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‘We address the classical bearings-only tracking problem
(BOT) for a single object, which belongs to the general class
of nonlinear filtering problems. Recently, algorithms based on
sequential Monte-Carlo methods (particle filtering) have been
proposed. As far as performance analysis is concerned, the
posterior Cramér-Rao bound (PCRB) provides a lower bound on

under a
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by the inverse Fisher information matrix (FIM). The latter is

the mean square error. CI

named “asymp

computed using Tichavsky’s recursive formula via Monte-Carlo
methods. Two major problems are studied here. First, we show
that the asymptoti biased
by an assumption which is more meaningful. Second, an exact

ption can be replaced

algorithm to compute the PCRB is derived via Tichavsky’s
recursive formula without using Monte-Carlo methods. This result
is based on a new coordinate system named logarithmic polar
coordinate (LPC) system. Simulation results illustrate that PCRB
can now be computed accurately and quickly, making it suitable
for sensor management applications.
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NOTATION

Logarithmic polar coordinates

Modified polar coordinates

Bearings-only tracking

X, Target state in Cartesian coordinate system

Y, Target state in LPC system

n, Size of target state (n, = 4)

= Inequality R*=S means that R — S is positive
semi-definite matrix

Id, n x n identity matrix

{0 o n x m matrix composed of zero element

® Kronecker product

X* Denotes transpose of matrix X

X3 =E{X*Q"'X} where X is column vector

6 Dirac delta function

A Laplacian operator

v Gradient operator

det(X) Determinant of matrix X

pdf Probability density function
=1d, + 6,B with B = [0 I] ®1d,

H

6]
=(, )i

. Q3
=Y ®Id, with ¥ = ( ~
Gy

(0]

)

In many applications (submarine tracking, aircraft
surveillance), a bearings-only sensor is used to collect
observations about target trajectory. This problem
of tracking has been of interest for the past thirty
years. The aim of bearings-only tracking (BOT) is to
determine the target trajectory using noise-corrupted
bearing measurements from a single observer. Target
motion is classically described by a diffusion model!
so that the filtering problem is composed of two
stochastic equations. The first one represents the
temporal evolution of the target state (position and
velocity) called state equation. The second one links
the bearing measurement to the target state at time ¢
(measurement equation).

One of the characteristics of the problem is the
nonlinearity of the measurement equation so that the
classical Kalman filter is not convenient in this case.
We can find in literature two kinds of solutions to
this problem. The first one, proposed by Lindgren
and Gong in [2], consists of deriving a pseudolinear
measurement equation. Then, a Kalman filter can be
used to solve the problem. The stochastic stability
analysis of the estimates had been addressed by Song
and Speyer in [3]. However, Aidala and Nardone
show in [4] that this approach produces bias range
estimates which can be reduced if the observer

0}

I. INTRODUCTION

I'See [1] for an exhaustive review on dynamic models.
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executes a maneuver. Consequently, bias range can

be estimated as soon as it becomes observable [5]. A
second idea consists of using the extended Kalman
filter (EKF) in a Cartesian coordinate system to

solve the problem. However, simulations show that
this algorithm is often divergent due to the weak
observability of range [6-8]. To remedy this problem,
Aidala and Hammel in [9] proposed an EKF using
another system named modified polar coordinate
(MPC) system whose one salient feature is that range
is not coupled with the observable components. This
constitutes a neat improvement. Another solution
proposed by Peach in [10] is a range-parametrized
EKEF, in which a number of EKF trackers parametrized
by range run in parallel. Recently, particle filtering
algorithms have been proposed in this context
[11-13]. In [14], Arulampalam and Ristic compare the
particle filter with the range-parametrized and EKF in
MPC system; while a comprehensive overview of the
state of art can be found in [15].

As far as performance analysis is concerned, the
posterior Cramér-Rao bound (PCRB) proposed in [16]
is widely used to assess the performance of filtering
algorithms, by the tracking community [17-20] and in
particular in the bearings-only context [15, 21, 22].
The PCRB gives a lower bound for the error
covariance matrix (ECM). More precisely, under a
technical assumption, the PCRB is the inverse of
the Fisher information matrix (FIM). A seminal
contribution on performance analysis is the paper
from Tichavsky, et al. [23]. Here, the authors noticed
that only the right lower block of the FIM inverse was
of interest for investigating tracking performance. This
was the key idea for deriving a practical updating
formula for the PCRB. Recently, PCRB has been
used for various sensor management problems like
automating the deployment of sensors in [24] or
determining the optimal sensor trajectory in the
bearings-only context in [25]. Moreover, PCRB
can be used to schedule active measurements in a
system involving active and passive subsystems.

This application is addressed in the simulation
section.

However, some problems remain to be solved.

In this paper, two major issues of the PCRB are
addressed. First, under a technical assumption named
“asymptotic unbiasedness assumption,” the PCRB

is the FIM inverse. However, the validity of this
assumption has not been thoroughly investigated in
the BOT context yet. Here, our approach consists of
deriving the PCRB in an original coordinate system
named logarithmic polar coordinate (LPC) system.
Using this coordinate system, it is shown that the
asymptotic unbiasedness assumption can be replaced
with another one, more meaningful in the BOT
context. Second, Tichavsky’s recursive formula is a
powerful result to compute the right lower block of
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the FIM inverse. However, complex integrals without
any closed forms are involved in this recursion. So,
these complex integrals must be approximated via
Monte-Carlo methods. This approach is quite feasible
but induces high computation requirements which
highly reduces its suitability for complex problems
like sensor management. For instance, the aim of
active measurement scheduling consists in optimizing
the time distribution of range measurements to obtain
an accurate target state estimate. It implies to perform
Monte-Carlo evaluations of the PCRB for each policy,
which would rapidly become infeasible.

To avoid this problem, Ristic, et al. in [15] assume
that the target process noise is zero. In the general
case, we show that the complex integrals required for
calculating the PCRB admit closed-form expressions if
the PCRB is derived in the LPC system. Remarkably,
though this coordinate system is only a slight
modification of the MPC [9], it allows instrumental
simplifications in the calculation of the elementary
terms of the PCRB recursion. Applications to active
measurement scheduling is briefly considered in a
simulation framework.

In Section II, the BOT problem is presented
in the Cartesian coordinate system and then in the
LPC system. This original coordinate system is the
key point to derive a closed form for the PCRB.

In Section III, the classical PCRB is presented. A
close examination of the asymptotic unbiasedness
assumption is achieved so as to prove the validity of
the “usual” PCRB, as given by the FIM inverse. We
study this assumption and derive a more meaningful
condition. In particular, conditions ensuring its validity
are examined in the BOT context. Calculation of
closed-form expressions of the right lower block of
the FIM inverse via Tichavsky’s recursive formula

is addressed in Section IV, in the LPC setting. Then,
the closed-form PCRB is investigated for scheduling
active measurements in Section V. In Section VI,
simulation results present a comparison between

the closed-form PCRB and the classical one (i.e.,
where the terms involved in Tichavsky’s formula are
approximated by Monte-Carlo methods). Finally, the
closed-form PCRB is used for investigating scheduling
of passive and active measurements.

