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 In a previous work, it has been shown that the application of a modified fractional order 

moment (MFOM) estimator leads to the same accuracy as the [zlog(z)] method with lower 

computation complexity. However, undesirable estimation performances have been 

observed for single look data, low sample sizes and large values of the K-distribution shape 

parameter. Moreover, the application of positive and negative order moments estimators 

(PNOME) has a serious impact on the estimation accuracy of the shape parameter. To 

reduce this sensitivity, it is important to apply thresholding approaches in the case of a single 

pulse transmission. To this effect, single and double thresholding estimators are proposed 

in this paper and the Otsu’s algorithm is used to compute underlying thresholds. On the 

basis of Monte-Carlo simulation, the performances of the proposed estimators are assessed 

against moments and [zlog(z)] methods. Experiment examples indicate that the thresholding 

approaches based on the Otsu’s algorithm is more accurate with computational advantages 

than existing estimators. 
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1. INTRODUCTION 

 

Radar clutter echoes consist of radar returns from reflectors 

that are not of interest and often obscure the signals from 

targets that are of interest. With the advent of high resolution 

radars, modelling of sea clutter has attracted the attention of 

researchers from various fields for decades. It is well known 

that the Gaussian model of low-resolution complex 

backscatter has reached its limit in understanding the strong 

spiky returns from ocean waves in high-resolution radar at low 

grazing angles [1, 2]. Performances of detection and tracking 

radar targets in homogeneous and heterogeneous 

environments are highly dependent on the selected clutter 

model. That is why, in real life applications, we often seek for 

adequate distributions in terms of radar parameters and 

background’s statistics. To this end, several types of clutter 

distributions inspired from the generalized compound model 

have been proposed [3]. The first works on sea clutter 

modelling show that two parameters log-normal, Weibull, K, 

Pareto type 2, K-LNT (K log-normal texture) and CG-IG 

(compound Gaussian Invers Gaussian) models have been 

proposed to generally fit empirical non-Gaussian clutter. 

However, thermal system noise and Rayleigh clutter may 

appear as additive quantities to randomly clutter intensities 

where above models are extended to incorporate Gaussian 

noise [2, 4]. These mixture models having three parameters are 

given in integral forms which complicate the development of 

parameter estimation and target detection schemes.  

Estimation of K plus noise distribution parameters has been 

discussed and some interesting approaches with different 

degrees of accuracies are proposed in literatures [4-9]. The 

high order moment estimator (HOME) is obtained as a 

function of the first three intensity moments and involves very 

large data samples [4]. Parametric curve fitting estimator 

(PCFE) proposed in reference [5] provides shape parameter 

values after the optimization of residuals among theoretical 

and real CCDFs (Complementary Cumulative Distributed 

Functions). This method is used to any kind of radar clutter 

model with or without thermal noise. Bocquet [6] derived two 

estimation approaches; the [zlog(z)] method depending on the 

generalized exponential integral function and the constrained 

maximum log likelihood estimator (CMLE) method. Using 

moments of order 1 and 2, fractional order moments (FOME) 

and [zlog(z)] approaches are derived in references [7, 8] in 

terms of the hypergeometric functions. Regarding their heavy 

computational load, these methods achieve accurate estimates 

against HOME and PCFE methods. Recently, the employment 

of two statistical ratios in reference [9] eliminates in fact the 

hypergeometric functions given in reference [7]. More 

precisely, from references [7, 8], the problem of the shape 

parameter estimation was the complexity of numerical 

computations of the hypergeometric functions. The latters are 

eliminated after the manipulation of two statistical ratios with 

a recurrence relation of the hypergeometric functions [9]. The 

resulting estimators are executed in terms of clutter statistics 

and fractional moment order without hypergemetric functions. 

Parameter estimation for a compound radar clutter model with 

trimodal discrete texture is proposed and yield a fairly good 

description of experimental data [10]. 

