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 For resources in an open environment, the access control rules (ACRs), which are described 

by extensible access control markup language (XACML), might have conflicts between 

each other. To improve the rule management, the root causes of rule conflicts must be 

identified. This paper firstly formally models the resource attributes by dynamic description 

logic (DDL), and then investigates inference problems like attribute consistency and rule 

satisfiability by setting up concept, instance and action knowledge bases. Next, DDL-based 

rule conflict detection algorithms were designed to identify possible rule conflicts. Finally, 

the feasibility and decidability of the proposed algorithms were verified through 

experiments on expanded Continue dataset. The research results provide new insights to the 

detection of conflicts between resource authorization rules (RARs). 
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1. INTRODUCTION 

 

In an open environment, resources are often scheduled and 

accessed through the collaboration and combination among 

multiple organizations and systems. The access control rules 

(ACRs) for descriptive attributes of inter-domain resources 

need to be maintained and updated by decision makers from 

other domains. This cross-domain resource access control 

mode raises new requirements for ACR formulation and 

verification. 

For one thing, the knowledge sharing and permission 

coverage might exist in the conceptual structure and 

correlations of resource attributes. For another, the intra-

domain resources could be combined and migrated at any time, 

and ACR authorization and revocation add difficulty to rule 

management, pushing up the possibility of conflicts between 

resource authorization rules (RARs). 

Most access control systems provide mitigating methods for 

the above-mentioned rule conflicts, namely, prioritizing 

“allow”, “deny”, or “use” permissions. Focusing only on the 

final judgement of the rules, these mitigation methods merely 

ensure the determinism of the evaluation for access control 

system. For resource visitors and rule makers, the process and 

causes of rule conflicts are not available, making it impossible 

to find the source of conflicts from the structure of resource 

attributes and RARs. 

Considering the RAR conflicts in a distributed environment, 

this paper probes into the mitigating methods adopted in 

extensible access control markup language (XACML). The 

ACRs were formally expressed by dynamic description logic 

(DDL). The possible RAR conflicts were verified through 

model inference.  

 

 

 

2. LITERATURE REVIEW 

 

As a description standard for RARs, the XACML [1] was 

formulated by Organization of the Advancement of Structured 

Information Standard (OASIS) to promote the consistency of 

ACR descriptions on the network layer. With a fine-grained 

description method for attribute authorization and an easily 

expandable form of rule description, the XACML offers a 

suitable tool to describe the access control and authorization 

of distributed resources.  

In recent years, the XACML has been frequently adopted 

for logic description and reasoning of ACRs in distributed 

environments. Facing the heterogeneous Internet of things 

(IoT), Atlam et al. [2] depicted the ACRs of lightweight IoT 

devices with the XACML, and designed a distributed and 

flexible cross-domain resource access control method. Based 

on the grammar rules of the XACML, the designed method 

expands the application scope and enhances the fault tolerance 

and authorization validation of the original model. Focusing 

on cloud service application scenarios in health services, 

Ayache et al. [3] developed an XACML-based cloud service 

for verifying ACRs, which realizes data sharing, task 

invocation and activity coordination across service domains. 

Kanwal et al. [4] tackled the security of data release and 

sharing of electronic medical records in a hybrid cloud 

environment, made fine-grained XACML description of 

resource ACRs in that environment, and thereby improved the 

capabilities of the ACRs in privacy protection and access 

control. For safe access to IoT devices in distributed network, 

Charaf et al. [5] proposed an XACML-based access control 

method for terminal devices, which is reliable, available and 

confidential.  
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Damiano et al. [6] applied blockchain technology to 

describe ACRs and establish a decentralized trust verification 

mechanism for cross-domain resources. Specifically, the 

security performance of resource attributes was subject to fine-

grained description, and the attributes and rules were linked to 

the blockchain in the form of smart contract. The proposed 

mechanism was validated in the Ethereum environment. Based 

on the blockchain technology, Ma et al. [7] created a 

distributed key management architecture for the hierarchical 

access control of the IoT. The architecture satisfies the demand 

for access control of cross-domain cloud services, supports 

decentralized and fine-grained verification of attributes, and 

integrates privacy protection into the ACRs. Zyskind and 

Nathan [8] combined blockchain technology and off-chain 

storage into a data management platform for privacy 

protection. In the platform, the access control process mainly 

focuses data reading, failing to form a complete access control 

system. Sukhodolskiy and Zapechnikov [9] put forward an 

access control method for data storage in a cloud environment. 

Wang et al. [10] realized data storage and sharing without the 

participation of providers, using Ethereum and an attribute-

based access control method. Furthermore, many other 

researchers have studied the access control strategy described 

by XACML about Policies formalization [11], Automatic 

Testing [12], Model testing [13], policy tracing [14], 

automated fault localization [15]. 

The above studies mainly explored the access control 

mechanism of cross-domain resources in different application 

environments, and developed some mitigation methods for 

rule conflicts based on the XACML. Most of these methods 

mitigate the impact of rule conflicts on the authorization 

process from the perspective of authorization results. However, 

the nature of the mitigation has not been analyzed from the 

angles of rule description and attribute structure, weakening 

the ability of reasoning and verification. The XACML-based 

rule combination algorithms neglect the attributes and the 

underlying causes leading to rule conflicts, and overlook the 

influence of rule correlations and attribute hierarchy on the 

rule conflicts. To make up for the gaps, the rule conflicts 

should be detected and mitigated before judging the 

authorization, using the reasoning ability of dynamic 

description logic (DDL). In this way, the security management 

personnel in the domain can discover rule conflicts in time, 

find the reasons of conflicts, and simplify the relevant rules. 

 

 

3. DDL-BASED AUTHORIZATION AND REASONING 

MODEL 

 

The attributes of cloud resources have an abundance of 

semantic ontology descriptions, making the authorization 

reasoning between resources a possibility. Here, the ontology 

language of resource attributes is mapped to the DDL language 

environment, and the resource authorization is formally 

verified by the DDL reasoning mechanism. 

 

3.1 Attribute-based access control model 

 

The modelling of attribute access control mainly describes 

the knowledge of TBox, ABox, and ActBox. As shown in 

Figure 1, the attribute-based fine-grained access control model 

encompasses a concept sub-model, an instance sub-model, and 

an action sub-model. 

The TBox knowledge uses axioms to systematically 

describe the conceptual structure of ontology resources. The 

structured knowledge can depict the inheritance and inclusion 

semantics expressed by attributes. 

The ABox knowledge mainly verifies whether the 

conceptual implication relationship (CIR) of instance 

attributes is consistent.  