II.  FROM CARTESIAN TO LPC SYSTEM

A. Cartesian Framework for BOT

Historically, BOT is presented in the Cartesian
system. Let us define target state at time ¢:

X, = [0 r,() v,() v, )

made of target relative velocity and position in the
x-y plane. It is assumed that the target follows a
nearly constant-velocity model. The discretized state
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Fig. 1. Two examples of pdf of Z, given X,. (a) If Z, is far from the bounds. (b) If Z, is close to 7/2.

equation? is given by

X, =AX, + U + oW, 2)
where
W, ~N(0,0)
) . 0 1
A=1d,+6B with B = ®lId,
00
. Qs @
0=YX®Id, with ¥ = .
@y @

and ¢, is the elementary time period and —U, is
the known difference between observer velocity at
time 7 + 1 and ¢. The state covariance ¢ is unknown.

However we assume classically that o < o, so that
we use in practice the following equation:
X/-)-] = AX/ * (]/ * O-milxﬂll' (3)

Otherwise, we note Z, the bearing measurement
received at time ¢. The target state is related to this
measurement through the following equation:

r.(r)
Z, = arctan (r“(t)) +V+ Zkﬂlfﬁ/lcxrclamr\(li/r"tln+\/,+kﬁ<(r/2)
y keZ

)
(€}
where V, ~ N(0,03) and o2 is known. Let us notice
that the term (x) is usually omitted. However, it is
necessary to consider that measurement Z, is restricted
to a part of the space. This is the case if symmetry
of the receiver (e.g. linear array) leads to considering
measurements belonging in the interval | —7/2,7/2[,
so that the additional term (x) in (4) is necessary.
Two examples of probability density function (pdf)
of Z, given X, are presented in Fig. 1 to enlighten the
importance of the additional term (x). In Fig. 1(b), the
bearing measurement is close to 7/2 so that there is
an overlapping phenomena.

2For a general review of dynamic models for target tracking see [1].
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The system (3)—(4) has two components: a linear
state equation (3) and a nonlinear measurement
equation (4). Particle filter techniques [26, 27] are,
thus, particularly appealing. Otherwise, practical
implementations of EKF-based algorithms [9, 10] use
a specific coordinate system, namely MPC. Indeed,
if the target follows a deterministic trajectory (i.e.,

W, =0Vt e{0,...,T} in (3)), Nardone and Aidala
have demonstrated in [7] that no information on range
exists as long as the observer is not maneuvering.
So the idea consists of using a coordinate system for
which unobservable component (range) is not coupled
with the observable part. This is also the motivation
of Aidala and Hammel [9] for defining the MPC
system:

[ﬁ/ 4 Q] : ®

L L}

Thus, the target state at time ¢ is defined by (5), where
B3, and r, are the relative bearing and target range. We
propose in the following section a slight modification
of the MPC system, named the LPC system. The only
difference is that the second component is not 1/r, but
In(r,). Even if this tiny difference appears very minor,
it will be shown that it is instrumental for deriving
a closed form of the PCRB. Let us now derive BOT
equations given by (3) and (4) in the LPC framework.

B. LPC Framework for BOT

We consider now that the system state ¥, is
expressed in the LPC system, i.e.,

Y=18 p B b1 ©)
where
p, =Inr,.

As between Cartesian and modified polar (MP)
system, we do not have a direct bijection between the
Cartesian and the LPC system due to arctan function
definition. We just have f and f!P, respectively
LPC-to-Cartesian and Cartesian-to-LPC state mapping
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functions such that

¥ - { f®) i >0
g i <0

with

sin 3,
) )]

cos 3,
‘X)=r| .
Fip@) =1, B,cos 3, + p,sin 3,

—B,sinB, + p,cos 3,

[ arctan [ 50
arctan It‘,(l)

In (, fr2(r) + r},(t))

v o0 -voro [ ®
r2(6) + ()
VO, ) + v, (Or,0)
L r%(t)+if‘2.(r) |

and

Y= fr(x) =

Thus, using (7) and (8), the stochastic system given
by (3) and (4) becomes

_ fl_”’(AfI;;(Y,) +U, + o0, W) if r‘,(t) >0
U AP CASED) U W) i 1,0 <0
(C)]

Zl = ﬁf + V/ + ZkWI—-./2<d,+V,+k7r<w/2'
keZ

Though it seems that the LPC increases the
complexity of the BOT problem, it has also the
advantage of highlighting the multi-modality
associated with the two solutions corresponding to
r,(t) >0 and r,(f) < 0, respectively.

Ill.  PCRB FOR STATE ESTIMATION

In this section, “usual” PCRB given by the inverse
FIM is presented. Notably, in subsection A, we
present the proof of this classical result. The role of
a technical hypothesis named asymptotic unbiasedness
assumption is thus highlighted, especially in the
LPC system. Then, we show in subsection B
that this hypothesis is not always satisfied in the
BOT context and we propose to replace it by an
original extension. Finally, it is shown that the usual
PCRB as given by FIM inverse is valid if bearing
measurements are sufficiently far from —7/2 and
m/2. Let us remark that the PCRB is not derived
in the Cartesian framework for two reasons. First,
the asymptotic unbiasedness assumption seems
rather difficult to address in this setting. Second, it
is shown that a closed form exists in LPC but not
in the classical coordinate systems (Cartesian or
MPC).
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A. Classical PCRB

Let Y., and Z, ., be the trajectory and the set
of bearing measurements up to time 7. They are
random vectors of size n (t + 1) and ¢, respectively.

Let )A’O:, be an estimator of ¥,., which is a function of
Z,.,. We focus here on the ECM at time ¢ which is
n).(t +1)x n),(t + 1)-matrix, defined by

ECM,, = [|%., — Y. [ (10)

First, let us recall the FIM and bias definitions.

DEFINITION 1 (FIM) For the filtering problem given
by (9), the FIM, at time ¢, is denoted J,,., and defined
as

Jou = EAVy,, Inp(Z,.. 0.0 Vi, Inp(Zy Xo.0} (A1)

where p(Z,.,.Y,.,) is the joint pdf of Z,., and Y,.,.

021

DEFINITION 2 (Bias) For the filtering problem
described by (9), estimation bias related to the
estimated trajectory Y., is defined as:

B(Y).) = B{¥,, — Y., | Y..}. (12)

Yy., is a n(t + 1) vector so that B(Y,.,) is a n(t + 1)
vector too. The estimator of the trajectory f/():, is
unbiased if vector B(Y;.,) is almost surely equal to
zero. This choice of the bias definition is justified

in Appendix A. Proposition 1 ensures that the

FIM gives a lower bound for the ECM under a
specific assumption called asymptotic unbiasedness
assumption. Before introducing this technical
assumption let us introduce a notation to simplify the
presentation:

Notation 1  For a function F : RY — R”, U and
U two R¢-vectors such that U = [U,...,U,]" and
U =[U,....u,I*, we define

lim, _,, (F(U)), limy, _,, (F(U)),

lim F(U) =
U-u

limy, _,, (F(U)), limy, ., (FUY),

(13)
where (F(U)); is the ith component of vector F(U).