Compared with the [zlog(z)] method given in reference [8], 

it is observed that the modified FOME (MFOME) given in 

reference [9] method provides similar results for multi-look 

case. However, the latter does not exhibit its effectiveness for 

cases of single look data, low sample sizes and large values of 
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the shape parameter. In the intensity domain, the form of the 

K-clutter plus noise distribution is conventionally given by 
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where, Z is the intensity variable, y is the modulation 

component with a density function py(y), and z|y is the speckle 

component with a conditional pdf pz|y (z|y, N). We denote the 

thermal noise power by 2σ2=pn and assume that the returns 

from N successive pulses are uncorrelated. Random variables 

Z|Y and Y follow gamma distributions with shape parameters 

N and v respectively 
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where, Γ(.) is the gamma function and b the scale parameter. 

Substituting Eq. (2) into Eq. (1), the K clutter plus noise model 

is given by [4, 5] 
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From Eq. (3), moments of order p are given by  
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where, .  denotes expectation. 

Remarkable estimation errors are perceived for cases of 

single look data, low sample sizes and large values of the K-

distributed shape parameter [9]. In addition, the application of 

positive and negative order moments provides different 

degrees of estimation accuracy. Thereby, it is interesting to 

apply thresholding approaches for a single look data. To this 

end, single and double thresholding estimators are proposed 

here and the Otsu’s algorithm is used to compute underlying 

thresholds. Through simulated data, estimation performances 

are compared with existing HOME, MFOME and [zlog(z)] 

approaches. It is shown that small estimation errors are 

obtained by the proposed thresholding approaches with low 

computational complexity. The main contribution of this work 

is the improvements of the shape parameter estimates through 

the combination of estimators given by Sahed and Mezache [9] 

and thresholding techniques based on the Otsu’s algorithm. 

The remaining part of the paper is organized as follows. 

Summary of existing estimators of K-clutter plus noise 

parameter is presented in Section 2. The proposed thresholding 

estimators are given in Section 3. Estimation results of single 

and double thresholding methods are compared with those 

given by HOME and [zlog(z)] approaches in Section 4.  

Finally, conclusions are reported in Section 5.   

 

 

2. OVERVIEW OF K-CLUTTER PLUS NOISE 

ESTIMATORS  
 

Before describing estimators of K-clutter plus noise 

parameters using thresholding approaches, we will summarize 

in this section relevant estimators based on integer moments, 

fractional order moments and log moments. 

 

2.1 HOME method 

 

The HOME method suggests that Eq. (4) can be solved in a 

closed form for integer values of p [4]. That is, by solving the 

integrals for p=1, 2 and 3, the estimate of the shape parameter 

is 
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where, the sample moment �̂�𝑝 of order p is computed from M 

independent and identically distributed (iid) samples of the 

intensity variable Z, 
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�̂�𝑛  and �̂� are expressed in terms of �̂�  and the first two 

moments. 
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The performance of HOME method decreases for low 

sample sizes and low clutter-to-noise ratio (CNR=v/bpn) [5]. 

 

2.2 FOME method 

 

When p is fractional, moments given by Eq. (4) are solved 

in terms of the confluent hypergeometric function, ( ).;.;.
02

F  

[7]. Hence 
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The effective shape parameter, 𝜈eff =
(𝑁+1)⟨𝑧⟩2

𝑁⟨𝑧2⟩−(𝑁+1)⟨𝑧⟩2  is 

substituted into Eq. (8) in order to reduce the estimation 

problem in one dimension. Thus, Eq. (8) becomes 
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After calculating �̂� and �̂�𝑝 from the data, Eq. (9) is solved 

numerically and offers better results with respect to the HOME 

method. Nevertheless, it is noticed that the performance of that 

estimator varies due to numerical computations errors of 

( ).;.;.
02

F  with significant execution time. 

