑅2 +
1

𝑅

𝜕𝑈𝑝

𝜕𝑅
−

𝑈𝑝

𝑅2] −
𝑈𝑝

𝐷𝑎
+

1

𝑅
 for 1 ≤ 𝑅 ≤ 𝑑          (5) 

 
𝜕𝑈𝑓

𝜕𝑡
= [

𝜕2𝑈𝑓

𝜕𝑅2 +
1

𝑅

𝜕𝑈𝑓

𝜕𝑅
−

𝑈𝑓

𝑅2] +
1

𝑅
     for   𝑑 ≤ 𝑅 ≤ 𝜆          (6) 

 

Subject to the following non-dimensional initial and 

boundary condition 

 

𝑡 ≤ 0: 𝑈𝑝 = 𝑈𝑓 = 0 for 1 ≤ 𝑅 ≤ 𝜆 

𝑡 > 0: [
𝑈𝑝 = 0 𝑎𝑡 𝑅 = 1

𝑈𝑓 = 0 𝑎𝑡 𝑅 = 𝜆
]                          (7) 

 

With the non-dimensional matching condition at the 

interface given as 

 

𝑡 > 0: [
𝑈𝑝 = 𝑈𝑓 = 𝑈𝑖                                        

𝛾 [
𝜕𝑈𝑝

𝜕𝑅
−

𝑈𝑝

𝑅
] − [

𝜕𝑈𝑓

𝜕𝑅
−

𝑈𝑓

𝑅
] =

𝛽

√𝐷𝑎
𝑈𝑝

]  𝑎𝑡 𝑅 = 𝑑  

 

The expression of equation (5) to (7) in Laplace domain 

using the Laplace transform technique 𝑈𝑝(R, 𝜂) =

∫ 𝑈𝑝(𝑅, 𝑡)𝑒−𝜂𝑡𝑑𝑡 𝑎𝑛𝑑 𝑈𝑓(𝑅, 𝜂) =
∞

0

∫ 𝑈𝑓(𝑅, 𝑡)𝑒−𝜂𝑡𝑑𝑡 
∞

0
(Where 𝜂 > 0  is the Laplace parameter) 

subject to initial condition yield: 
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𝑑2𝑈𝑝

𝑑𝑅2 +
1

𝑅

𝑑𝑈𝑝

𝑑𝑅
−

𝑈𝑝

𝑅2 −
1

𝛾
[

1

𝐷𝑎
+ 𝛾] 𝑈𝑝 = −

1

𝛾𝜂𝑅
           (8) 

 
𝑑2𝑈𝑓

𝑑𝑅2 +
1

𝑅

𝑑𝑈𝑓

𝑑𝑅
−

𝑈̅𝑓

𝑅2 − 𝜂𝑈̅𝑓 = −
1

𝜂𝑅
            (9) 

 

Subject to the following non-dimensional boundary 

condition 

 

𝑡 > 0: [
𝑈𝑝 = 0 𝑎𝑡 𝑅 = 1

𝑈𝑓 = 0 𝑎𝑡 𝑅 = 𝜆
]                        (10) 

 

With the non-dimensional matching condition at the 

interface given as 

 

𝑡 > 0: [
𝑈𝑝 = 𝑈𝑓 = 𝑈𝑖                                        

𝛾 [
𝑑𝑈𝑝

𝑑𝑅
−

𝑈̅𝑝

𝑅
] − [

𝑑𝑈̅𝑓

𝑑𝑅
−

𝑈𝑓

𝑅
] =

𝛽

√𝐷𝑎
𝑈𝑝

]  𝑎𝑡 𝑅 = 𝑑  

 

Equations (8) and (9) can be reduced by using the following 

transformations respectively 

 

𝑈𝑝 = 𝑈𝑝ℎ +
1

𝜂(
1

𝐷𝑎
+𝜂)𝑅

   and 𝑈𝑓 = 𝑈𝑓ℎ +
1

𝜂2𝑅
        (11) 