Let us notice that hmu.au. (F(U)), is a function
which depends on variables ¢, and {U,,...,U;} so
that lim;,_,, F(U) depends on variables 2/ and U. We
will see that Notation 1 is defined unambiguously in
Proposition 1 proof and is helpful in presenting the
following assumption.

Assumption 1 (Asymptotic unbiasedness) For
the filtering problem given by (9), the asymptotic
unbiasedness assumption is defined as:

Voke(lonn,  lim BOGP0G,) = m Bl )p(0G,)
"k (N

(14)
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where ), is the (connected) domain of Y}, k €
{1,...,t}, while {),))}} are its bounds.

Looking at the definition of LPC given by (6),

we have YV, = [-7/2,—00,—00,—0c0]" and Y} =
[7/2,+00, +00, +00]*. Moreover, B(Y;.)p(Y,.,)

is a n,(t + 1) vector following Notation 1,

limYA"‘yf B(Y,.)p(Yy.,) is an n,(t + 1) x n, matrix. After
introducing Assumption 1, we can now present the
classical result on the PCRB.

PROPOSITION 1 (PCRB) For a filtering problem given
by (9)

ECMO:r>C0:rJ0_:1I C(;:r with

A i "

Co: =B{(Ng,, — X.) V5, Inp(Z, .1, %o, )} (15)
Moreover, under Assumption 1, C,., is the identity
matrix.

Proposition 1 ensures that the FIM inverse gives a
lower bound for the ECM conditionally to the validity
of the technical Assumption 1 named asymptotic
unbiasedness assumption. Classically, Assumption 1
is true if the estimator Y., is unbiased when Y, ~ )~
and ¥, = ). However, this point is relatively complex
to verify in the bearings-only context. We propose

to study Assumption 1 to find a more concrete one.
First, let us present a proof of the rather classical
Proposition 1. For the sake of completeness, the
following lemma is reviewed.

LEMMA | Let S be a symmetric matrix defined as
§= [A C} (16)
C* B
where

A is a nonnegative real symmetric matrix
B is a positive real symmetric matrix

C is a real matrix

then §=0 implies A— CB~'C*=0.

PROOF OF LEMMA 1 This lemma is a classical
algebraic result given in [28].

PROOF OF PROPOSITION 1
the S matrix such that

S = [A(z:t
CO:I

Using Lemma 1, we build

CO:I:|
BO:I
where

A0:,éECM0:,
A

By, =Jo.s (17)
A 5 s

CO:r — E{(YE):[ - Y(v):l)v}’n " lnp(Zl :th():r)}'

From this definition, S is a nonnegative matrix. Using
Lemma 1, one remarks that we just have to prove that

1202
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Cy., is equal to the identity matrix. The asymptotic
unbiasedness assumption is used to do so. First, let us
notice that C., can be rewritten as

0:1

C():[ = /(2):1 - YE):t)VXY p(Zl:thO:r)d(Zl:rvYO:z)'(IS)

Co.; is an ny(t + 1) x ny (¢ + 1) matrix made of (z +
1) x (¢ + 1) elementary blocks. We study each of these
elementary blocks (denoted Cy.,(k,1)):

Couthid) = [ o= K521 1o, M T

keflio,nd, le{l..,n}. (19

Before integrating by parts, let us introduce the
following notation:

Notation 2 For a function F : RY - R", U, U~
and U* three R¢-vectors such that U = [,,....0,1%,
U =Uy,....u; 1" and U* = [U},....U; 1", then we
can define

[FO) = Jim F(U) - lim F(U) (20)

where lim;,_,,. F(U) and lim;,_,, F(U) are defined
using Notation 1.

Integrating by parts and using the previous notation, a
matrix element of C., given by (19) can be rewritten

) o )
Coulkol) = 1d, 5, + / (S AT.CANE ) NRLCAPN Wi

(€25)
where Y(;,m is a whole target trajectory except the
term ;. Now, if limit and integral operators can be
reversed, we have
L

.
y!

ot =14, 08 | [0 -romz o paz,

(22)

Using bias notation previously introduced, we finally
obtain

Ve
Co:lll) = 1, 8y + / [B(Xy. )p(Xo. )1 d¥ .
(23)
Thus, under Assumption 1, C,,., is the identity matrix.

Then we can apply Proposition 1 to the BOT
problem if asymptotic unbiasedness assumption is
satisfied. More precisely, this assumption ensures that
the term C)., is the identity matrix. Let us now study
the validity of this hypothesis in the BOT context.

B. Validity of Asymptotic Unbiasedness Assumption in
BOT Context

First let us remind that by Proposition 1 the PCRB
is given by the inverse FIM if a technical assumption
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named asymptotic unbiasedness assumption is true.
According to the previous section, Cy., given by (15)
is not the identity matrix if this assumption is not
verified. The following proposition shows that the
asymptotic unbiasedness assumption is not always true
in the BOT context.

PROPOSITION 2 (PCRB) For a filtering problem given
by (9),
ECMO:f#C():rJ()i:f] CS:r

where Cy., is an n(t + 1) X ny(t+ 1) block diagonal
matrix where diagonal terms are expressed as
Sfollows:

1 —71'1)(3,)\?/2 00 0
1 00

Co (D) = 6 16l v 1€{0,....1}
0 00 1

24
where p(/3)) is the pdf of 5.

More precisely, Proposition 2 gives a more simple
formula for C.,. This result is quite intuitive. When
bearing measurements are close to a bound (i.e., —7/2
or 7/2) there is an overlapping phenomenon due
to the arctan definition as the underlying pdf is not
Gaussian but something like that function represented
in Fig. 1. Finally let us notice that p((3,) is not defined
in 7/2 because f3 is in | —7/2,7/2[. However, the
limit exists.

PROOF OF PROPOSITION 2 The complete proof

of Proposition 2 is given in Appendix B with two
intermediate results skipped in Subappendices B1
and B2. The idea of the proof consists of studying
C,., using the formula given by (22) in Proposition 1
proof. To study (22), the pdf of Y, given ¥, i.e.,
p(Y,,, | ¥) is derived in Appendix B1. Then, a
technical lemma allows us to end the proof.

In the filtering context, we are generally not
interested in ECM,,., but only in the right lower block
ECM, = ||¥, — ¥||2. Thus, it is not the whole matrix
Cy..J.+ Cg., which is of interest but just the right
lower block. As Cy., is a diagonal matrix according
to Proposition 2, we have

ECM,=CJ,'C;

with
1—7p(B)l,, 0 0 0
s 0 100 a5
! 0 010
0 00 1

Matrix J,~! is the right lower block of J;. -inverse,
given by (11). Now from a practical point of view,
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the problem is to be able to estimate J,~! and C,.
Concerning the first one, J,~! is classically obtained
by means of Tichavsky’s recursive formula via
Monte-Carlo methods. Looking at (25), we can see
that C, only modifies the PCRB linked to the first
component of the target state 5,. The PCRB associated
to this component is overestimated because p(,)|, 12 is
not zero all the time. When bearing measurements are
sufficiently far from the bounds —7/2 and 7/2, C, is
the identity matrix, so that the classical PCRB is given
by the FIM inverse.