The ActBox knowledge mainly describes the necessary 

conditions, formula set, and result set for resource 

authorization. The actions in the ActBox fall into atomic 

authorization action, combined authorization action and 

transfer authorization action. 

 

3.1.1 Concept sub-model 

The hierarchical conceptual knowledge in TBox lays the 

basis for judging the completeness of resource instance set. 

This subsection defines the concept sub-model through formal 

description, paving the way for DDL reasoning. 

Definition 1. Concept sub-model ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡: For TBox T in 

knowledge base KB, there exists a concept sub-model 

ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡(𝐴1, 𝐴2, … ) ⊨ Τ. 

(1) If and only if any concept in Τ contains axiom 𝐴 ≡ 𝐴′, 

there exists an interpretation I(ω) that satisfies 𝐴𝐼(𝜔) ≡ 𝐴′𝐼(𝜔) 

in any space ω of the world W. 

(2) If and only if any relationship in Τ contains axiom 𝑅 ⊑

𝑅′ , there exists an interpretation I(ω) that satisfies 𝑅𝐼(𝜔) ⊆

𝑅′𝐼(𝜔) in any space 𝜔 of the world W. 

 
 

Figure 1. The attributed-based fine-grained access control model 
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3.1.2 Instance sub-model 

The resource instances in ABox are formal resource 

descriptions based on the ontology resource model, providing 

the basic information of resources. These instances are 

essential to judging the realizability of authorization actions. 

Hence, it is necessary to verify the satisfiability of the concept 

sub-model for each instance. The instance sub-model is 

defined as follows: 

Definition 2. Instance sub-model ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒: For ABox A 

and TBox T in knowledge base KB, there exists an instance 

sub-model ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑎1, 𝑎2, … ) ⊨ Τ. If and only if 𝑎1 ∈ 𝐴, 

I(A) is an instance sub-model ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 in Τ. 

 

3.1.3 Action sub-model 

The action sub-model is the abstract description of fine-

grained access control and authorization. Each authorization 

action is formally depicted as a transition between instance 

sub-models realized by the assignment of a formula set. With 

the action sub-model, the decision-maker can assign values 

from the instance set in ABox to each action, judge the 

realizability of the action, and determine whether the resources 

are suitable for authorization access. 

Definition 3. Action sub-model ℳ𝐴𝑐𝑡𝑖𝑜𝑛: According to the 

authorization rules in ActBox ACT, there exists an assignment 

𝛶ℱ in the precondition set ℱ  that makes instance sub-model 

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃
 satisfy the preconditions of action 𝛼 =

(ℱ, ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃
/ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸

) , and transfers the result into 

another instance sub-model ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸
. The action sub-model 

can be denoted as ℳ𝐴𝑐𝑡𝑖𝑜𝑛(𝛼, 𝛽 … ) ⊨
∃𝛶ℱ , ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃

→𝛼
𝛾

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸
. 

 

3.2 Reasoning based on the authorization model 

 

The preceding subsection models the authorization in 

resource access control, using TBox, ABox, and ActBox in 

knowledge base KB. The established authorization model can 

be reasoned based on the inference engine. 

During the authorization, the reasoning task mainly checks 

the consistency of concepts and instances, the realizability of 

authorization actions, and the containment between actions. 

The consistency check ensures that the instances in each ABox 

satisfy the attributes and attribute correlations of conceptual 

knowledge structure. The realizability check reflects whether 

an authorization action on resources is achievable. The 

containment check clarifies the partial ordering of 

authorization actions among resources, and helps to reduce 

redundant RARs. The consistency, realizability, and 

satisfiability in model reasoning are defined as follows: 

 

3.2.1 Consistency of concepts and instances 

The consistency reasoning targets the instances and 

concepts in ABox and TBox under the static scene. The 

reasoning deals with the satisfiability of concepts in TBox, and 

the instance checking and consistency judgement of ABox 

instances under the constraint of TBox. 

Definition 4. Concept satisfiability: Any concept A in 

concept sub-model ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡  is satisfiable, if there exists an 

interpretation 𝐼ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡 ≠ ∅ for that concept in the model. 

Definition 5. Instance checking: For instance sub-model 

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 , there exists an interpretation 𝐼ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ≠ ∅  of 

instance 𝐶(𝑎) about the model in ABox A. 

Definition 6. Instance consistency: For instance sub-model 

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 , there exist two instances 𝐶(𝑎), 𝐶 ∈ 𝑇𝐵𝑜𝑥 𝑇. The 

instance consistency can be denoted as 𝐴𝐼(𝑇) ⊨ 𝐶(𝑎). 

For a given instance ABox A, it should first satisfy the 

requirement of instance checking, that is, there exists a concept 

that matches this instance. Next, the concept should be 

satisfiable, as evidenced by the interpretation of TBox in the 

concept sub-model. Then, the instance consistency can be 

checked by detecting the conflicts between ABox and the 

concepts in TBox. 

 

3.2.2 Realizability 

The realizability check of authorization actions is a dynamic 

reasoning in access control. The realizability of complex 

actions can be extended from the realizability of atomic 

authorization actions. 

Definition 7. Realizability of authorization actions: The 

atomic authorization action 𝛼 is realizable, if the instance sub-

model ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ⊆ 𝐼(𝑢) = (Δ,∙ 𝐼(𝑢)) and concept sub-model 

ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡 ⊆ 𝐼(𝑣) = (Δ,∙ 𝐼(𝑣))  in the initial ABox A 

description and TBox T satisfy 𝑢 →ℱ
ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑣 . The 

realizability can be denoted as 𝑅𝑒𝑙𝐼(𝑢)
𝑇 (𝛼). 

The realizability of an atomic authorization action contains 

the satisfiability of the preconditions and the consistency of 

the instances in ABox. The ABox instances in interpretation 

𝐼(𝑢) can be judged by the instance consistency check, and 

those in interpretation 𝐼(𝑣)  can be judged by the concept 

consistency check in TBox. Then, it can be determined 

intuitively that there is no inconsistency between the 

preconditions and the consequences of the authorization action. 

The realizability of complex actions can be described as 

follows: 

For combined authorization actions, the realizability can be 

expressed as: 𝑅𝑒𝑙𝐼(𝑊)
𝑇 (𝑃𝐴) ⇒ 𝑅𝑒𝑙𝐼(𝑢)

𝑇 (𝛼)⋁𝑅𝑒𝑙𝐼(𝑢′)
𝑇 (𝛽)⋁ ⋯; 

For transfer authorization actions, the realizability can be 

expressed as: 𝑅𝑒𝑙𝐼(𝑊)
𝑇 (𝑃𝐴) ⇒ 𝑅𝑒𝑙𝐼(𝑢)

𝑇 (𝛼)⋀𝑅𝑒𝑙𝐼(𝑢′)
𝑇 (𝛽)⋀ ⋯. 