 

applying equation (11) on equations (8) and (9), the Laplace 

domain solution in terms of the modified Bessel function 

obtained are given by; 

 

𝑈𝑝 = 𝐶1𝐼1(𝛿𝑅) + 𝐶2𝐾1(𝛿𝑅) +
1

𝜂(
1

𝐷𝑎
+𝜂)𝑅

         (12) 

 

𝑈𝑓 = 𝐶3𝐼1(√𝜂𝑅) + 𝐶4𝐾1(√𝜂𝑅) +
1

𝜂2𝑅
         (13) 

 

where 𝛿 = √
1

𝛾
(

1

𝐷𝑎
+ 𝜂)  and 𝐼1 ,  𝐾1  are the modified Bessel 

function of first and second kind respectively of order 1. 

Applying the boundary condition (10) on equation (12) and 

(13) the constants 𝐶1, 𝐶2, 𝐶3, 𝐶4  and the expression for the 

interfacial velocity 𝑈i  are obtained as 

 

𝐶1 = 𝑥2 − 𝑈𝑖𝑥3, 𝐶2 = 𝑈𝑖𝑥4 − 𝑥5 ,  𝐶3 = 𝑥7 − 𝑈𝑖𝑥8, 𝐶4 =
𝑈𝑖𝑥10 − 𝑥9 

𝑈𝑖 =
𝑥13+𝑥12𝑥5−𝑥11𝑥2+𝑥14𝑥7−𝑥15𝑥9−𝑥16

𝑥14𝑥8+𝑥15𝑥10−𝑥11𝑥3−𝑥12𝑥4−
𝛽

√𝐷𝑎

          (14) 

 

The constant 𝑥1, 𝑥2, 𝑥3, 𝑥4,    .  .  .  𝑥16  appearing in the 

above equations are defined in the Appendix 

 

2.1 Skin friction 

 

The skin friction at the outer surface of the inner cylinder 

(𝑅 = 1) and at the inner surface of the outer cylinder (𝑅 = 𝜆) 

in Laplace domain is given respectively by; 

 

𝜏1̅ = 𝑅
𝑑

𝑑𝑅
(

𝑈̅𝑝

𝑅
)|

𝑅=1
= 𝛿 [𝐶1𝐼2(𝛿) − 𝐶2𝐾2(𝛿) −

2

𝛿𝜂(
1

𝐷𝑎
+𝜂)

]

                          (15) 

 

τ̅𝜆 = − 𝑅
𝑑

𝑑𝑅
(

𝑈𝑓

𝑅
)||

𝑅=𝜆

= √𝜂 [𝐶4𝐾2(√𝜂𝜆) − 𝐶3𝐼2(√𝜂𝜆) +

2

𝜂𝜆2]                                       (16) 

Equations (12) - (16) are then inverted to determine their 

solutions in the time domain. However, literature survey 

conducted indicated that there are no simple ways to invert 

Laplace domain solutions in modified Bessel function to the 

time domain. Hence, we adopt a numerical procedure used in 

the work of Jha and Yusuf [31], Jha and Odengle [16], Jha and 

Apere [32] as well as that of Khadrawi and Al-Nimr [33] 

which were founded on the Riemann-sum approximation. 

According to this method, any function in the Laplace domain 

can be inverted to the time domain as follow: 

 

𝑍(𝑅, 𝑡) =
𝑒𝜀𝑡

𝑡
[

1

2
𝑍̅(𝑅, 𝜀) + 𝑅𝑒 ∑ 𝑍̅ (𝑅, 𝜀 +𝑀

𝑘=1

𝑖𝑘𝜋

𝑡
) (−1)𝑘 ] , 1 ≤ 𝑅 ≤ 𝜆                                                    (17) 

 

where Re represents the real part of the term with summation 

and 𝑖 = √−1 . M is the number of terms used in the Riemann-

sum approximation and 𝜀  is the real part of the Bromwich 

contour that is used in inverting Laplace transforms. The 

Riemann-sum approximation for the Laplace inversion 

involves a single summation for the numerical process its 

accuracy generally depends on the value of  𝜀  and  𝑀 . 