Assumption 2 (Side assumption) For a filtering
problem given by (9), the side assumption is defined
as

P(ﬂ/)‘n/z =0, v 1€{0,....T} (26)
where p(f)) is the pdf of ;.
PROPOSITION 3 (PCRB) Under Assumption 2,
ECM,sJ, 7" @n

PROOF OF PROPOSITION 3  Proposition 3 is easily
derived from Proposition 2.

IV. CLOSED-FORM FORMULATION FOR
TICHAVSKY’S FORMULA IN LPC COORDINATE
SYSTEM

We have derived in the previous section a PCRB
adapted to the BOT context, given by (27). Now it
is necessary to estimate J,~!. The classical approach
consists of using J,~! recursive formula proposed by
Tichavsk}'f’s et al. However, some terms involved in
this formula must be estimated using Monte-Carlo
methods. We demonstrate here that all these terms
have closed-form expressions if the PCRB is derived
using the LPC system, so that J~! can be computed
exactly via Tichavsky’s formula. In subsection A,
Tichavsky’s recursive formula is reminded. We remark
in subsection B that no closed-form expressions for
the terms involved in this formula can be obtained
using Cartesian or MPC framework. Then we show
in subsection C that closed-form calculation can be
derived in the new LPC system.

A. Tichavsky’s Formula

Tichavsky, et al. proposed a recursive formula
in [23] for the right lower block of the FIM inverse
noted J;~!.

PROPOSITION 4 (Tichavsky’s formula) For a filtering
problem given by (9), the right lower block of the FIM
inverse noted J~' has a recursive formula:

Jy1 =D+ DP - D}'J,+ DY) ' D

1203
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TABLE 1
Closed Forms In Different Coordinate Systems

Cartesian Modified Polar Logarithmic Polar
D,I . Yes No Yes
D,I 2 Yes No Yes
D,2 ! Yes No Yes
D,zz Yes No Yes
Df3 No Yes Yes

where D}', D}?, D', D2, D}* are defined by
A
D/“ =]E{vy, ]np(Y;H | Yl)v;? lnp(YrH ‘ Y;}}
A «
D}' SE{Vy,, Inp(Y,,; | )V} Inp(Y,, |V}

DI SE{VyInp(¥,, | )V;, Inp(t,, [H)}  (28)

41

A *
D SE{Vy,, Inp(Y,, | YV}, Inp(,, | %)}

+1

A "
Df33 =]E{Vy,+. Inp(Z,,, | %)V,

i+1

lnp(ZH-l [ YH-])}'

Proposition 4 is proved in [23]. However, for the
BOT context, even if pdf p(Y,,, | ¥) and p(Z, | Y)
are known and simple, D}', D/2, D?!, D??, and D}?
do not have closed-form expressions altogether. We
show now that existence of closed-form expressions
is a characteristic of the LPC system, introduced in
Section IIB.

B. Closed-Form Expressions of D', D}?, D??, D?',
and D}? in Different Coordinate Systems

Ristic, et al. in [15] have derived the PCRB in
the Cartesian coordinate system. Matrices D}, D}2,
D?? and D?! have closed-form expressions using this
system. However D;* has no closed form, so that
the authors assumed that the process noise makes
a very small effect on the PCRB (i.e., W, = 0) for
approximating D}3. Otherwise, the classical PCRB
has not been derived in MPC system yet. It seems
that no closed form for D', D/2, D??, and D?' can be
expected, though a closed form of D}? exists. These
results are summed up in Table I.

Now the question is whether we can find a
coordinate system allowing closed forms for all
terms. First, it seems that the coordinate system must
include 3, so that under Assumption 2, D;? has a
closed form as in the MPC system. Second, in the
Cartesian framework, it seems that the existence of
closed forms for D!!, D!2, D?2, and D?! in (28) are
inherited from the linear property of Vy Inp(X,,; | X,)
and Vy  Inp(X,,, | X,). First, considering LPC
definition given by (6), we can see that 3, is one of
the components of the state. Second, we can show that
gradients Vy Inp(X,,, | X)) and Vy_ Inp(X,,, | X,) are
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quadratic forms in X, X,, . Indeed, we have

1
Vinp(X,,, |X) = ——(X,,, —AX, Uy Q'AV,{X}
29)
B 1 P
V5, (X, | X) = ———(X,,, —AX,~ Uy Q' {X,,,}

Tax
where Vy{X,} and Vy,,{X,,,} are LPC-to-Cartesian
mapping function derivatives at time 7 and ¢ + 1
(LPC-to-Cartesian mapping function is given by (7)).
These two terms can be expressed using the Cartesian
framework:

[no ro 0 0
v, (X} = -r® r®» 0 0
e W@ vo 0 ro
L—v, () v() —r() r()
(30)
rre+1) r@+1) 0 0
—rt+1) r@+1) 0 0
Vi Xiai} = v+l v+l ra+l) ra+1)
L—v (t+1) v},(x+l) —r(t+1) rj(t+l)

so that Vy,{X,} and Vy,,{X,,,} given by (30) are
linear operators in X,,X,, .

C. An Algorithm for Calculating a Closed-Form PCRB,
in the LPC System

Based on previous sections, 1, 2, 3, and 4 below
give closed forms for D!, D!?, D22, and D}* in
the LPC framework. Moreover, we show that these
closed-forms can be written in a recursive manner.
The algorithm that calculates the closed-form PCRB
is summed up in Fig. 2. We can see that calculation
of D!, D/2, and D?? is split in two steps. In step 1,
the auxiliary matrices T'!!, T''?, and T2, defined by
(35), (38), and (41), are computed via a linear system.
Then, D}', D}?, and D?? are extracted from I,'!,
I''2, T2 in step 2. This algorithm is compared in the
simulations section with the classical PCRB summed
up in Fig. 3.

1) D! Closed Form: We show in Appendix
D that D' can be expressed as an expectation of a
simple function in the Cartesian coordinate system:

1

2
max

.
D, =

E{F;A"Q~'AF,}  with Fy =V, {X}.

(€2V)
The problem is now to compute this expectation.
We show now that no “direct” recursive formula
can be derived for D}! but the latter can be obtained
as the by-product of a general linear system
in Proposition 5.1. First let us investigate the
nonmaneuvering case. In this case, using the
statistical properties of X,,, given X, and the linear
property of F, (31) can be rewritten as
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Initialization of JO"I using the initial error covariance matrix given by eq.(51).
Initialization of T}', T} and I'3*> by Monte-Carlo method.

Ji! is calculated using only step 2 and 3 with ¢ = 0.

Fort=1t0 T

1) Calculation of auxiliary matrices T'}', I'}? and I'??

a) Caleulate A}',, A2, and A??) using eqs.(36,39.42) if observer maneuvers (else these terms are

equal to zero).
= 49}, + AR,
T2 = Q2 4+ I, + A2,
T2 =02 + 0TI, + A2, .

b)

Remark : Q', Q' and O*2 are given by eqs.(36,39,42). W is given by eq.(36).