 

3.2.3 Satisfiability 

The satisfiability of an authorization action is mainly judged 

based on the satisfiability of the precondition set of the action. 

The latter is verified against the given TBox, ABox, and 

ActBox. 

Definition 8. Satisfiability of authorization actions: For the 

given TBox, ABox, and ActBox, an action 𝛼  with a 

precondition or precondition set ℱ is satisfiable if: 

The atomic action with ℱ as the precondition is realizable 

in T and A; 

There exists a possible space 𝜔 making (ℳ, 𝜔) ⊨ ℱ. 

 

 

4. XACML-BASED RULE CONFLICT DETECTION 

 

In the XACML-based resource authorization framework, 

there are two kinds of assignments, namely, permit and deny. 

Permit allows the subject to acquire the resource access right, 

and deny rejects the subject’s access request. Each request for 

resource access may have different authorization results, 

causing rule conflicts [16-18]. 

From the hierarchical inheritance of attribute concepts, this 

section analyzes the causes of rule conflicts. The attribute-

based fine-grained access control mode was adopted to derive 

the CIRs in attribute hierarchy, and thus detect rule conflicts.
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Figure 2. The hierarchy of RAR conflicts 

 

4.1 Types of rule conflicts 

 

The rule authorization effect depends on whether the subject 

is permitted to access or denied from accessing the requested 

resource. For the attributes of the subject, rule conflicts may 

arise from the CIRs in concepts and instances; for the 

attributes of the resource, rule conflicts may arise from the 

CIRs. The potential rule conflicts are classified as Figure 2, 

where AS is subject attribute, AO is resource attribute, hollow 

arrow is the implication and inheritance between attribute 

concepts, the plus sign is permit, and the minus sign is denied. 

For subject attributes, the lower attributes inherit the rights 

of the upper attributes. For resource attributes, the lower 

attributes are the fine-grained expression of the upper 

attributes. As shown in Figure 2, the RARs were divided into 

eight types (a)-(h) according to the CIRs of subjects and 

resources, the granularity of resource attributes, and the 

requirements on permit and deny. The difference between 

RAR types comes from the hierarchy of conceptual knowledge. 

The following analyzes the possible rule conflicts in each type 

of RARs. Note that Rule1 and Rule2 are denoted as action sub-

models ℳ𝐴𝑐𝑡1
 and ℳ𝐴𝑐𝑡2

, respectively. 

 

(a) ℳ𝐴𝑐𝑡1
⊨ 𝐴𝑆 →

𝛼+
𝛾

𝐴𝑂1, ℳ𝐴𝑐𝑡2
⊨ 𝐴𝑆 →𝛼−

𝛾
𝐴𝑂2 

{
ℳ𝐴𝑐𝑡1

⇏ ℳ𝐴𝑐𝑡1
′ ⊨ 𝐴𝑆 →

𝛼+
𝛾

𝐴𝑂2

ℳ𝐴𝑐𝑡2
⊨ 𝐴𝑆 →𝛼−

𝛾
𝐴𝑂2

} ⇏ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2  

 

In Figure 2, (a) and (b) describe the authorization of 

hierarchical resources to the same subject. AS means the 

permit for coarse-grained attribute AO1. The permit cannot be 

inherited by the fine-grained attribute AO2, that is, there exists 

no interpretation of action sub-model ℳ𝐴𝑐𝑡1
′  that meets the 

permit for AO2. Therefore, the two RAR actions will not have 

any conflict. 

 

(b) ℳ𝐴𝑐𝑡1
⊨ 𝐴𝑆 →𝛼−

𝛾
𝐴𝑂1, ℳ𝐴𝑐𝑡2

⊨ 𝐴𝑆 →
𝛼+
𝛾

𝐴𝑂2 

{
ℳ𝐴𝑐𝑡1

⇒ ℳ𝐴𝑐𝑡1
′ ⊨ 𝐴𝑆 →𝛼−

𝛾
𝐴𝑂2

ℳ𝐴𝑐𝑡2
⊨ 𝐴𝑆 →

𝛼+
𝛾

𝐴𝑂2

} ⇒ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡
ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2  

 

If the access to coarse-grained resource attributes is denied, 

the deny will be inherited by the lower fine-grained resource 

attributes, that is, there exists an interpretation of action sub-

model ℳ𝐴𝑐𝑡1
′  to meet the deny of fine-grained attribute AO2. 

In this case, the RARs will conflict each other. 

 

(c) ℳ𝐴𝑐𝑡1
⊨ 𝐴𝑆1 →

𝛼+
𝛾

𝐴𝑂, ℳ𝐴𝑐𝑡2
⊨ 𝐴𝑆2 →𝛼−

𝛾
𝐴𝑂 

{
ℳ𝐴𝑐𝑡1

⇒ ℳ𝐴𝑐𝑡1
′ ⊨ 𝐴𝑆2 →

𝛼+
𝛾

𝐴𝑂

ℳ𝐴𝑐𝑡2
⊨ 𝐴𝑆2 →𝛼−

𝛾
𝐴𝑂

} ⇒ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2  

 

(c) and (d) are the resource authorization of subject 

attributes with CIRs. In the case of (c), the permit of AS1 for 

AO can be transferred to its sub-attribute AS2, such that there 

exists an interpretation of action sub-model ℳ𝐴𝑐𝑡1
′  that permits 

AS2 to access AO. This conflicts with the deny of the other rule 

ℳ𝐴𝑐𝑡2
. 

 

(d) ℳ𝐴𝑐𝑡1
⊨ 𝐴𝑆1 →𝛼−

𝛾
𝐴𝑂, ℳ𝐴𝑐𝑡2

⊨ 𝐴𝑆2 →
𝛼+
𝛾

𝐴𝑂 

{
ℳ𝐴𝑐𝑡1

⇒ ℳ𝐴𝑐𝑡1
′ ⊨ 𝐴𝑆2 →𝛼−

𝛾
𝐴𝑂

ℳ𝐴𝑐𝑡2
⊨ 𝐴𝑆2 →

𝛼+
𝛾

𝐴𝑂
} ⇒ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡

ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2  

 

Both (c) and (d) are resulted from the authorization 

inheritance of subject and resource attributes. In the case of (d), 

the deny of AS1 for AO leads to the deny of AS2 for AO, that is, 

there exists an interpretation of action sub-model ℳ𝐴𝑐𝑡1
′  that 

denies AS2 from accessing AO. This conflicts with the permit 

of the other rule ℳ𝐴𝑐𝑡2
. 