Following the pioneering work of Tzou [34], the value of 𝜀𝑡  

that best satisfied the result is 4.7. 

 

2.2 Validation of the method 

 

To validate the correctness of the Riemann-sum 

approximation scheme adopted in inverting Equation (12)–

(16), we find analytical solution of the steady state 

circumferential velocity, which should coincide with the 

transient solution at large time. This can be obtained by setting 
𝜕( )

𝜕𝑡
= 0 in equations (2.5) and (2.6) to obtain the following 

dimensionless ordinary differential equations 

 
𝑑2𝑈𝑝

𝑑𝑅2 +
1

𝑅

𝑑𝑈𝑝

𝑑𝑅
−

𝑈𝑝

𝑅2 −
𝑈𝑝

𝛾𝐷𝑎
= −

1

𝛾𝑅
          (18) 

 
𝑑2𝑈𝑓

𝑑𝑅2 +
1

𝑅

𝑑𝑈𝑓

d𝑅
−

𝑈𝑓

𝑅2 = −
1

𝑅
           (19) 

 

Subject to the boundary conditions   

 
𝑈𝑝 = 0 𝑎𝑡 𝑅 = 1

𝑈𝑓 = 0 𝑎𝑡 𝑅 = 𝜆
            (20) 

 

With the non-dimensional matching condition at the 

interface given as 

 

[
𝑈𝑝 = 𝑈𝑓 = 𝑈𝑖                                        

𝛾 [
𝑑𝑈𝑝

𝑑𝑅
−

𝑈𝑝

𝑅
] − [

𝑑𝑈𝑓

𝑑𝑅
−

𝑈𝑓

𝑅
] =

𝛽

√𝐷𝑎
𝑈𝑝

]  𝑎𝑡  𝑅 = 𝑑         (21) 

 

The solution of equation (18) and (19) are given by applying 

appropriate transformation 𝑈𝑝 = 𝑈𝑝ℎ +
𝐷𝑎

𝑅
 and 𝑅 = 𝑒𝜉  

respectively, to yield  

 

𝑈𝑝 = 𝐶5𝐼1(𝜁𝑅) + 𝐶6𝐾1(𝜁𝑅) +
𝐷𝑎

𝑅
          (22) 

 

𝑈𝑝 = 𝐶7𝑅 +
𝐶8

𝑅
−

𝑅𝑙𝑛(𝑅)

2
           (23) 

 

where 𝜁 =
1

√𝛾𝐷𝑎
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Applying the boundary condition (20) and the condition at 

the interface (21) on equations (22) and (23), the unknown 

constants 𝐶5 , 𝐶6 , 𝐶7 , 𝐶8 as well as the interfacial velocity 𝑈𝑖 

are given as 

 

𝐶5 = 𝑦4 − 𝑈𝑖𝑦5, 𝐶6 = 𝑦6 + 𝑈𝑖𝑦7, 𝐶7 = 𝑦11 + 𝑈𝑖𝑦12, 𝐶8 =
𝑦8 + 𝑈𝑖𝑦9 

𝑈𝑖 =
2𝑦8
𝑑2 +𝑦1𝑦4−𝑦10−𝑦2𝑦6

𝑦1𝑦5+𝑦2𝑦7−
2𝑦9
𝑑2

           (24) 

 

The constant 𝑦1, 𝑦2 , 𝑦3, 𝑦4,    .  .  .  𝑦12  appearing in the 

above equations are defined in the Appendix 

In an attempt to further establish the accuracy of the 

numerical procedure used in this research work, we used the 

implicit finite difference method to solve the dimensionless 

Equations (5) and (6) with the initial and the no slip boundary 

conditions (7). Using this numerical scheme, an excellent 

agreement was found in comparison with the values obtained 

from Riemann-sum approximation approach at large time as 

well as the exact solution of the steady state velocity. It is good 

to note that, the numerical values obtained using the implicit 

finite difference method at transient state also agrees 

considerably with the ones obtained using the Riemann-sum 

approximation approach for a small value of time. (See Table 

1 & 2).  