2) Caleulation of D}', D}? and D}*

a) If observer maneuvers, computeY'}? and Y72 using eq.(37) and eq.(40) (else these terms are equal

to zero).
Dt = [m,," (J.l,,xx,,,,]rz”-
B4 D2 = = [Ida, O, T - X,
D2 = [m,,,, O,

¢) D is given by eq.(43).

3) Calculate J;}', using Tichavsky’s formula:

22 22
x3n,, TP +C + e
Remark : C is given by eq.(40) and D}" is given by the relation D}' =

(D2)".

Jur =DE+DP - D? (1 + D) D2

Fig. 2. Closed-form calculation of PCRB.

1 " A
> B{FY_ax,_,AQ ]AFx,fo, 3

max

D' =

constant

1 " o
+ —E{F; A'Q7'AF,, 1. (32)
amax
The first term can be calculated remarking that
X, — AX,_ | ~N(0,0%,,0) and F is a linear operator.
We derived in Appendix D from the linear property of

F that
Fyy, = Fy, +6,Gy,

where
Gx, =Gy,
Fy, = Vy{X,} (33
v, (@) v(t)
G, =1d,® . ’
T <,vx(,) vy(r>>
Incorporating (33) in (32), we obtain
D/" = constant + 2] E{F; A"Q 'AF }
o-max g :
=p!,
? 1
+5—E{Gx A"Q"'AGy }
max
2 .
+——B{F; A'07'AGy, |}
max
1)
+ —B{G}_A"Q"'AF,_}. (34)

max

Looking at (34), it seems that no “direct” recursive
formula can be derived for D}'. However, we can

BREHARD & LE CADRE: CLOSED-FORM POSTERIOR CRAMER-RAO BOUNDS FOR BEARINGS-ONLY TRACKING

+ Initialisation of J;™! using the initial error covariance matrix given by eq.(51).
o Fort=0t0 T
1) Approximation of D}', D}? and D?* by Monte-Carlo method.
2) D2l is given by the relation D?' = (D}2)" and D is given by eq.(43).
3) Compute .l,}‘, using Tichavsky’s formula:
Jh =DP +DP - DP (L + oy pE,

Fig. 3. Classical computation of PCRB.

propose an original recursive formula for D}! via a
joint matrix T,'! formed with the four terms involved
in (34) which is valid in the general case including the
maneuvering case:

D!'=1d, 0, 3,1,

hny 3,
E{F; A"Q~'AFy }
1 E{F; A"Q'AGy }
i | Bioi a0 4R,
E{G}A"Q™'AGy }

where Fy and Gy, are defined by (33).

(35)

We can see that D! is just one block of I''!. Now
the following proposition assumes that we have a
recursive formula for T''!, so that D!! is obtained as
a by product.

PROPOSITION 5.1 (T,'! formula) For a filtering
problem given by (9), we have the following recursive
formula for T}

Tl = Q!+ g, + AL
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where
16 ¢ &
01 0 §
v = ®ld,
00 1 §
00 0 1
20;A"07'A + 20, BA*Q " AB* + 20, BA"Q"'A + 20,A*Q ' AB*
o 20,BA*Q7'A + 20,40 A
20, A* Q7 AB* +20,A*Q A
20,A*Q7'A
and
Oy cm, if U, =0,
Fix A*Q™ ' AFgy, — Fiux, (A"Q7'AF gy |
Al = 1 Fix A"Q7' AGgy, — Figy, A"Q™'AG s (36)
T 0_2 ' t -1 =1 llf' L]r71 # 0.

max

Gix A"Q ' AFzy, — Gy, A"Q7'AF 5y |

Gix A"Q 7 'AGgy, — Gligy, (A0 'AG iy, |

We refer to (2), for a definition of the various terms
{A,B,Q,qa,,a,,a3} involved in this closed form. For
definitions of F and G see (33).

Let us now make some remarks about the previous
proposition. We can see that the recursive formula for
I given by (36) is just a simple linear equation,
where all the terms have closed-form expressions.
Moreover, if the maneuvering term U,_, is zero, then
EX, = AEX,_,. As a consequence, Al is zero if the
maneuvering term U,_, is zero. If this condition does
not hold, A}!; can be computed exactly using E(X,)
and the recursion E(X,) = AE(X,_,) + U,_,. Finally, T}!
can be initialized by Monte-Carlo method.

2) D}? Closed Form: Using the same approach as
in the previous section, we show in Appendix D that

1

where operator F is defined by (33). Comparing (37)
with (31), we can notice that we have now two terms
to compute. The term Y,'2 can be easily calculated.
We can remark that the latter is zero if U is zero. If
this condition is not verified, E(X,) is computed for
any value of 7 using E(X,) and the relation E(X,) =
AE(X,_,) + U,_,. Otherwise, (x) can be computed
recursively using the same approach as for D!'. D}?
is deduced from T2 via

D> = -1, 0y x3n, T2 = T2

E{F)?,AxgilF/\X,}
1 | BR A G
E{G3A"Q™'Fyy,}
E{G;(,AxQﬂGAx,}

where operators F and G are given by (33). Again,
we have a recursive formula for I''?, yielding D}? as a
by-product.

(38)

PROPOSITION 5.2 (T2 formula) For a filtering
problem given by (9), we have the following recursive
formula for T }?

rP2=02+wr2% +A2
where

2(ay + 8,0,)A* Q" + 20, BA*Q~'B* +2(, + 6,0)BA*Q™! +20,A*0" ' B*

20,BA* Q! +20,A*Q"!

20,A*Q7'B* + 2(a, + 6,0))A*Q !
20,A°Q7!

D? = — —B{F;A"Q 'Fyy } -Y,"
Umax
e e ——
)
with
. if U=0
X = 1 s iagy=1 v A%iy—1
——(Fix A"Q™'Fyy,,, — Fix A"Q™'Fygy)
it U#0
(37
Q2=
1206
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and

Xy

Oy,
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if U,,l =0,

Fix A"Q7 ' Fygy — Fiuy, (A"Q7'Fpy, |

Atl—zl = 1

Fix A*Q7'G gy, — Frax, A"Q7'G gy, |
2 * - * *)—
Tiax | Giy,A*Q ™' Fygy, — Gigy, ,A"Q™'Feegy,

(39
if U #0.

Gix A"Q™'G sy, — Gy, (A"Q "G pony, |

U is given by (36). We refer to (2), for a definition of
the various terms {A,B,Q,a,, 0,03} involved in this
closed form. For definitions of F and G see (33).

Again, the recursion giving 1“,’2 is linear and has a
closed form. Similarly to I'!'! recursion, A2, is zero
if no maneuver occurs (EX, = AEX,_,). Else, A2, is
updated from E(X,). Considering the initialization of
the T,'2 recursion, T'}? can be approximated using the
Monte-Carlo method.