 

(e) ℳ𝐴𝑐𝑡1
⊨ 𝐴𝑆1 →𝛼−

𝛾
𝐴𝑂2, ℳ𝐴𝑐𝑡2

⊨ 𝐴𝑆2 →
𝛼+
𝛾

𝐴𝑂1 

{
ℳ𝐴𝑐𝑡1

⇒ ℳ𝐴𝑐𝑡1
′ ⊨ 𝐴𝑆2 →𝛼−

𝛾
𝐴𝑂2

ℳ𝐴𝑐𝑡2
⇏ ℳ𝐴𝑐𝑡2

′ ⊨ 𝐴𝑆2 →
𝛼+
𝛾

𝐴𝑂2

} ⇏ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2  

 

(a)-(d) are four basic RARs of atomic level attributes. 

Considering more complex situations, (e) describes the cross-

authorization of hierarchical subjects and resources. The 

subject attributes can inherit the authorization effect of the 

upper attributes according to the CIRs. Hence, there exists an 

ℳ𝐴𝑐𝑡1
′  that denies AS2 from accessing AO2. Since the permit 

for a coarse-grained resource attribute cannot be inherited by 

lower fine-grained attribute, there is no ℳ𝐴𝑐𝑡2
′  that describes 

the permit for AO2. In this case, the two rules will not have any 

conflict. 

 

(f) ℳ𝐴𝑐𝑡1
⊨ 𝐴𝑆1 →

𝛼+
𝛾

𝐴𝑂2, ℳ𝐴𝑐𝑡2
⊨ 𝐴𝑆2 →𝛼−

𝛾
𝐴𝑂1 

{
ℳ𝐴𝑐𝑡1

⇒ ℳ𝐴𝑐𝑡1
′ ⊨ 𝐴𝑆2 →

𝛼+
𝛾

𝐴𝑂2

ℳ𝐴𝑐𝑡2
⇒ ℳ𝐴𝑐𝑡2

′ ⊨ 𝐴𝑆2 →𝛼−
𝛾

𝐴𝑂2

} ⇒ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2  

 

The cross-authorization of (f) is opposite to the effect of (e). 

In this case, the CIR of each subject attribute make it possible 

to transfer permit to sub-attribute AS2. Hence, there exists an 

ℳ𝐴𝑐𝑡1
′  that allows AS2 to access AO2. Meanwhile, the deny for 

coarse-grained resource attribute AO1 can be inherited by 

lower fine-grained attribute AO2. Thus, there exists an ℳ𝐴𝑐𝑡2
′  

that denies AS2 from accessing AO2. As a result, the two rules 

will have conflict. 

 

(g) ℳ𝐴𝑐𝑡1
⊨ 𝐴𝑆1 →

𝛼+
𝛾

𝐴𝑂1, ℳ𝐴𝑐𝑡2
⊨ 𝐴𝑆2 →𝛼−

𝛾
𝐴𝑂2 
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{
ℳ𝐴𝑐𝑡1

⇒ ℳ𝐴𝑐𝑡1
′ ⊨ 𝐴𝑆2 →

𝛼+
𝛾

𝐴𝑂1

ℳ𝐴𝑐𝑡2
⊨ 𝐴𝑆2 →𝛼−

𝛾
𝐴𝑂2

} ⇏ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2  

 

(g) and (h) are two parallel authorizations. (g) describes the 

different authorization effects between upper resource 

attributes to upper subject attributes. The subject attribute AS1 

transfers the permit for AO1 to the lower sub-attribute AS2 via 

the CIR. Hence, there exists an ℳ𝐴𝑐𝑡1
′ that allows AS2 to access 

AO1. For action sub-models ℳ𝐴𝑐𝑡1
′  and ℳ𝐴𝑐𝑡2

, (g) can be 

transformed into atomic authorization (a). Therefore, the two 

rules will have no conflict. 

 

(h) ℳ𝐴𝑐𝑡1
⊨ 𝐴𝑆1 →𝛼−

𝛾
𝐴𝑂1, ℳ𝐴𝑐𝑡2

⊨ 𝐴𝑆2 →
𝛼+
𝛾

𝐴𝑂2 

{
ℳ𝐴𝑐𝑡1

⇒ ℳ𝐴𝑐𝑡1
′ ⊨ 𝐴𝑆2 →𝛼−

𝛾
𝐴𝑂1

ℳ𝐴𝑐𝑡2
⊨ 𝐴𝑆2 →

𝛼+
𝛾

𝐴𝑂2

} ⇒ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡
ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2  

 

Similar to the conflict analysis of (g), the subject attribute 

AS1 in the case of (h) transfers the deny for AO1 to the lower 

sub-attribute AS2 via the CIR. Hence, there exists an ℳ𝐴𝑐𝑡1
′  

that denies AS2 from accessing AO1. For action sub-models 

ℳ𝐴𝑐𝑡1
′  and ℳ𝐴𝑐𝑡2

, (h) can be transformed into (b). Therefore, 

the two rules will have conflict. 

 

4.2 DDL-based conflict detection 

 

From the above analysis on the types of rule conflicts, the 

possible situations of rule conflicts can be divided into four 

kinds of atomic authorizations (a)-(d). Based on the subject 

CIRs and inheritance of resource granularity, the cases (e)-(h) 

could be transformed into (a)-(b). 

Among the four cases, no conflict will occur in (a), for the 

permit for coarse-grained resource attribute AO1 cannot be 

transferred to lower fine-grained attribute AO2. In the other 

three cases, rule conflicts may occur due to the presence of 

CIR and deny transfer to fine-grained attributes. To detect the 

conflicts between XACML rules, two issues must be taken 

into account: the CIRs and type of authorization between 

subject AS and resource AO. 

To facilitate the description of the permit and deny in 

XACML rules, the action sub-model was divided into a set of 

positive interpretations ℳ𝐴𝑐𝑡
𝑃𝑒𝑟𝑚𝑖𝑡 ≡ 𝐴𝑆 →

𝛼+
𝛾

𝐴𝑂 and a set of 

negative interpretations ℳ𝐴𝑐𝑡
𝐷𝑒𝑛𝑦

≡ 𝐴𝑆 →𝛼−
𝛾

𝐴𝑂 . Depending 

on the authorization effect, the RAR with resource is included 

in different interpretation sets. In case (a), ℳ𝐴𝑐𝑡1
∈ ℳ𝐴𝑐𝑡

𝑃𝑒𝑟𝑚𝑖𝑡 

and ℳ𝐴𝑐𝑡2
∈ ℳ𝐴𝑐𝑡

𝐷𝑒𝑛𝑦
. Besides, the subject attributes needed 

for each authorization action were represented by an 

interpretation of an instance sub-model ℳ𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃

ℱ , where ℱ 

is the precondition made up of subject attributes. The 

authorized resource attributes were represented by another 

instance sub-model ℳ𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸
. Next, the rule conflicts were 

detected from subject and resource attributes, respectively. 