 

Table 1. Numerical value for the steady-state velocity 

obtained using the Riemann-sum approximation, implicit 

finite difference and exact solution (𝛾 = 1, 𝛽 = 0, 𝜆 = 2, 𝑑 =
1.5) 

 
𝑅 𝐷𝑎 Riemann-sum 

approximation 

Implicit finite 

difference 

Exact 

solution 

1.2 0.01 0.0078 0.0078 0.0078 

 0.10 0.0370 0.0370 0.0370 

 1.00 0.0566 0.0566 0.0566 

1.4 0.01 0.0116 0.0116 0.0116 

 0.10 0.0514 0.0514 0.0514 

 1.00 0.0769 0.0768 0.0769 

1.6 0.01 0.0265 0.0266 0.0265 

 0.10 0.0544 0.0543 0.0543 

 1.00 0.0715 0.0715 0.0715 

1.8 0.01 0.0235 0.0235 0.0235 

 0.10 0.0366 0.0366 0.0366 

 1.00 0.0447 0.0446 0.0446 

 

Table 2. Numerical value for the transient-state velocity 

obtained using the Riemann-sum approximation, implicit 

finite difference and exact solution (𝑅 = 1.5, 𝛾 = 1, 𝛽 =
0, 𝜆 = 2, 𝑑 = 1.5 ) 

 
𝑡 𝐷𝑎 Riemann-sum 

approximation 

Implicit finite 

difference 

Exact 

solution 

0.08 0.01 0.0168 0.0165 0.0187 

 0.10 0.0371 0.0341 0.0548 

 1.00 0.0432 0.0400 0.0771 

0.2 0.01 0.0186 0.0186 0.0187 

 0.10 0.0517 0.0504 0.0548 

 1.00 0.0677 0.0650 0.0771 

0.4 0.01 0.0187 0.0188 0.0187 

 0.10 0.0546 0.0545 0.0548 

 1.00 0.0760 0.0760 0.0771 

0.6 0.01 0.0187 0.0188 0.0187 

 0.10 0.0548 0.0548 0.0548 

 1.00 0.0770 0.0770 0.0771 

 

Table 3. Numerical values of the steady state skin-friction at 

the outer surface of the inner cylinder (𝜏1) using the 

Riemann-sum approximation approach, implicit finite 

difference and exact solution for different values of 𝐷𝑎 and 𝜆 

where 𝑑 is the mid-point of the annular gap (𝛾 = 1 , 𝛽 = 0) 

 
𝜆 𝐷𝑎 Riemann-sum 

approximation 

Implicit finite 

difference 

Exact 

solution 

1.8 0.01 0.0995 0.0984 0.0994 

 0.10 0.2626 0.2621 0.2626 

 1.00 0.3386 0.3382 0.3385 

2.0 0.01 0.0973 0.0958 0.0973 

 0.10 0.2826 0.2818 0.2826 

 1.00 0.4030 0.4029 0.4023 

3.0 0.01 0.0954 0.0902 0.0954 

 0.10 0.2912 0.2882 0.2911 

 1.00 0.6185 0.6169 0.6184 

 

Table 4. Numerical values of steady state skin-friction (𝜏𝜆) 

using the Riemann-sum approximation approach, implicit 

finite difference and exact solution for different values of 𝐷𝑎 

and 𝜆 where 𝑑 is the mid-point of the annular gap (𝛾 =
1 , 𝛽 = 0) 