3) D?? Closed Form: Using the same approach as
in the previous section, we show in Appendix D that

1 ,
D122 = Z_]E{FXX,Q IFAX1}+C +TI22

UIUZIX
—_—
where @
00 0 0
0 8 0 0
2
c=|o e 0
aza, —aj
2
0 0 0 -
aza, — o3
and
On\xm if U/=0q

2 _ Lo, _ e
7= Uz—(FnaxMQ '"Fox,., — Fiex, @ 'Fusx)

max
if U #0
(40)

where the operator F is defined by (33). As
we can see above, C is just a constant term and T,ZZ
is a maneuvering term which can be calculated
using the same approach as for Y,'2 in Section
B2. Otherwise, (%) in (40) can be calculated
recursively. The matrix D?? is deduced from I'??
via

Dy = Ud, vy, O U +C+ X

nyxn,

E{FXX,Q“]FAX,}

1 E{FXX,QilG/\X,} 4D
2 -

' =)

max

E{Gjy,Q 'Fpy,}
E{G;\X,QilGAX,}

where operators F' and G are given by (33). Again,
the following proposition yields a closed-form
recursive formula for I'??, and for D? as a
by-product.

PROPOSITION 5.3 (I'?2 formula) For a filtering
problem given by (9), a closed-form recursive formula
for F,n is given by

T2 =024+ 907 + A2

where

2(a; + 26,0 + 820,)Q7 + 20, BO'B* + 2(av, + 6,0)(BQ~' + Q7' BY)

20,BO7" + 2, + 8,01)07!

02 =
20¢,Q"B’r +2(a, + 6,a,)Q"
2alQ’]
and
On‘\xn\ if U, =0,
Fiex, Q' Fypy, —Flpy, ,Qﬁ]FAZIEX,,[
AP = 1| Fiex,Q 'Gusy, — Figx, Q@ 'Guepx, | iU #0 (42)
Tinax Gy, Q™' Fisy, = Gony, , Q' Fresy, | o
Giex,Q 'Gupx, — G:xl[k;xli]Q_IGAZEX, 1
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4) D} Closed Form: We show in Appendix D
that D3 is simply

OL% 000

D,33 =] 0 0 0 O (43)
0O 0 0 0
0 000

V. PCRB FOR PASSIVE AND ACTIVE
MEASUREMENTS

We assume now that additionally to (passive)
bearing measurements, there is another subsystem
which can produce a noise-corrupted range
measurement at time ¢ noted d,:

d,=r,+n,  where 7~N(©0,0?)  (44)

where o, is the range measurement standard deviation.
However, active measurements have a cost so that

the total active measurements budget is fixed. The
aim of measurement scheduling is to optimize the
time distribution of active measurements to obtain an
accurate target state estimate.

The general problem of optimizing the time
distribution of measurements has a long history.
Avitzour, et al. in [29] have proposed an algorithm
to optimize the time-distribution of measurements
when estimating a scalar random variable by solving
a nonquadratic minimization problem. This result
has been extended by Shakeri, et al. in [30] to
discrete-time stochastic processes. However, this
approach is devoted to linear systems when the
BOT is highly nonlinear. Then, Le Cadre has
proposed to use the CRB to solve the problem in
[31] for nonlinear systems where the state equation
is deterministic. We show in this section that a
closed-form PCRB derived can be used for active
measurement scheduling.

In the previous section, a closed-form PCRB has
been derived for bearings-only measurements. What
happens if range measurements are included ? We
show in this section that the PCRB still has a closed
form. First, looking at (28), we can see that only D3
depends on the measurement equation. Then, only
the latter has to be modified. If the sensor produces
a range measurement at time ¢, then:

D= E{Vy InpZ,,.d., | Y.)V; WnpZ,,.d. 1Y)}
(45)

Using the independence property between bearings
and range measurements, (45) can be rewritten

DP = EAVy, Inp(Z,, | 5,0V, InpZ,,, | Y, 0}

141

=p»
+E{V,, Inp(d,,, Y, )V;, Inpl,, |Y,D}
(46)
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Using D}? given by (43) and range measurement
equation given by (44), we obtain

iz 0 00
9
2
DP =10 %00 7
2
0 0 00
0 0 00

Consequently, the problem is to compute Er2, ;. We

show now that there is no “direct” recursive formula
to calculate Er? | but the latter can be obtained as a

by-product of a linear system. First let us address the
nonmaneuvering case. Using the state equation given
by (3) and the statistical properties of W,, elementary
calculations yield

ErZ =B{r}t+ 1) +r2@t+ 1}

=202

max

oy +EB{r2(0) + r2(0}
N——
=Er?
+ 26, E{v,(Or (t) + v_‘,(t)ry(t)}

+ B0 + 20O} (48)

Then looking at (48), It seems that no “direct”
recursive formula can be derived for Er?, . However,
we can propose an original recursive formula for the
latter via a joint matrix I';3 formed with the three
terms involved in (48) which is valid in the general
case including the maneuvering case:
ErZ, =[1 0 0] (49)

B{rd(t+ 1) +r + 1)}
rl33 = [E{v,(t + Dr,(t+ 1)+ vy (t+ Dry(t+ D}
E{v(z+ 1) +vi(t + 1}

We can see that Er2,, is the first component of T3
We have a simple recursive formula for I'?® given by
Proposition 6.

PROPOSITION 6 ('3 formula)

TP = 0%+ ar ¥ + AP,

where
a3
Q:‘} =2‘712nax Qy
|
1 26 &2
=10 1 §
0 0 1
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« Tnitialization of .J;"' using the initial error covari

« Initialization of T'§!, T'}2,
Jy ! is calculated using only step 2 and 3 with ¢
Fort=1t0 T

Traitement du Signal. Volume 27 — n°

T?% and I'3® by Monte-

4-5/2010

ance matrix given by eq.(51).
Carlo method.
=0.

1) Calculation of auxiliary matrices I'}', T'}2, T'?? and T'3*

a) Calculate Al Af2,, A7?, and AP, usil
are null).
T =q 49 TR, + AR,
" T2 = Q2 + ¥ T2 + A2,
I =02 LU TP, + A2, ,
P =% 10T, + AP,
Remark :

2) Caleulation of D}', D}?, D?*, D}* and D}
a) If observer maneuvers, computeY'}2 and
ot o= Tdn, e, Onyxin,

B D = = [Idun, Oupxin,]
DP = [Hduyn, Onyesn,)

Remark : C is given by eq.(40) and D} is gi

ng egs.(36,39,42) if observer maneuvers (else these terms

Q' Q2 Q% and Q** are given by eqs.(36,39.42). ¥ and ® are given by eq.(36) and eq.(49).

3

1?2 using eq.(37) and eq.(40) (else these terms are null).

-

0z — 1,
r#+c + x2% .
iven by the relation D' = (D,

12
t

)

¢) Calculation of D} using eq.(43) (passive meas.).

d) Calculation of DJ* is given by eq.(47) (active meas. + passive meas.)

Remark : Erf,, is calculated by using eq.(49) and

3) Calculate Jr}ll using Tichavsky’s formula:
P D4 D — D (5 + D)™
Jig1 = o "
D2+ D — D (J.+ D,

s,

12

Dy
12

Dy

(passive meas.) .

(active meas. + passive meas.)