The inputs of Algorithm 1 include the positive RAR set 

ℳ𝐴𝑐𝑡
𝑃𝑒𝑟𝑚𝑖𝑡  and the negative RAR set ℳ𝐴𝑐𝑡

𝐷𝑒𝑛𝑦
, as well as the 

conceptual knowledge base TBox T. The algorithm detects the 

rule conflicts arising from the hierarchical inheritance of the 

resource attributes accessed by the subject, and returns a 

conflict symbol 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2 . 

In Lines 1 and 2, positive RARs and negative RARs in the 

rules are traversed. The action sub-models are expressed as 

ℳ𝐴𝑐𝑡1
 and ℳ𝐴𝑐𝑡2

. If there exists an assignment 𝛾ℱ that makes 

instance ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃
 satisfy the preconditions of ℳ𝐴𝑐𝑡1

 and 

ℳ𝐴𝑐𝑡2
 (Line 3), and if there exist concept sub-models 

ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝐸1

𝐼  and ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝐸2

𝐼  that satisfy instances among the 

authorization objects ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸1
 and ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸2

 of the 

rules (Line 4), then the satisfiability of the concept sub-models 

will be judged by TBox T. If TBox T contains the deny for 

fine-grained resource attributes, i.e. there exists a CIR 

ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝐸2
⊑ ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝐸1

, then the rules will conflict as in 

case (b).  

 

Algorithm 1. Rule conflict detection based on the 

hierarchy of resource attributes  

Inputs: ℳ𝐴𝑐𝑡
𝑃𝑒𝑟𝑚𝑖𝑡;  

   ℳ𝐴𝑐𝑡
𝐷𝑒𝑛𝑦

;  

   TBox T;  

Outputs: 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2  

1: For each ℳ𝐴𝑐𝑡1
 in ℳ𝐴𝑐𝑡

𝑃𝑒𝑟𝑚𝑖𝑡  do 

2:   For each ℳ𝐴𝑐𝑡2
 in ℳ𝐴𝑐𝑡

𝐷𝑒𝑛𝑦
 do 

3: ∃𝛾ℱ, ℳ𝐴𝑐𝑡1
⊨ ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃

→𝛼−
𝛾

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸1
 AND 

ℳ𝐴𝑐𝑡2
⊨ ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃

→
𝛼+
𝛾

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸2
; 

4: ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸1
 ⊨ ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝐸1

𝐼  , ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸2
⊨ ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝐸2

𝐼 ; 

5:   If ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝐸2
⊑ ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝐸1

 ,in T then 

6:     𝐶𝑜𝑛𝑓𝑖𝑐𝑡𝐷𝑖𝑠𝑠𝑜𝑙𝑣𝑒(ℳ𝐴𝑐𝑡1
 , ℳ𝐴𝑐𝑡2

); 

7:     Return true; 

8:     Else 

9:     Return false; 

10:   End if 

11:   End for each 

12:   End for each 

 

Then, the conflicting action sub-models are processed: the 

permit ℳ𝐴𝑐𝑡2
 for fine-grained resource attributes is deleted to 

terminate the inheritance between resource attributes (Line 6). 

If there is a permit for coarse-grained resource attributes, or if 

the rule sets contain no assignment that meets the requirements, 

then the rule sets do not contain rule conflicts (Case a). 

Algorithm 1 mainly detects the RAR conflicts arising from 

the inheritance between resource attributes (Cases a and b). 

The algorithm locates the conflicting rules, and calls the 

conflict mitigation function to handle these rules. 

TBox provides a hierarchical relationship reflecting the 

concepts of resource attributes, and determines the existence 

of rule conflicts by verifying the ⊆  relationship between 

resource attributes. This CIR belongs to the problem of 

concept consistency verification in description logic. 

The rule conflicts arising from the hierarchy of subject 

attributes can also be detected by verifying the ⊆ relationship 

(Algorithm 2). 

Similar to those of Algorithm 1, the inputs of Algorithm 2 

contain rule sets and the conceptual knowledge base. The 

algorithm detects the rule conflicts arising from the hierarchy 

of subject attributes, and returns a conflict symbol. 

The algorithm firstly traverses the rule sets (Lines 1 and 2). 

Under the following conditions, the rules will have conflicts 

of types (c) and (d): there exist the assignments 𝛾ℱ1  and 𝛾ℱ2  

among subject attributes that make instance sub-models 

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃1
 and ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃2

 satisfy the preconditions of 

ℳ𝐴𝑐𝑡1
 and ℳ𝐴𝑐𝑡2

, respectively (Line 3); TBox T contains 

interpretations ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑃1

𝐼  and ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑃2

𝐼  that satisfy 
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concept sub-models (Line 4); the concept sub-models have the 

CIR (Line 5). 

Then, the conflicting rules are processed: the lower subject 

attributes are deleted to keep the consistency between the 

authorization of higher subject attributes (Line 6). If there is 

no CIR between subject attributes, then the rule sets will not 

face any rule conflict arising from the hierarchy of subject 

attributes. 

The above-mentioned atomic RAR conflicts can be detected 

and resolved by the two algorithms. The complex and cross-

authorizations can be handled similarly. 

 

Algorithm 2. Rule conflict detection based on the 

hierarchy of subject attributes 

Inputs: ℳ𝐴𝑐𝑡
𝑃𝑒𝑟𝑚𝑖𝑡;  

    ℳ𝐴𝑐𝑡
𝐷𝑒𝑛𝑦

;  

   TBox T;  

Output: 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡
ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2  

1: For each ℳ𝐴𝑐𝑡1
 in ℳ𝐴𝑐𝑡

𝑃𝑒𝑟𝑚𝑖𝑡  do 

2:   For each ℳ𝐴𝑐𝑡2
 in ℳ𝐴𝑐𝑡

𝐷𝑒𝑛𝑦
 do 

3:   ∃𝛾1
ℱ1  , 𝛾2

ℱ2 , ℳ𝐴𝑐𝑡1
⊨ ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃1

→
𝛼+
𝛾1 ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸

 

AND ℳ𝐴𝑐𝑡2
⊨ ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃2

→𝛼−
𝛾2 ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸

; 

4: ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃1
⊨ ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑃1

𝐼 , ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃2
⊨ ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑃2

𝐼 ; 

5:   If ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑃2
⊑ ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑃1

 in T then 

6:     𝐶𝑜𝑛𝑓𝑖𝑐𝑡𝐷𝑖𝑠𝑠𝑜𝑙𝑣𝑒(ℳ𝐴𝑐𝑡1
 , ℳ𝐴𝑐𝑡2

); 

7:     Return true; 

8:     Else 

9:     Return false; 

10:   End if 

11:   End for each 

12:   End for each 

 

4.3 DDL-based reasoning 

 

The DDL can reason about the ACR authorization based on 

the process and transfer, and provide the reasoning ability for 

the global rule library via the Tableau algorithm. In rule 

conflict detection, the reasoning mainly covers two aspects: if 

the rule conflict arises from the hierarchy of attributes, the key 

is to validate the CIR that interprets the instance sub-model; if 

the rule conflict arises from RAR transfer, the key is to verify 

the consistency between the assertion sets of RAR action and 

instance sub-models. These reasoning problems are 

comparable to the satisfiability problem and the consistency 

detection problem in the DDL [19, 20]. 