 
𝜆 𝐷𝑎 Riemann-sum 

approximation 

Implicit finite 

difference 

Exact 

solution 

1.8 0.01 0.1513 0.1514 0.1512 

 0.10 0.2083 0.2083 0.2083 

 1.00 0.2337 0.2337 0.2337 

2.0 0.01 0.1622 0.1624 0.1622 

 0.10 0.2241 0.2241 0.2241 

 1.00 0.2623 0.2623 0.2623 

3.0 0.01 0.1960 0.1967 0.1960 

 0.10 0.2479 0.2480 0.2479 

 1.00 0.2238 0.3328 0.3327 

 

 

3. RESULTS AND DISCUSSION  

 

The unified solution of the momentum equation of the clear 

fluid and the fluid-saturated by porous material is a function 

of the non-dimensional parameters: viscosity ratio (𝛾), Darcy 

number (𝐷𝑎) , time (𝑡) , adjustable coefficient of the stress 

jump condition (𝛽), interfacial radial distance (𝑑) and radii 

ratio (𝜆). In order to comment on the relative importance of 

these parameters on the velocity, interfacial velocity and skin 

frictions, we utilised the Mathematicial Laboratory 

(MATLAB) software in generating the graphs displayed in 

figs 2 to 13. 

 

 
 

Figure 2. Velocity profiles showing the effect of Da and 

𝑡 (𝛾 = 0.5 , 𝑑 = 1.5 𝛽 = −0.7, 𝜆 = 2) 
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Figure 3. Velocity profiles showing the effect of Da and 

𝑡 (𝛾 = 0.5 , 𝑑 = 1.5 𝛽 = −0.7, 𝜆 = 2) 

 

Variation of velocity profiles with time (𝑡)   and three 

different values of Darcy number (𝐷𝑎)  1.0, 0.1, 0.01 are 

presented in Figure 2, 3 and 4 respectively. In each case, its 

evident that velocity increases with increase in time (𝑡)  till it 

attains steady state velocity. 

 
 

Figure 4. Velocity profiles showing the effect of Da and 

𝑡 (𝛾 = 0.5 , 𝑑 = 1.5 𝛽 = −0.7, 𝜆 = 2) 

 

 
 

Figure 5. Interfacial velocity (𝑈𝑖) for different values of 𝛽 

and 𝑡 (𝛾 = 0.5 , 𝑑 = 1.5 , 𝜆 = 2) 

 

As 𝐷𝑎  becomes large, porous region is seen to be more 

permeable and greater fluid motion occurs in the porous 

region. The reverse trend occur for small a value of Darcy 

number (𝐷𝑎 =  0.01) as velocity is seen to decrease sharply 

away from the fluids interface toward the outer surface of the 

inner cylinder due to less permeability of the porous region. 

Steady state velocity is reached faster for small value of 𝐷𝑎 

while Large value of 𝐷𝑎 lengthen the time it takes to attain 

steady state velocity. This finding matches with the result of 

Jha and Odengle [16].  

 
 

Figure 6. Interfacial velocity (𝑈𝑖) for different values of 𝛽 

and 𝑡 (𝛾 = 0.5 , 𝑑 = 1.5 , 𝜆 = 2) 

 
 

Figure 7. Interfacial velocity (𝑈𝑖) for different values of 𝑑 

and 𝑡 (𝛾 = 0.5 , 𝛽 = −0.7 , 𝜆 = 2) 

 