)

Fig. 4. Closed-form calculation of PCRB for active measurements scheduling.

and ‘
5 [E’*'(’)] U+ 28 [EW} U+ U,
Er,(t) Ev, (t)
A - | [ERO Ev,(1)

[J'

(50)

We refer to (2), for a definition of the various terms
{a,a,,a3} involved in this closed form.

b [ ]U,M,va,
Ev, (1)

} L AU,

Er, (@)
Er (1)
Ery (1)

PROOF OF PROPOSITION 6 We incorporate the
diffusion equation given by (3) in I'?® given by (49).
Finally, we obtain (50) using the statistical properties
of W,.

A3, is zero if no maneuver occurs. Concerning

the initialization, T'$* can be approximated by
Monte-Carlo method. The algorithm is summed up
in Fig. 4 and is illustrated by simulation results in the
following section.

VI.  SIMULATIONS

We have shown in the Section IV that under
Assumption 2, the PCRB has a closed form. We have

BREHARD & LE CADRE: CLOSED-FORM POSTERIOR CRAMER-RAO BOUNDS FOR BEARINGS-ONLY TRACKING

presented the algorithm in Fig. 2. The aim of this
section is double. First, we show that these original
formulas are valid and allow to compute accurately
the PCRB without high computation load. Second,
this bound can be used for optimal scheduling of
active measurements in a sensor management context.

To check formulas, the closed-form PCRB is
compared with the classical one using two scenarios.
In the first one, the observer goes straight line while
in the second one, the observer maneuvers. For the
sake of completeness, all the constants involved in the
two scenarios are presented in Table II. For these two
scenarios, the standard deviation of the process noise
in the state equation o, is fixed to 0.05 ms~! so
that target trajectory strongly departs from a straight
line. The classical PCRB algorithm is reviewed in
Fig. 3 (the sample size to approximate D!', D}, D?2,
and Df' by Monte-Carlo methods is 1000). For all
the algorithms, the initial FIM inverse is computed
using the initial ECM. The latter is computed using
Monte-Carlo methods. More precisely, N initial target
states in LPC, noted {Yo(”},-e(,v_“,\,}, are sampled by
using the initial range, bearing, and speed standard
deviations which are, respectively, set to 0, = 2 km,
04, = 0.05 rad (about 3 deg), and o = 1 ms~!. Then,
we obtain JO" using the following approximation:
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Authorized licensed use limited to: UR Rennes. Downloaded on July 10, 2009 at 11:18 from IEEE Xplore. Restrictions apply.



Closed-Form Posterior Cramér-Rao Bounds for Bearings-Only Tracking

Ry coordinate in meters
°
o
T

4
Rx coordinate in meters

(a1)

Ry coordinate in meters

a
Rx coordinate in meters

(a2)

375

o5} . 4y KUY T AR Y
AT e DL
bl d m

1000 2000 3000 4000 5000 6000
time

(b1)

e

1000 2000 3000
time

4000 5000 8000

(b2)

Fig. 5. Scenario 1. (al) Example of trajectory of target (solid line) and observer (dashed line). (bl) Set of bearings measurements.
Scenario 2. (a2) Example of trajectory of target (solid line) and observer (dashed line). (b2) Set of bearings measurements.

Iyt R E{( - E{p D% — B{%,})'}

1 :
~ o 2067 =Xy (g — Xp). 1)

i=1

The first scenario is presented in Fig. 5. An
example of trajectory is presented in Fig. 5(al),
while the set of bearing measurements is presented
in Fig. 5(b1). Fig. 6 presents the comparison of
PCRB obtained by the algorithms given by Fig. 2 and
Fig. 3 for the four components of the target state. The
closed-formed PCRB and the classical one produce
the same results which verify formulas. Moreover, the
computation load difference between the two methods
is important. The approximated PCRB takes about
600 sec when closed-form PCRB takes about 3 sec.
Now looking at p,’s bound given Fig. 6(b), it is a bit
surprising to see that the two PCRBs decrease while
r, is weakly observable. The fact is that p, is not a
meaningful component such that the bound given
Fig. 6(b) for ECMM (i.e., the ECM related to p,) is not
intuitive. A bound for ECM, (i.e., the ECM related to
r,) would be more meaningful. Using a Taylor series,
we can demonstrate that

ECM, ~ ¢®"WECM,, (52)

TABLE II
Scenarios Constants
Scenario 1 Scenario 2
Duration 6000 s 6000 s
7o05(0) 3,5 km 3,5 km
ro55(0) 0 km 0 km
v;’b“(O) 10 ms™! 10 ms™!
vobs(0) —2ms™! —2 ms™!
reb(0) 0 km 0 km
b (0) 3,5 km 3,5 km
vfih(O) 6 ms! 6 ms!
v:ﬁ"’(O) 3 ms! 3 ms!
& 6s 6s
Opnax 0.05 ms™! 0.05 ms™!
o, 0.05 rad (about 3 deg) 0.05 rad (about 3 deg)
% 2 km 2 km
%y 1 ms™! 1 ms™!
T4 0.05 rad (about 3 deg) 0.05 rad (about 3 deg)
so that

ECM,, > "™FIM, . (53)

Consequently, we can use the PCRB related to p, to
derive a bound for the ECM related to r,. The problem
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o.025

o.02

o.00s

o0.25

2.5

o.s

is that E(p,) is generally weakly observable. We have

1000

3000

4000 5000

1000

2000

00

0o

6000

1000

2000 3000

@

4000

Fig. 6. PCRB for (a) 8, (b) p,, (©) B, (@) .

computed in Fig. 9 the bound given by (53) using the
true 7,. We can see that the bound increases over time
which matches theoretical observability results.

In the second scenario, the closed-form PCRB is
checked when maneuvering terms appear. We consider
that the observer follows a leg-by-leg trajectory. Its

]500§t§4500<

5000

V;)ba (t) )

VoS (r)

vng(z))

4500 <t <end ( b
V(o)

(

8000

velocity vector is constant on each leg:

( 4 ms™! >
12 ms™!

8 ms! )
—7ms' )’
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(b)
x 10~ dot(beta)
1.5
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Fig. 7. PCRB for (a) 3, (b) p,, (c) /3,. (d) /'), with scenario 2: closed-form PCRB (dashed line) versus approximated PCRB (solid line).

An example of trajectory for the second scenario
is presented in Fig. 5(a2), while the set of bearing

measurements is presented in Fig. 5(b2). Fig. 7
presents a comparison of PCRB obtained by the

algorithms given in Fig. 2 and Fig. 3. We obtain the
same results. Then the closed-form PCRB is valid in
the maneuvering case. As for the previous scenario,

1212

we compute the bound given by (53) which is given

by Fig. 10. As expected, the PCRB dramatically
decreases when the observer maneuvers at time

periods 1500 and 4500.
Consequently, we can now compute the

PCRB accurately and quickly, making it suitable

for sensor management applications. We have
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Fig. 8.
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Closed-form PCRB with range measurements scheduling (solid line) versus closed-form PCRB without range measurements

(dashed line). (a) B, (b) p,, (¢) B, (d) p,.

proposed in Section V an algorithm given by

Fig. 4 which calculates the closed form PCRB for
active measurement scheduling application. Fig. 8
presents a comparison based on the first scenario

of the closed-form PCRB with active measurements
produced every 80 sec with the closed-form when no

BREHARD & LE CADRE: CLOSED-FORM POSTERIOR CRAMER-RAO BOUNDS FOR BEARINGS-ONLY TRACKING

active measurements are produced. In simulations,
The range measurement standard deviation is set to
0, = 100 m. As we can see in Fig. 8(b). p, bound
falls when the sensor produces a range measurement.
Fig. 11 presented the related bounds for 7, given by
(53).