 

2.3 [zlog(z)] method 

 

In [zlog(z)] estimator, log moments denoted by log(Z), 

⟨log(Z)⟩ and Zlog(Z) are employed and the estimates are given 

in terms of ( ).;.;.
02

F  [8] 
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If N>1, Eq. (8) and Eq. (9) are handled to determine a closed 

form of [zlog(z)] estimator in terms of the inverse harmonic 

mean denoted by <Z-1> given by 
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where, ⟨Z⟩, ⟨log(Z)⟩ and ⟨Zlog(Z)⟩
 
are calculated first from the 

data and straightforward computations are carried out to get ̂ . 

  

2.4 MFOME method 

 

For a single look case, recent work presented by Sahed and 

Mezache [9] suggested that closed form estimators of FOME 

method can be obtained after manipulating the following 

statistical ratios. 
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where, p is a positive real and q is an integer. Substituting Eq. 

(8) into Eq. (12) with q=1, Eq. (12) becomes. 
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where, (.,.;.)U  is the Tricomi or the confluent hypergeometric 

function. Using the recurrence relation U(a,b+1,z)=(b-

1+z)U(a,b,z)+(a-b+1)U(a,b-1,z) given by Sahed and Mezache 

[9], it can be seen by replacing, a=v, b=v+p+1 and 
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For N=1 and large sample sizes, the MFOME method given 

by Eq. (15) provides in fact computational advantages 

compared with numerical FOME and [zlog(z)] approaches. 

However, the performance of MFOME method degrades 

against the numerical [zlog(z)] method for both high values of 

v (i.e., v>0.4) and low values of M (M<2000). The question is, 

can one improve the estimation results for low sample sizes 

and high values of v with a small processing time. The next 

section explains how this is possible. 

 

 

3. THRESHOLDING ESTIMATORS 

 

Under the hypotheses of low sample sizes and single pulsed 

waveform operation, it is discussed above that the MFOME 

discussed by Sahed and Mezache [9] is simplest and fastest to 

compute, but it provides poor results for high values of the 

shape parameter (v>0.4) with p>0”. On the other hand, if we 

consider a negative value of p (p=-0.5), best estimates are 

achieved for v>0.6 compared with [zlog(z)] approach as 

shown in Figure 1. Using the MFOME method, either negative 

or positive value of the fractional order affects absolutely the 

estimation precision. To maintain good estimation 

performance along the selected interval of the shape parameter, 

application of an estimation procedure that switches based on 

the Mean Square Errors (MSE) to the modified FOME method 

with p=0.5 denoted by FOME1 or the modified FOME method 

with p=-0.5 denoted by FOME2 is desirable. Such switching 

scheme is equivalent to the application of one or more 

preselected thresholds. For this purpose, two thresholding 

approaches are proposed in this work for accurate estimates of 

K-clutter plus noise parameters. 

 
Figure 1. MSE of v estimates of the K-clutter plus thermal 

noise distribution for M =1000, N =1, CNR =0dB 

  
3.1 Estimation using single threshold 

 

With different values of CNR, the best choice between 

FOME1 and FOME2 methods that provides good estimation 

performance in a given range of v can be seen as a thresholding 

problem. Our first idea to resolve this estimation issue 

encountered [9] would be the use of one threshold, T that 

allows automatic selection among the two estimators. A single 

threshold based estimation method necessitates an a priori 

knowledge of T where a systematic approach for finding the 

optimal value of T that exhibits better estimation results are 

recommended. The maximum variance between clusters 

method also known as the Otsu method [11] used in image 

processing domain is classified as an effective thresholding 

technique for image segmentation. It is an exhaustive 

algorithm of searching the global optimal threshold T between 

two hypotheses (classes) H0 and H1, based on a discriminate 

criterion aiming at maximizing the separability between the 

two classes and thus minimizing their intraclass variance. Otsu 

method is applied in a wide range of domains. A fast region-

based detection model was developed using generalized 

likelihood ratio test (GLRT) and Otsu thresholding technique 

to improve oil spill detection accuracy in Synthetic Aperture 

Radar (SAR) images [12]. In radar target detection application, 

a Constant False Alarm Rate (CFAR) algorithm based upon 

modified Otsu technique is proposed and resulting detection 

performances are analysed by Messina et al. [13]. The Otsu 
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algorithm was also used for finding a threshold between the 