The combined influence of adjustable coefficient of the 

stress jump condition (𝛽) and time (𝑡)  on interfacial velocity, 

𝑈𝑖  is reflected in Fig. 5 when 𝐷𝑎 = 0.1. 𝑈𝑖  is seen to be an 

increasing function of 𝑡  and 𝛽 till it attains steady state. A 

similar occurrence is observed in Fig. 6 when 𝐷𝑎 = 0.01 with 

a sharp increase in velocity for large value of 𝛽. Both figures 

indicate that 𝑈𝑖  decreases with increase in 𝐷𝑎  resulting in 

steady state been reached faster when 𝐷𝑎 = 0.01 . This 

influence of time follows a similar trend as observed by Jha 

and Odengle [16] who did a similar analysis when the pressure 

gradient is applied in the axial direction. Figs. 7 and 8 depict 

the effect of time (𝑡) and interfacial radial distance (𝑑) on the 

interfacial velocity (𝑈𝑖)  when 𝐷𝑎 = 0.1  and 0.01 

respectively. A steady increase in 𝑈𝑖  with 𝑡 is observed but 

decreases with 𝑑, this is because as interfacial radial distance 

𝑑 tends to 𝜆, the region occupied by fluid-saturated by porous 

material becomes large. Hence, high tendency for decrease in 

velocity resulting in a decrease in interfacial velocity.  

 
 

Figure 8. Interfacial velocity (𝑈𝑖) for different values of 𝑑 

and 𝑡 (𝛾 = 0.5 , 𝛽 = −0.7 , 𝜆 = 2) 
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The reverse situation is obtained when d tends to the radius 

of the inner cylinder. The variation of 𝑈𝑖  with 𝐷𝑎  and 𝑡  is 

presented in Fig. 9. It is evident that 𝑈𝑖  increases with increase 

in 𝐷𝑎 and 𝑡. As 𝑡 comes large, a critical value of 𝑡 is reached 

when further increase in 𝑡 has no significant influence on 𝑈𝑖. 

At this point, 𝑈𝑖 is said to be steady and independent of 𝑡. Fig. 

10 shows the effect of 𝛽  and 𝑡  on skin friction, 𝜏1  (skin 

friction at the outer surface of the inner cylinder 𝑅 = 1). At 

transient state, 𝜏1 is seen to be an increasing function of  𝛽 and 

𝑡. further increase in 𝑡 has no impact on 𝜏1. Similar occurrence 

is obtained in Fig. 11 as 𝜏𝜆 (skin friction at the inner surface of 

the outer cylinder 𝑅 = 𝜆) increases with increase 𝛽 and 𝑡. It is 

noteworthy that 𝜏1 is always less that 𝜏𝜆, this is because the 

presence of porous material at the porous region retards 

velocity hence, a decrease in magnitude of skin friction at that 

surface. 

 
 

Figure 9. Interfacial velocity (𝑈𝑖) for different values of 𝐷𝑎 

and 𝑡 (𝛾 = 0.5 , 𝛽 = −0.7 , 𝜆 = 2) 

 
 

Figure 10. Skin friction variation at the outer surface of the 

inner cylinder for different values of 𝛽 and 𝑡 (𝛾 = 0.5 , 𝑑 =
1.5, 𝐷a = 0.1, 𝜆 = 2) 

 
 

Figure 11. Skin friction variation at the inner surface of the 

outer cylinder for different values of 𝛽 and 𝑡 (𝛾 = 0.5 , 𝑑 =
1.5 , 𝐷𝑎 = 0.1, 𝜆 = 2) 

 
 

Figure 12. Skin friction variation at the outer surface of the 

inner cylinder for different values of 𝑑 and 𝑡 (𝛾 = 0.5 , 𝛽 =
−0.7, 𝐷𝑎 = 0.1, 𝜆 = 2) 

 

In Fig. 12, increase in 𝑑 suppresses 𝜏1  since 𝜏1 decreases 

with increase in d. 𝜏1 also increases with 𝑡 till it attains steady 

state skin friction at the outer surface of the inner cylinder 

(𝑅 = 1). Fig. 13 shows variation of 𝜏𝜆 with respect to 𝑑 and 

𝑡. 

In a similar manner to Fig. 12, 𝜏𝜆  increases with 𝑡  till it 

reaches its steady state. It is noticed that 𝜏𝜆 is fairly constant 

for a large value of 𝑑. This indicates that decrease in the region 

occupied by clear fluid has no significant influence on skin 

friction at the inner surface of the outer cylinder. while an 

increase in the region filled by clear fluid increases 𝜏𝜆.  

