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1. INTRODUCTION 

 

The traditional hardware implementation of image 

processing uses Digital Signal Processors (DSP) or 

Application Specific Integrated Circuits (ASIC). However, 

the growing need for faster and cost-effective systems 

triggers a shift to Field Programmable Gate Arrays (FPGA), 

where the inherent parallelism results in better performance. 

When an application requires real-time processing, like video 

or television signal processing or real-time trajectory 

generation of a robotic manipulator, the specifications are 

very strict and are better met when implemented in hardware. 

Computationally demanding functions like convolution 

filters, motion estimators, two-dimensional Discrete Cosine 

Transforms (2D DCT) and Fast Fourier Transforms (FFT) are 

better optimized when targeted on FPGA [1-4]. Features like 

embedded hardware multipliers, increased number of 

memory blocks and system-on-a-chip integration enable 

video applications in FPGA that can outperform conventional 

DSP designs. 

On the other hand, solutions to a number of imaging 

problems are more flexible when implemented in software 

rather than in hardware, especially when they are not 

computationally demanding or when they need to be executed 

sporadically in the overall process. Moreover, some hardware 

components are hard to be re-designed and transferred on a 

FPGA board from scratch when they are already a functional 

part of a computer-based system. Such components are frame 

grabbers and multiple-camera systems already installed as 

part of an imaging application or other robotic control 

equipment. 

Following the above considerations we conclude that it is 

often needed to integrate components from an already 

installed computer-based imaging application dedicated to 

some automation system, with FPGA-based accelerators that 

exploit the low-level parallelism inherent in hardware 

structures. Thus a critical need arises for an embedded 

software/hardware interface that can allow for high-

bandwidth communication between the host application and 

the hardware accelerators. 

In this paper we apply and evaluate the performance of an 

example mixed hardware design that includes on the one side 

a host computer running imaging application, equipped with a 

camera and a frame-grabber, and on the other side a XILINX 

FPGA board [5] running an image filter hardware accelerator 

and other system components. The communication channel 

transferring image data from the host computer to the 

hardware board is a high-speed USB3.0 port. The various 

hardware parts and external circuit on the FPGA board are 

controlled. As a result of this evaluation one can explore the 

range of applications suitable for a host/co-processor 

architecture including an embedded processor and utilizing a 

USB3.0 communication channel. 

In the following, we first give a short account of the tools 

we used for system design. We also present an overview of 

the particular image filtering application we embedded in the 

FPGA chip for the evaluation of the host/co-processor system 

architecture. We describe the modular interconnection of 

different system parts and assess the performance of the 

system. We examine the speed and frame-size limits of such a 

design when it is dedicated to image processing finally. 
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2. IMAGE PROCESSING ALGORITHMS 
 

Low-level Vision 3x3 Gaussian pyramid Algorithm: two 
dimensional low-pass filters, such as the Gaussian low-pass 
filter, work with a filter kernel, calculate an average value for 
a destination pixel using a number of neighboring source 
pixels. The two dimensional Gaussian filter is shown in 
following figure1. 

When dealing with digital images integer weighting factors 
are used. A typical 3x3 Gaussian filter matrix and the 
decimation of the pixels are shown in Figure 1. The anchor 
point of the Gaussian filter kernel is marked with an “X”. 

 

 
 

Figure 1. Gaussian pyramid filter 3x3 kernel 
 

Obviously for every calculated pixel one neighboring 
pixels in both dimensions are required. Therefore, this 
function uses a Region of Interest (ROI). With every 
Gaussian pyramid level the number of pixels in x- and y-
coordinates is reduced by a factor of 1. 

According to Gaussian calculation method for using the 
neighbor pixels window 3x3 or 5x5 to get the new pixel data, 
taking into consideration that their differences in their 
kernel’s size. Taking into consideration that; expressing the 
kernel operation in each frame process can be decomposed 
into block processing mode, and this block has the same 
processing function and the number and size determine 
degree of algorithm parallelism. 

The degree of parallelism for one (256x256) image frame 
is 256x3 or 256x5 delay element blocks respectively with. 
Computing time is determined by number of machine cycle to 
get the first frame pixel plus number of a whole frame pixels 
calculated in the pipe line, total number of machine cycles = 
9 + 256*256 = 65,545 machine cycle. Working with 
frequency 100MHz (10nSec) we found that time = 10nSec * 
65,545 = 0.6554 mSec almost 0.66 mSec for single frame. So 
from that; we defined a new general structure design of fast 
image processing as we will explain later. This process and 
technique for Gaussian 3x3 and Gaussian 5x5 will have the 
same speed of calculations versus using a little more of 
FPGA utilization resources. 