outputs of a deep neural network which represent, during the 

training phase, the values used to indicate the presence or the 

absence of an object [14]. In our case, the two classes represent 

FOME1 and FOME2 methods which give the first estimate of 

v (i.e., 
1

̂ ) and the second estimate of v (i.e., 
2

̂ ) respectively. 

Let fi(X) be the output function of the shape parameter values 

of 
1

̂ and 
2

̂  represented by a 1-D histogram composed of M 

bins. This last is transformed by normalization into a 

probability function p(fi(X)). Let us suppose that along fi(X) 

just two classes lie; namely H0 and H1. We are interested in 

finding a threshold value T that best separate the two classes. 

For a given threshold T, the prior probabilities of H0 and H1 

can be computed as follows: 
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The main idea behind the Otsu’s method is to pick out the 

threshold T that minimizes the intraclass variance of the two 

classes, which is none other than the weighted sum of 

variances of each cluster defined as: 
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where, 2

1
  and 2

0
  are the variance of pixels above and below 

the threshold T respectively, thus an approximation of the 

variance of the classes H0 and H1. Alternatively, we may 

express the minimization process in terms of the between-class 
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TB  variance, which is defined as the substraction of the 

within-class variance 𝜎𝑤
2(𝑇) from the total variance of their 

combined distribution given by: 
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where, the class means are  
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The best threshold T that minimizes the within-classes 

variance )(
2

Tw  is selected as  
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For every bin T (candidate value for the best threshold) of 

the histogram, we thus compute the between-classes variance 

𝜎𝐵
2(𝑇) and we choose the optimum threshold T that maximizes 

it. This process is repeated for each output fi(X) of the vector 

containing values of 
1

̂  and 
2

̂ .  

Based on several values of CNR and  , the search for 

optimality is carried out off-line by the Otsu algorithm. 

Related steps found by Otsu [11] are used here to calculate T 

from 
1

̂  and 
2

̂ : 

 

Step 1: - Generate single look K-clutter plus noise data. 

( )( )Mnbgamrndprndz
n

,,/1,(exp +=   

where ‘exprnd’ and ‘gamrnd’ are Matlab routines used  

for generation of random variables according to  

exponential and gamma laws respectively. 

- Calculate 
eff

 , 
1,p

 and 
1,p

 from a set of the 

data M21 z , ,z ,z  . 

Step 2: - Set p = 0.5 and use (15) to calculate the 1st value of 

̂  denoted by 
1

̂  

Step 3: - Set p = -0.5 and recalculate the 2nd value of v̂  

denoted by 
2

̂    

Step 4: - Create a vector in terms of 
1

̂  and 
2

̂ , i.e.,  

V = [
1

̂ , 
2

̂ ] 

- Create (nxm) matrix M from V (Input of the 

segmentation process) 

- Normalize (rescale) min/max values of V to 0/255 

which represent the 256 intensity level of a pixel in 

the image matrix. 

Step 5: - Generate the histogram, H=hist(M,[0:255]), where 

‘hist’ is the Matlab routine which returns the 

distribution of M among bins with center specified by 

the vector [0:255]. 

Step 6: - Calculate the mean, within-class variance and 

between-class variance.  

Step 7: - Calculate the best threshold �̂� that minimizes the 

within-classes variance (Normalized threshold). 

Step 8: - Calculate the real value of the threshold, 

T=[255*�̂�]/max(V). 

 

The above steps are repeated for different values of CNR 

and   in order to compute the threshold T for the best 

separation of the two estimators. Different threshold estimates 

are obtained and the mean value of these estimates is 

performed to obtain the adequate value of T. The proposed 

single thresholding estimator is executed using the following 

steps:  

 

Step 1: - Generate single look K-clutter+noise data. 