Definition 9. Concept sub-models ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡1
and ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2

 

satisfy the CIR ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡1
⊑ ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2

, if and only if TBox T 

contains an interpretation I that makesℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡1
𝐼 ⊆ ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2

𝐼 . 

Theorem 1. The CIR ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡1
⊑𝑇 ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2

 holds 

between the concept sub-models in TBox T, if and only if 

ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡1
𝐼 ⊓ ¬ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2

𝐼  is unsatisfiable, i.e. ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡1
𝐼 ⊓

¬ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2
𝐼 = ∅. 

If TBox T contains an interpretation I that makes two sub-

models ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡1
 and ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2

 satisfy the CIR, and if there 

exists a concept model ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡1
𝐼 ⊓ ¬ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2

𝐼 ≠ ∅  that 

satisfies T, then there exists an instance sub-model 

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
𝐼 ∈ ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡1

𝐼  that satisfies interpretation I. Due to 

the existence of the CIR, there also exists ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
𝐼 ∈

ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2
𝐼 , which contradicts ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1

𝐼 ∈ ¬ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2
𝐼 . 

Hence, no such instance exists in ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
𝐼 ⊓ ¬ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2

𝐼 . 

Definition 10. If the two assertions ℱ1 and ℱ2 in instance 

sub-models ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
 and ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2

 that transfer RAR 

results obey ℱ1 ⊓ ℱ2 = ∅, then the two instance sub-models 

are inconsistent, i.e. ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
⊓ ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2

= ∅. 

The satisfiability verification of the DDL can be achieved 

by the Tableaux algorithm [19]. The reasoning verification of 

two concept or instance sub-models can be realized by the 

following rules. 

Take the satisfiability verification of instance sub-models 

for example. By the following rules, an expansion set ℰ𝒮 of 

attributes can be extended from ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
 and ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2

. 

Then, the satisfiability of the two sub-models can be evaluated 

by judging whether the expansion set brings rule conflicts. If 

the expansion set contains ⊥ , then the two sub-models are not 

satisfiable, and face rule conflicts. 

⊓ rule: If there exists an interpretation I in TBox T that 

makes ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
𝐼 ⊓ ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2

𝐼 ∈  ℰ𝒮 ( ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
𝐼 ∉

ℰ𝒮, ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
𝐼 ∉ ℰ𝒮 ), then {ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1

, ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
} should 

be expanded to ℰ𝒮;  

⊔rule: If there exists an interpretation I in TBox T that 

makes ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
𝐼 ⊔ ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2

𝐼 ∈  ℰ𝒮  ( ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
𝐼 ∉

ℰ𝒮 , ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
𝐼 ∉ ℰ𝒮  ), then ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒∗

 should be expanded 

to ℰ𝒮 , where ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒∗
= ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1

𝐼  or ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒∗
= 

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
𝐼 ; 

∃ rule: If there exists an interpretation I in TBox T that 

makes ∃𝑅. ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
𝐼 ∈  ℰ𝒮 , and 

∄ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
𝐼 , 𝑅(ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1

𝐼 , ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
𝐼 ∈ ℰ𝒮, ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2

𝐼 ∈

ℰ𝒮 ), then {ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
, 𝑅(ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1

, ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
)} should be 

expanded to ℰ𝒮; 

∀ rule: If there exists an interpretation I in TBox T that 

makes ∀𝑅. ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
𝐼 ∈  ℰ𝒮 , ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2

𝐼 ∉  ℰ𝒮 , then 

{ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
} should be expanded to ℰ𝒮;  

Action 𝛼 rule: If there exist an interpretation I in TBox T 

and an assignment set 𝛾ℱ  that make 

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
𝐼 ⟶𝛼

ℱ ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
𝐼 ( ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2

∈ ℰ𝒮 ), then 

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
 should be replaced with ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2

 in ℰ𝒮. 

Theorem 2. Reliability: The DDL-based rule conflict 

detection is reliable. 

The DDL-based rule conflict detection method targets two 

kinds of rule conflicts in authorization: the conflicts arising 

from the hierarchy of attributes and those arising from the 

transfer of authorization.  

For the first kind of rule conflicts, the implication and 

inheritance relationships that stem from the hierarchy of 

attributes can be converted by Algorithms 1 and 2 into the 

CIRs in TBox for satisfiability verification. The satisfiability 

problems can be solved by the Tableaux algorithm in 

description logic. 

For the second kind of rule conflicts, the rule conflict 

detection can be converted by RAR transfer rules into the 

satisfiability problem of instance sub-models of the 

authorization results.  

Action α rule is derived from the DDL description and 

reasoning mechanism. The correctness of the algorithm can be 

ensured by replacing elements in the extended set. Therefore, 

the DDL-based rule conflict detection must be correct. 

Theorem 3. Decidability: The DDL-based rule conflict 

detection is decidable. 

The above-mentioned rules can solve the rule conflict 

detection problem, for the problem can be converted into the 

satisfiability and consistency reasoning problems in the DDL. 
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Among these rules, ⊓ , ∃  and ∀  rules can be completed in 

polynomial time. Despite the uncertainty of its completion 

time, ⊔  rule is a complete binary tree in the worst-case 

scenario, which can be completed in a limited time. Action α 

rule contains replacement operations, which can also be 

completed in a limited time. The final judgement based on the 

extension set has two results ⊥ and ⊺. Therefore, The DDL-

based rule conflict detection is decidable. 

 
 

5. EXPERIMENTAL VERIFICATION 

 

5.1 Experimental environment 

 

The DDL-based reasoning of RAR conflicts between fine-

grained resource attributes was verified through experiments 

on rule inference and conflict detection. As shown in Figure 3, 

the experimental model contains three main parts: an 

XACML-DDL converter, a rule analyzer, and an output 

generator. 