Edge detection is the name for a set of mathematical 
methods which aim at identifying points in a digital imageat 
which the image brightness changes sharply or, more 
formally, has discontinuities. The points at which image 
brightness changes sharply are typically organized into a set 
of curved line segments termed edges. The same problem of 
finding discontinuities in 1D signal is known as step 
detection and the problem of finding signal discontinuities 
over time is known as change detection. Edge detection is a 

fundamental tool in processing, machine and computer vision, 
particularly in the areas of feature detection and feature 
extraction. 

The purpose of detecting sharp changes in image 
brightness is to capture important events and changes in 
properties of the world. It can be shown that under rather 
general assumptions for an image formation model, 
discontinuities in image brightness are likely to correspond to: 
discontinuities in depth; discontinuities in surface orientation; 
changes in material properties and variations in scene 
illumination. 
 
 
3. DESIGN TOOLS OVERVIEW 
 

The design of a DSP system with FPGA often utilizes both 
high-level algorithm development tools and hardware 
description language (HDL) tools. It can also make use of 
third-party intellectual property (IP) cores implementing 
typical DSP functions or high speed communication protocols. 

In our application we use model-based design tools like 
The Math works Simulink (based on Math work’s MATLAB) 
with the libraries of XILINX’s IP core. The core uses model 
design to produce and synthesize HDL code, which can then 
be integrated with other hardware design files within a 
synthesis tool, like the ISE 14.4 development environment. In 
the present work, we designed image filter components using 
IP libraries and the resulting blocks were integrated with the 
rest of the system in XILINX’s Embedded Development Kit 
(EDK) Builder. 

EDK-Builder design software resides as a tool in the 
XILINX environment [6]. Its purpose is to integrate an 
embedded software processor like Platform Studio (XPS) 
with hardware logic and custom or standard peripherals 
within an overall system, often called Embedded 
Development Kit (EDK). EDK-Builder provides an interface 
fabric in order to interconnect the Platform Studio processing 
path with embedded and external memory, the filter co-
processors, other peripherals and the channels of 
communication with the host computer. 

On the host side one may develop a control application by 
means of any suitable language like C. We use software by 
National Instruments Corporation [10], which provides a very 
flexible platform for image acquisition, image processing and 
industrial control. 

 
 

4. SYSTEM DESIGN AND IMPLEMENTATION OF 
THE FILTER DESIGN  
 

The proposed methodology and its corresponding 
architecture for the image processing are illustrated in Fig. 2. 
It describes the architecture in the camera in which data 
acquisition; signal processing and communication capabilities 
are embedded. 

The main target of this work is to evaluate the performance 
of a host/co-processor architecture including an embedded 
processor and utilizing a communication channel between 
host and hardware board, like a USB3.0 channel. The task-
logic performed by the embedded accelerator can be any 
image function within the limitations of existing FPGA 
devices. 

For our purpose we built a typical image-processing 
application in order to target the FPGA co-processor. It 
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consists of a noise filter followed by an edge-detector. Noise 
reduction and edge detection are two elementary processes 
required for most machine vision applications, like object 
recognition, medical imaging, lane detection in next-

generation automotive technology, people tracking, control 
systems, etc. 
 

 
 

Figure 2. System architecture 
 

We model noise and edge filtering using the XILINX’s 
DSP Libraries in Simulink. An example of this procedure can 
be found in. Noise reduction is applied with a Gaussian 3x3 
kernel while edge detection is designed using typical Prewitt 
or Sobel filters. These functions can be applied combined in 
series to achieve edge detection after noise reduction. Apart 
from noise and edge filter blocks, there is also a block 
representing the intermediate logic between the MicroBlaze 
data and control paths and our filter task logic. Such 
intermediate hardware fabric follows a specific protocol 
referred to as Avalon interface. This interface cannot be 
modeled in the Simulink environment and is rather inserted in 
the system as a verilog file. Design examples implementing 
the Avalon protocol can be found in XILINX reference 
designs and technical reports. In brief, our Avalon 
implementation consists of a 16-bit data-input and output 
path, the appropriate Read and Write control signals and a 
control interface that allows for selection between the 
intermediate output from the Gauss filter and the output from 
the edge detector. Data input and output to and from the task 
logic blocks is implemented with the help of Read and Write 
instances of a 4800 bytes FIFO register. 

Each image frame when received by the hardware board is 
loaded into an external SDRAM memory buffer and is 
converted into an appropriate 16-bit data stream by means of 
MicroBlaze instruction code. Data transfer between external 
memory buffers and the MicroBlaze data bus is achieved 
through Direct Memory Access (DMA) operations controlled 
by appropriate instruction code for the MicroBlaze soft 
processor.  