( )( )Mnbgamrndprndz
n

,,/1,(exp +=   

- Calculate
eff

 , 
1,p

 and 
1,p

 from a set of the  

data{𝑧1, z2, … , z𝑀}. 

Step 2: - Set p = 0.5 and use (15) to calculate 
1

̂  

Step 3: - Set p = -0.5 and recalculate 
2

̂  using Eq. (15)  

 - Use T found by the Otsu’s method to compute ̂ . 

  if 
1

̂ < T,  

       �̂� = �̂�1 

  else 

       �̂� = �̂�2 

Step 4: - According to Eq. (7), calculate�̂� , �̂�𝑛  and 𝐶�̂�𝑅 =

�̂�/�̂��̂�𝑛. 
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3.2 Estimation using double threshold 

 

With the aim of obtaining improved estimation results, 

switching procedure between FOME1 and FOME2 given 

above can also be extended by the employment of two 

thresholds T1 and T2 for diverse values of v and CNR. The same 

functionality is considered as before, but the major difference 

is to choose ̂  as the minimum value between �̂�1 and 
2

̂  (i.e., 

�̂� = 𝑚𝑖𝑛( �̂�1, �̂�2) if �̂�1 ∈ [𝑇1, 𝑇2]) where the min and the max 

values of threshold estimates given by the Otsu algorithm are 

used to compute T1 and T2 respectively. Estimation based on 

the double thresholding approach is given by the following 

steps: 
 

Step 1: - Generate iid K-clutter+noise data,  

               {Z1, Z2, …, ZM} 

             - Calculate veff, αp,1 and βp,1. 

Step 2: - Calculate 
1

̂  and 
2

̂ using Eq. (15). 

Step 3: - Use T1 and T2 found by the Otsu’s method to  

               compute ̂ . 

  if 
1

̂ < T1,  

       
1̂

ˆ =v  

  if 
1

̂ > T2,  

       
2

ˆˆ =v  

  if (
1

̂ > T1) and (
1

̂ < T2) 

          )ˆ,ˆmin(ˆ
21

=v  

Step 4: - Use Eq. (7) to calculate b̂ , 
n

p̂  and
n

pbRNC ˆˆ/ˆˆ = . 

 
 

4. ESTIMATION RESULTS 
 

With regard to the proposed thresholding estimation 

methods described earlier, we proceed in this section to carry 

out computer simulations to assess their performances and to 

confirm their applicability. To this effect, we compare the 

estimation performance obtained by the proposed estimators 

against existing HOME, modified FOME and [zlog(z)] 

methods. The bias, the variance and the MSE metric tests are 

used to judge the estimation accuracy of the K-clutter plus 

noise shape parameter. For a single look data, the reference 

window’s length is set to M=700, M=1000 and 2000. K-clutter 

plus thermal noise samples are generated for a range [0.1-1.5] 

of v with different values of the CNR. In all simulations, 

estimates of v are averaged over n=1000 independent trails. As 

described in Section 3, the use of the proposed thresholding 

estimators requires values of T, T1 and T2. For this, the Otsu’s 

algorithm steps given in Section 3 are executed to compute 

corresponding thresholds. Because, the shape parameter 

estimates are related to v and CNR variables (i.e., 𝜈 ∈
[0.1   1.5])and CNR ( ]10  0[ dBdBCNR ). Because, the shape 

parameter estimates are related to v and CNR variables, the 

single threshold T=2.5352 is obtained by the mean of means 

of threshold estimates. More precisely, for each combination 

of v and CNR, the mean of v̂  which represents T is determined 

firstly from n=1000 Monte-Carlo repetitions. After that, the 

resulting estimates of T from all combinations are averaged to 

get the final value of T. Then, the minimum of means and the 

maximum of means are used to select values of T1 and T2 

respectively as depicted from Figure 2 (T1 = 1.0433 and T2 = 

3.9734). 