The XACML-DDL converter is responsible for converting 

XACML rules into DDL semantics. During the working, the 

converter firstly traverses the element nodes in each rule, and 

loads the information of the corresponding rule. Then, the 

DDL-Converting is called to convert the information into a 

rule described in DDL language. Based on the instance and 

concept sub-models in the PIP ontology library, the rule 

analyzer performs logic reasoning on the rules described in 

DDL language, and feedbacks the reasoning results and 

anomaly handling to the output generator. 

The rule inference components include attribute matching 

(Comparison), satisfiability verification (Verification) and 

conflicting rule checking (Conflict Checking). The rule 

analyzer provides an inference engine interface, allowing 

different DL inference engines (e.g. Pellet, Fact++, and Racer) 

[21-23] to participate in the rule inference of description logic. 

During Tableau-based rule inference, the inference engine is 

supported by the data from the ontology library provided by 

the decision-maker. The rules being inferred and their 

inference results are forwarded by the rule analyzer to the 

output generator for further processing. The output generator 

aggregates the abnormal rules into a rule set and feeds it back 

to the rule administrator, who will handle the abnormal rules. 

The experimental data consists of two parts: Continue 

dataset and its expansion. Continue dataset was adopted by the 

XACML rule analyzer Margrave [24, 25], which is based on 

binary decision diagram (BDD). This dataset was selected to 

validate the XACML-based DL inference engine. The 

Continue dataset contains various complex and available 

XACML rules, which control the access of qualified users to 

article resources. A total of 26 rule files are provided in the 

dataset, including 86 RARs and 37 kinds of elements about 

user and article attributes. There are five description structures 

for identities and roles: pc-member, pc-chair, subreviewer, 

editor and admin. As shown in Table 1, the inheritance 

relationship in the dataset has a maximum of four layers: 

𝑝𝑐𝑀𝑒𝑚𝑏𝑒𝑟 ≺ 𝑝𝑐𝐶ℎ𝑎𝑖𝑟 ≺ 𝑠𝑢𝑏𝑅𝑒𝑣𝑖𝑒𝑤𝑒𝑟 ≺ 𝑒𝑑𝑖𝑡𝑒𝑟 ≺
𝑎𝑑𝑚𝑖𝑛. 

The Continue dataset was also expanded, according to the 

situation in lightweight applications of attribute set and rule 

set in the IoT. The attribute descriptions of resources were 

refined, and the descriptions of IoT resource attributes were 

added to the original dataset. The expansion process is detailed 

in the next subsection. 

Four layers of inheritance relationships may exist, 

depending on the identities and roles. The number of service 

attributes in the rules of the dataset and the number of rules is 

denoted as ⋕ ∑ 𝑎𝑡𝑏𝑠𝑟𝑢𝑙𝑒  and ⋕ ∑ 𝑟𝑢𝑙𝑒𝑠𝑝𝑜𝑙 , respectively. 

Different layers of inheritance may have the same RAR. The 

greater the number of inheritance layers, the more the attribute 

values in the rules. The experiments were carried out on Intel 

Pentium 4 2.4GHz CPU, 2GB memory, Windows XP SP3, and 

Java Runtime Environment 1.6. 
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Figure 3. Analysis framework of rule inference experiments 

 

Table 1. Inheritance relationships between attributes 

 

Inheritance relationship CIR # ∑ 𝒂𝒕𝒃𝒔𝒓𝒖𝒍𝒆 , # ∑ 𝒓𝒖𝒍𝒆𝒔𝒑𝒐𝒍 

One-layer inheritance (admin, editor) 9, 24 

Two-layer inheritance (editor, subreviewer) (admin, subreviewer) 16, 33 

Three-layer inheritance (subreviewer, pc-chair) (editor, pc-chair) (admin, pc-chair) 28, 42 

Four-layer inheritance 
(pc-chair, pc-member) (subviewer, pc-member) (editor, pc-

member) (admin, pc-member) 
31, 69 
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Table 2. Time overheads of inference engines on authorization reasoning (unit: second) 

 

Inheritance relationship 
Pellet Racer Fact++ Margrave 

Loading Verify Loading Verify Loading Verify Loading Verify 

One-layer inheritance 0.715 0.582 0.746 0.631 0.683 0.660 0.915 0.014 

Two-layer inheritance 0.752 0.577 0.781 0.659 0.714 0.689 1.298 0.019 

Three-layer inheritance 0.929 0.625 0.912 0.647 1.057 0.729 1.553 0.026 

Four-layer inheritance 1.602 0.697 1.419 0.720 1.377 0.741 2.084 0.028 

 

5.2 Performance evaluation 

 

Rules with different inheritance layers were selected from 

the dataset to measure the time overhead of loading and 

reasoning for Continue dataset rules on the experimental 

platform. The time overhead on the platform is made up of the 

rule loading time (Loading) and rule verification time (Verify). 

The former refers to the time to traverse the elements in 

XACML rules and convert them into DDL logic description. 

The latter refers to the time to logically reason about DDL 

formal models based on the PIP. 

The time overheads of four inference engines, namely, 

Pellet, Racer, Fact++ and Margrave, were compared. The first 

three inference engines are grounded on DDL formal 

descriptions, and the formal description and reasoning of the 

last engine are based on the BDD. 

Firstly, a rule instance needs to be converted into a formal 

DDL description. Take a one-layer inheritance rule in 

Continue dataset for example. If the subject is an admin or 

editor, then the meetingflag of the conference turntable can be 

modified. The assertion P of the rule can be converted into a 

DDL formal description. In the sub-instance model, the 

instances and actions satisfy: 𝑃 ≡

(∃ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒
𝐴𝑑𝑚𝑖𝑛 ⨆ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒

𝐸𝑑𝑖𝑡𝑜𝑟 ) ⊓ ∃ℳ𝐴𝑐𝑡𝑖𝑜𝑛
𝑊𝑟𝑖𝑡𝑒 ⊓ ∃ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒

𝑀𝑒𝑒𝑡𝑖𝑛𝑔𝐹𝑙𝑎𝑔
. 

Then, the satisfiability of the DDL formal description can be 

verified by the inference engine. 

The time overheads of each inference engine on inheritance 

rules of different layers were recorded on the experimental 

platform (Table 2). 

As shown in Table 2, the DL-based inference engines 

differed slightly in time overhead in the rule loading phase. 

Their time overheads were basically 1s, which is smaller than 

the BDD-based Margrave. The superiority of DL-based 

inference engines comes from the convenient conversion of 

XACML resource attributes into DL descriptions. Compared 

with Margrave, the DL-based inference engines are strong and 

efficient in formal expression of subjects, resources and RAR 

ontologies in the XML format. 