Incoming pixels are processed by means of a simple 2D 
digital Finite Impulse Response (FIR) filter convolution 
kernel, working on the gray scale intensities of each pixel’s 
neighbors in a 3x3 region. Image lines are buffered through 
delay-lines producing primitive 3x3 cells where the filter 
kernel applies. A delay block produces a neighboring pixel in 
the same scan line, while a 640 delay block produces the 
neighboring pixel in the previous image scan line. We assume  

image size of 640x480 pixels. The line-buffer circuit is 
implemented in the same manner for both noise and edge 
filters. Frame resolution is incorporated in the line-buffer 
diagram as a hardware built-in parameter. If a change in 
frame size is required we need to re-design and re-compile. 
The number of delay blocks depends on the size of the 
convolution kernel, while delay line depth depends on the 
number of pixels in each line. Each incoming pixel is at the 
center of the mask and the line buffers produce the 
neighboring pixels in adjacent rows and columns. Delay lines 
with considerable depth are implemented as dedicated RAM 
blocks in the FPGA chip and do not consume logical 
elements. 

After line buffering, pipeline adders and embedded 
multipliers calculate the convolution result for each central 
pixel. The model-design for implementation of the 3x3 Gauss 
kernel calculations. Logic-consuming calculations, like 
multiplications are implemented using dedicated multipliers 
available in medium-scale XILINX FPGA. 

5. EDK SYSTEM DESIGN 

The co-processor parts described above were implemented 
as components of an embedded system controlled by a 
MicroBlaze processor, and are shown in Fig.3. The 
MicroBlaze software which is used here for data streaming 
control is often the basis for industrial as well as academic 
projects. It can be used in its evaluation version along with 
the tools for assembling and downloading instruction code. 
Once installed within the synthesis software, the MicroBlaze 
processor becomes integrated as a library component in 
XILINX’s EDK-builder tool. 

EDK-Builder converts the model-based design into HDL 
code appropriate for integration with other hardware 
components. The filter is readily recognized by the synthesis 
software as a System-on-a-Programmable-Chip (SOPC) 
module and can be integrated within a MicroBlaze system 
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with suitable hardware fabric [7]. Other modules that are 
necessary for a complete system are the MicroBlaze soft 
processor, external memory controllers, DMA channels, and 
a custom IP peripheral for high speed USB communication 
with the host. A VGA controller can be added in order to 
monitor the result on an external screen. Many of such 
peripheral functions can be found as open source custom 
HDL Intellectual Property (IP) or as evaluation cores 
provided by XILINX or third party companies. 

 USB 3.0 high speed connectivity is added to the FPGA 
board by means of a daughter-card by System Level 
Solutions (SLS) Corporation. It can be added to any XILINX 
board featuring a Santa-Cruz peripheral connector. This 
daughter-card provides an extension based on CY7C68000 
PHY USB3.0 transceiver. A USB3.0 IP core compliant with 
Transceiver Macrocell Interface (UTMI) protocol allows 
integration of the USB function with the MicroBlaze system. 

We tested evaluation versions of the IP core and present 
practical transmit and receive rates. The FPGA chip along 
with the embedded MicroBlaze processor is always a slave 
device in the communication via the USB channel, while the 
host computer is always the master device. 

The embedded system is assembled by means of the 
SOPC-Builder tool of the synthesis software, by selecting 
library components and defining their interconnection. After 
being generated by SOPC Builder, the system can be inserted 
as a block in a schematic file for synthesis and fitting 
processing. The only additional components that are 
necessary are PLLs for Nios and memory clocking. After we 
synthesize and simulate the design by means of the tools 
described in Section 2, we target a FPGA chip incorporated 
on a development board manufactured by Altera Corporation. 
The board also features external memory and several typical 
peripheral circuits. 

 

 
 

Figure 3. EDK architecture 

6. SYSTEM PERFORMANCE EVALUATION 

Integrated Software Environment (ISE14.4) software for 
FPGA and Matlab Math-works (R2011a) software both were 
used for design, validate and simulate our general structure 
fast image design, the FPGA embedded system used was 
from Xilinx Company product Kintex-7. 

FPGA resources consummated due to our proposed design 
in Xilinx Kintex-7 number XC7K160T, that DSP48 slices is  
 
 

 
 
2% in Gaussian kernel size 3x3 and 5% in Gaussian kernel 
size 5x5. Also umber of number of Digital Clock Manager 
(DCM) and other resources almost the same. Finally The 
main target is to see the both low level different kernel 
algorithm deals with real image with the size of 256x256 in 
figure 4-a and the output image result from applying 
Gaussian filter 3x3 shown in figure 4-b and edge filter result 
image in 4-c. 
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(a) Original image               (b) Gaussian Filter 3x3 
 

 
 

(c) Edge filter 
 

Figure 4. Result of successive processing 

7. CONCLUSIONS 

The great advantage in our design implementation on 
FPGA is that whatever the kernel size and more usage of 
DSP48 slice the time difference is slightly change not the 
same as if we were using C language Programming technique, 
designing fast image algorithm main concerns is accuracy 
and reducing the time as minimum as possible which we 
applied the high accuracy by using DSP slice 18bit by 18 bit 
in multiplication and 48 bit in addition, in the other hand by 
using the implementation target is an FPGA instead of DSP 
we reduce the total image frame processing time. 
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