 
 

Figure 2. Sorted threshold’s means for 𝜈 ∈ [0.1 − 1.5] and 

different CNR values and 20 trials 

 

For different values of v and CNR, subsequent experiments 

deal with the analysis of estimation performances of the 

proposed switching approaches. For comparison purposes, we 

conduct bias and variance of different estimation methods as 

shown in Tables 1 and 2. For instance, we simulate K-clutter 

plus noise data for  =0.1, 0.5, 1 and 1.5, M = 1000, N = 1 and 

three values of CNR (0, 5 and 10 dB). For  =0.1, the obtained 

results clearly show that the single and double thresholds 

techniques offer accurate estimates than the FOME1 (p=0.5) 

with all CNR values. Moreover, with  [0.5, 1.5], CNR=0 

and CNR=5dB, Otsu’s based approaches exhibit best bias 

estimation performances compared with the FOME2 (p=-0.5) 

method which is more accurate than the FOME1 method. 

Roughly speaking, we emphasize that the single threshold 

method provides the best bias estimation performances 

compared with existing estimation methods. For CNR=0dB 

and M=1000, Figure 3 illustrates resulting MSE values of �̂�. 

An horizontal look at this figure shows that the FOME2 

method with p = -0.5 outcomes the worst results in terms of 

low values of   and an overlap of the FOME1 with p=0.5, 

single and double thresholds estimators is observed. Moreover, 

when  increases, MSE estimates of  using thresholding 

based methods are better than those obtained by FOME1, 

FOME2 and [zlog(z)] methods. In this experiment, 

improvements of ̂  along all values of v are achieved by 

means of the Otsu’s based methods. As expected, this kind of 

switching procedures selects effectively the suitable modified 

FOME method with p=0.5 or p=-0.5. As an example of 

estimation comparisons between the proposed thresholding 

approaches with M=700, Figure 4 illustrates the MSE results 

for CNR=0dB. According to this experiment, similar MSE 

curves obtained by the single threshold and double thresholds 

methods are observed except for values of v>0.6 where the 

double threshold method reveals a slight advantage. The 

FOME2 method is less efficient for this case. As a third 

example of estimation comparisons using single threshold, 

double thresholds and FOME2 method, Figure 5 shows the 

MSE curves versus v for M=2000 and CNR=0dB. The 

respective MSE values illustrate clearly the superiority of 

double thresholds based estimator with respect to other 

methods. For CNR=-5dB with the same sample size as before, 

we record other MSE results using the proposed thresholding 

approaches as shown in Figure 6. It is noticed that all 
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estimators give poor results for this case of low CNR and high 

values of v. This is due to the ascendancy of thermal noise on 

the clutter where the estimation of v is difficult and produces 

large errors.   

In order to assess performances of the proposed approaches 

for the case of high CNR (CNR=5dB) and M = 1000, Figure 7 

indicates the best MSE results of single and double thresholds 

methods. For 0.4<v<1, the performance of double thresholds 

method is considerably improved compared with the single 

threshold estimator. Computation time of the proposed 

thresholding estimators are much lower than the numerical 

[zlog(z)] approach. In the light of the above analysis, the 

Otsu’s based estimation methods achieve globally better 

estimation performances than other methods. 