In the verification phase, Margrave had an obvious 

advantage, as its time overheads were basically on the order of 

10ms. This inference engine has a high efficiency in assertion 

verification, due to the rule inference based on the BDD. As 

for the three DL-based inference engines, the time overhead in 

rule inference and verification basically stabilized within 1s. 

The mean time overhead of Pellet stood at 0.6s, and that of 

Racer and Fact++ fell between 0.6s and 0.8s. Considering the 

actual application environment, the time overheads of DL-

based inference engines, coupled with XACML conversion 

mechanism, are acceptable in the verification phase. 

The Continue dataset offers a limited number of attributes 

and rules, which are insufficient to effectively simulate the 

application environment of the access authorization for cloud 

resources. Therefore, the dataset was expanded from two 

aspects, aiming to disclose the effects of the massive resources 

and RARs in cloud environment on the time overhead in DDL 

reasoning. 

(1) Expanding attribute values without changing rule 

structure 

Each attribute description in a rule was expanded by adding 

new attribute values. First, a similar attribute list 
{𝑣1, 𝑣1, ⋯ , 𝑣𝑙𝑖𝑚𝑖𝑡} was prepared for each attribute description 

in the rule, where limit is the threshold for the scale of attribute 

expansion. Next, each element node in the rule is traversed. If 

the original attribute value 𝑣  was detected, it would be 

replaced by a random attribute in the similar attribute list. The 

expansion was terminated once all attribute values were 

replaced. The hierarchy of attributes was not changed through 

the expansion. 

(2) Expanding rule set 

The original rule set was expanded to increase the number 

of rules available. Specifically, a new reference node was 

added to the root node rule file (RPSlist.xml) in the Continue 

dataset. Under the node, new rules were generated by the 

XACML rule generator [26]. During the generation, the 

number of generated rules was controlled by configuring the 

following parameters: the maximum depth of rule tree 

(maxDepth), the maximum number of attributes 

(maxAttributePerCategory), the maximum attribute value 

(maxValuesPerAttribute), and the maximum number of rules 

(maxChildren). The attributes in the expanded rules must be 

those s that already exist in the Continue dataset. 

The number of attributes and rules in the expanded 

Continue dataset could be controlled according to the 

experimental needs. 

To verify the time overheads in conflict detection in Table 

2, three experiments were designed to reveal (1) the effects of 

growing number of rules on the time overheads in detecting a 

single rule conflict, (2) the time overheads in detecting 

multiple rule conflicts at a fixed number of rules, and (3) the 

effects of the number of attributes on the efficiency of conflict 

detection. 

 

 
 

Figure 4. Effects of the number of rules on time overhead in 

detecting a single conflict 
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Figure 5. Effects of the number of rules on time overhead in 

detecting multiple conflicts 

 

 
 

Figure 6. Effects of the number of attributes on the 

efficiency of conflict detection 

 

In Experiment 1, six rule sets containing rule conflicts were 

selected from the expanded Continue dataset. The six sets 

include 50, 75, 100, 125, 175, and 200 rules, respectively. The 

algorithms in Subsection 4.2 were applied to detect the single 

rule conflict in these sets. The time overheads in conflict 

detection are recorded as Figure 4. 

In Experiment 2, the number of rules in the rule set was 

controlled at 126. The proposed algorithms were adopted to 

detect the multiple rule conflicts. The time overheads in 

conflict detection are recorded as Figure 5. 

The experimental results demonstrate that the efficiency of 

the conflict detection algorithms depends on the number of 

rules and conflicts in the rule set. As shown in Figure 4, the 

time overhead in detecting a single conflict increased linearly 

with the number of conflicts in the rule set. As shown in Figure 

5, the time overhead in detecting multiple conflicts also 

increased linearly with the number of conflicts, except slight 

fluctuations at some nodes. For example, the time overhead in 

detecting 9 conflicting nodes differed from that in detecting 19 

nodes. However, the fluctuation of time overhead was within 

2s, and the time overheads for neighboring nodes exhibited no 

significant changes. Hence, the fluctuations can be neglected 

in actual applications. To sum up, the efficiency of conflict 

detection is basically linearly correlated with the number of 

conflicts. The proposed algorithms could detect the conflicts 

in the expanded Continue dataset within polynomial time, 

which satisfies the description in Theorem 3. 

In Experiment 3, the Continue dataset was expanded by 

increasing attribute values without changing rule structure. 

Five rule sets with the same number of rules (175) were 

selected for the experiment. The number of attributes in the 

five sets was 27, 49, 65, 81 and 107, respectively. According 

to the hierarchical inheritance relationship among the policies, 

the data in five data sets are classified as four data groups. The 

proposed algorithms were adopted to detect the rule conflicts 

in these four data groups. The time overheads in conflict 

detection are recorded in Figure 6. 

The four rule sets, which have different layers of inheritance, 

performed differently with the changing number of attributes. 

With the growing number of attributes, the time overheads of 

all four sets in conflict detection increased. The reason is that 

the addition of attributes increases the traversal time of all 

resource attribute nodes. The time overheads increased 

linearly with the number of attributes, which are acceptable on 

the expanded Continue dataset. 

Owing to the difference in inheritance relationship, the four 

rule sets also differed in the time overhead under the same 

number of attributes. The difference is attributable to the 

following factors: a lower rule set has a smaller time overhead, 

because it contains fewer rules and the CIRs between its 

concepts could be computed in a shorter time. With the growth 

in the number of attributes, the time overhead difference 

between the rule sets continued to widen. This means, when 

the number and structure of rules remain the same, the number 

of attributes is the main influencing factor of the time overhead 

in conflict detection. 

 

 

6. CONCLUSIONS 

 

The XACML, as an attribute-based ACR description 

language, is suitable for authorizing access to resources in an 

open environment. Focusing on the possible RAR conflicts, 

this paper explores the causes of rule conflicts, and formally 

describes resource attributes with the DDL. Next, problems 

like attribute consistency and rule satisfiability were examined 

by setting up concept, instance and action knowledge bases. 

Then, a conflict detection algorithm was designed to identify 

the rule conflicts arising from the hierarchy of resource 

attributes. The algorithm relies on Tableau rules to detect rule 

conflicts in the light of satisfiability. The reliability and 

decidability of the algorithm were fully demonstrated. After 

that, three experiments were carried out to verify the feasibility 

of DDL-based authorization and reasoning, and to analyze the 

actual time overheads in loading and verification phases on 

expanded Continue dataset. The efficiency of the proposed 

algorithm was analyzed from three aspects: the number of 

rules, the number of conflicts, and the hierarchy of attributes. 

The results show that the DL-based inference is decidable in 

polynomial time.  
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