 
 

Figure 13. Skin friction variation at the inner surface of the 

outer cylinder for different values of 𝑑 and 𝑡 (𝛾 = 0.5 , 𝛽 =
−0.7 , 𝜆 = 2, 𝐷𝑎 = 0.1) 

 

With the explanation from Figs. 12 and 13, one can 

conclude that large value of 𝑑  (thin clear fluid region) 

increases 𝜏1 but has no influence on 𝜏𝜆. While small value of 

𝑑 (thin porous region) enhances skin friction at both surfaces. 

This is because high velocity of clear fluid always inspires skin 

friction at the surfaces.  

 

 

4. CONCLUSIONS 

 

The semi-analytical solution of the time dependent flow in 

an annulus partially filled with porous material due to sudden 

application of constant circumferential (Azimuthal) pressure 

gradient  is considered. The annular gap is filled with a clear 

fluid and a fluid-saturated porous material of uniform 

permeability separated by a thin porous layer, with the clear 

fluid occuping the region near the inner surface of the outer 

cylinder. Laplace transform technique is used to solve the non-
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dimensional transport equations. The solution in Laplace 

domain is then inverted to time-domain using Riemann-sum 

approximation approach. In order to establish the accurary of 

the Riemann-sum approximation approach, a number of tables 

have been presented which shows that at large time, Riemann-

sum approximation approach largely agrees with the steady 

state solution obtained exactly. To further demostrate 

reliability of this approach, a numerical scheme – the implicit 

finite defference is also used to solve the governing equations. 

The numerical values obtained from this two approaches (See 

table 1-4) indicates that they both match considerably at 

transient and steady state. The influence of a number of 

selected controlling parameters entering into the model is 

discused with the aid of line graphs. The main conclusions of 

the research work are 

1. Generally, the unified velocity  is an increasing 

function of time (𝑡) till it attains steady state velocity. 

2. A thin clear fluid region boosts 𝜏1  but has no 

influence on 𝜏𝜆 . While thin porous region enhances skin 

friction at both surfaces. 

3. There is a clear indication that porous region is more 

permeable with greater fluid motion arising in the porous 

region for a large value of Darcy number, this transitively 

enhanced the skin friction at the surfaces, The reverse trend 

occurs for a small value of Darcy number.  

4. Positive value of 𝛽 is observed to enhance interfacial 

velocity (𝑈𝑖), while large value of 𝑑 (as 𝑑 tends to the radii 

ratio) retards 𝑈𝑖. Furthermore, a linear relationship (See Fig. 

8) is seen at steady state with negative gradient. 
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NOMENCLATURE 

 

𝑑  Non-dimensional interfacial radial distance 

𝑑′  Dimensional interfacial radial distance 

𝐷𝑎  Darcy number 

𝐼1 First-order modified Bessel function of the first kind 

𝐼2  Second-order modified Bessel function of the first 

kind 

𝑘′  Permeability of the porous medium 

𝐾1  First-order modified Bessel function of the second 

kind 

𝐾2  Second-order modified Bessel function of the second 

kind 

𝑟𝑖   Radius of inner cylinder 

𝑟𝑜  Radius of outer cylinder 

𝑟′ Dimensional radial coordinate 

𝑅  Non-dimensional radial coordinate 

𝑡  Time in non-dimensional form 

𝑡′  Time in dimensional form 

𝑈  non-dimensional velocity 

𝑢′   dimensional velocity 

𝑈𝑜  Reference velocity 

 

Greek symbols 

 

𝛽  Adjustable coefficient in the stress jump condition 

𝛾  Ratio of viscosity 

𝜆  Radii ratio 

𝜈𝑒𝑓𝑓   Effective kinematic viscosity of the porous medium 

𝜈  Kinematic viscosity of the fluid 

𝜌  Density 

 

Subscripts 

 

𝑓  Fluid region 

𝑖  Interface between clear fluid and porous region 

𝑝  Porous region 
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