 

Table 1. Bias of v estimates (i.e. |𝐸(𝜈 − �̂�)|) using existing and proposed estimators for M=1000 and N=1  

 
  CNR HOME [zlog(z)] MFOM1 (p=0.5) MFOM2 (p=-0.5) Single threshold Double thresholds 

0.1 

0dB 

0.2585 0.0526 0.0472 0.4139 0.0472 0.0472 

0.5 9.1867e+4 0.3646 4.3832 1.8326 0.4416 0.4817 

1 3.0247e+4 3.3633 31.5963 3.7986 1.4354 1.5421 

1.5 1.0769 e+4 7.0443 1.834 e+3 6.1709 2.1721 2.3116 

0.1 

5dB 

0.2093 0.0323 0.0334 0.1121 0.0334 0.0334 

0.5 1.6866 0.1406 0.1650 0.5608 0.1586 0.1564 

1 899.6082 0.5288 65.0361 0.8864 0.3518 0.3881 

1.5 3.3757e+3 1.8903 3.1740 e+3 1.4004 0.6414 0.7226 

0.1 

10dB 

0.2021 0.0238 0.0248 0.0433 0.0248 0.0248 

0.5 0.8840 0.0703 0.1148 0.1575 0.1148 0.1132 

1 23.2784 0.2478 0.4487 0.3104 0.2603 0.2590 

1.5 9.6863 0.6496 22.0353 0.4689 0.2230 0.2730 

 

 
 

Figure 3. MSE of v estimates of K-clutter plus thermal noise 

distribution for CNR = 0dB and M = 1000  

 

 
 

Figure 4. MSE of v estimates of K-clutter plus thermal noise 

distribution for CNR=0dB and M=700 

 
 

Figure 5. MSE of v estimates v of K-clutter plus thermal 

noise distribution for CNR = 0dB and M = 2000 

 

 
 

Figure 6. MSE of v estimates of K-clutter plus thermal noise 

distribution for CNR=-5dB and M=1000 
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Table 2. Variance of v estimates (i.e. 𝐸[(�̂� − 𝐸[�̂�])2]) using existing and proposed estimators for M=1000 and N=1 

 
  CNR HOME [zlog(z)] MFOM1 (p=0.5) MFOM2 (p=-0.5) Single threshold Double thresholds 

0.1 

0dB 

0.0780 0.0062 0.0064 0.0381 0.0064 0.0064 

0.5 8.4095e+12 0.7475 8.3362 e+3 0.6290 0.8791 0.9811 

1 9.3059 e+11 206.9979 4.5382 e+4 4.4025 7.3816 7.2389 

1.5 3.6165 e+10 187.8564 1.4954 e+9 19.8325 17.5637 16.5407 

0.1 

5dB 

0.0382 0.0024 0.0028 0.0045 0.0028 0.0028 

0.5 68.2367 0.0977 0.1500 0.0558 0.1136 0.1085 

1 3.3240e+8 2.0333 4.0599 e+6 0.2215 0.5670 0.6262 

1.5 5.5027e+9 169.2435 9.9909 e+9 0.6625 1.7136 1.6844 

0.1 

10dB 

0.0379 0.0017 0.0019 0.0018 0.0018 0.0019 

0.5 3.1032 0.0438 0.0625 0.0227 0.0625 0.0596 

1 5.6250e+4 0.3315 1.1050 0.0908 0.2902 0.2982 

1.5 1.9491e+8 2.4487 2.0157 e+5 0.2299 0.2299 0.5866 

 

 
 

Figure 7. MSE of v estimates of K-clutter plus thermal noise 

distribution for CNR=5dB and M=1000 

 

 

5. CONCLUSION 

 

To overcome estimation issues for the case of a single look 

data of K-clutter plus noise parameters using either [zlog(z)] 

or MFOME method, new estimation procedures based on 

switching techniques were proposed in this work. Single 

threshold and double thresholds were considered and Otsu’s 

algorithm was carried out off-line to select appropriate values 

of underling thresholds. Simulation experiments were worked 

out and showed that the single threshold and double thresholds 

based methods start by tracking the FOME1 for low values of 

the shape parameter and then tracks the FOME2 for high 

values of the shape parameter. Compared with existing 

moments methods and numerical [zlog(z)] method, lower 

MSEs of the estimates were achieved by the proposed 

estimators with a small computation time. The extension of 

this work should use adaptive thresholds in order to get better 

estimates particularly in cases of low CNR.   
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