Authorized licensed use limited to: UR Rennes. Downloaded on July 10, 2009 at 11:18 from IEEE Xplore. Restrictions apply.
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Fig. 11.

VII.

Fig.

Fig. 10.

An innovative analysis of the PCRB in the
bearings-only context has been presented. In

Closed-form
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9. PCRB for r, with scenario 1: closed-form PCRB (dashed line) versus approximated PCRB (solid line).
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PCRB for scenario 2: closed-form PCRB for r (dashed line) versus approximated PCRB for B (dashed line).
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measurements (dashed line).

CONCLUSION APPENDIX A.  ABOUT THE BIAS

Bias definition as given by (12) may appear

particular, strong results were shown with regards to be IE{IA/O:, —Y,.,} where f’o; , is an estimator of Y.,

the PCRB calculation; namely we derived an original
closed-form PCRB. This power result, asserted by
various simulations, cascades down from an original
frame that consists in a new coordinate system: the

surprising at first. A more natural definition could

and function of Z,.,. It is this point of view we are
now going to explain through a decomposition of
the mean square error related to the estimation of
Yy.;- When estimating a deterministic parameter, the

379

PCRB with range measurements scheduling for r, (solid line) versus closed-form PCRB for r, without range

LPC system. Computing the PCRB then becomes mean square error can be classically decomposed

an accurate and time-varying technique of particular in estimation variance and bias. However, in the
interest for real-time sensor management issues. stochastic case, using (10), we only have the
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following relation:

ECMy,, = 1%, — E{Y, | Y%, }I* + 1B{X,, | Y.} = Yo I

(55)

The mean square error is then equal to the covariance
estimation error if and only if

1%., — E{¥o., | Y. }|1* = 0. (56)
Assumption (56) is equivalent to
E{Yp., Y. | %.,} =0,  foralmost¥,  (57)

which is the retained definition of an unbiased
estimator.

APPENDIX B.  PROOF OF PROPOSITION 2

Proposition 2 is adapted from Proposition 1 to
BOT context. More precisely, Proposition 2 gives a
more simple formula for C.,. The idea of proof is
to study this term. Looking at (22) in Proposition
1 proof, each n, x n,-matrix term of C,., can be
rewritten S

Conha) = 1y Sy + [ OKDIZ115")

where

Ok.1) = [(F = YOP(Z . Yo )Ty, (58)
Remark that Y™ and )j" are n,-vectors, so that

O(k,l) is an ny X n_v—matrix (notation [ ]zr defined in
(20)). First, let us rewrite ©(k,/) using the statistical
property of stochastic system (9). The idea is to use
the following relation:

PZyY) = H{p(z [Y)p(Y; | Y,
j=1

e (59)

which is true under two assumptions. First, the
measurement at time ¢ depends only on the target
state at time 7. Second, {Y},.y is a Markovian process.
These two assumptions are easily deduced from the
formulation of the BOT problem given by (9). Then
using (59), (58) is equivalent to

v
Okl = | (%, — n)H{p(z PAAPANH)
Jj=1 y,
(60)

Now, one can see that some terms in (60) do not
depend on ¥, so that they can be factorized. Then we
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obtain
0(k’l)p(zl+l:t’ Yoy | Y0 if 1=0,
e(ka[)P(Z[+l:t’)/;+2:1 | YI+J)F(Y;—1)
if [=1
okl =
Ok DPZ 1.5 Yz | Ve DPZ g1 Y1)
if I<i<t
00DPZ,141 Y1) it 1=t
where
[, = Yop(t,, | )P if 1=0
N 35
oty = 3 1= TP 1RO | pCH )L
if O0<i<t
(5, = Yop(Z, | )py | YL if 1=t
(61)

We are thus reduced to calculate 6(k,l). Thus, the
following limits must be studied:

lim p(Y,|Y_,), lim p(Y, | Y,_
y,ayyp(" ) y/qy/,l’( 1Y)

i, ey 1), S P I D) (62)

lim p(Z, | Y), lim p(Z, | ).
y,ﬁy;p( 1 1Y) Y/Ay,'p( R

To study the first four limits, p(Y,,, | ¥;) derived in
Appendix B1 is needed:

p(Y;H I Y;) = 7‘,4+|p(X,+] | X/)a()’;)
where
pX, i ‘X) - 1 e*%l\xus*/\xﬁl/:llz,’
HHTTT 42, Jdei(Q)

(63)

a() = P, > 0| D150

+ P, (1) < 0| Y1y, 0y

We can notice that in (63), p(X,,, | X,) is just the pdf
of the diffusion process given by (3). The pdf of ¥/, ,
given Y] is less simple than in Cartesian coordinate
system because we do not have a direct bijection
between the two coordinate systems.

Now let us remark that ¥ takes its values in
1—m/2,7/2[xR3 so that Y = [—7/2,—00,—00, —0]
and V" = [7/2, +00, +00, +00]. According to (62), we
must study ]imyﬁyf p(X,, | X,) and limyﬁyr p(X,+l |
X,) to derive the first four limits of (62). Using f;
definition given by (7), we can obtain hmylgy X and

llmy_y‘X via hmy_‘y f,p(Y) and llmy_y¢ f,p(Y) and

1215
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finally derive
ylin;, P, | X, = [pX, | X!—l)|‘1,:—1r/2 000l
1=

Yli%} [)(X, | erl) = [p(X, ‘ Xt—l)l.'j,:ﬂ/2 00 0]
1=

. (64)
y]]r;,p(xml |Xr) = [p(X;4 ‘Xr)ld,:fr/z 00 0]
1=,

yll_ig}‘,p(xr-r-l |X1) = [p(X4 ‘Xl)l,’i,=ﬁ/2 00 0]
1

Now using (64) and notice that ]P’((‘.(l) >0]|Y) and
]P’(r_\,(l) < 0]Y) are bounded functions, we obtain

A p [ ) = [P [l =ry2 00 0]
1=

Jim pC8 [3,) = 19 |42 0 0 0]
=9

g (65)
A P&y | 1) = [Py [ Dlgary2 0 0 0]
1

JAm py 1) =[2Gy | Hlgmvpp 0 0 0L
el

We have studied the four first limits of (62). Now, let
us turn toward the two last ones. According to (4):

PZ 1Y) =pZ | B).
We deduce from (66) that

(66)

i P19 = 102 |8y P B P ) P2y )
=Y

67
y“'} PZ ) =1pZ | By PZ 1B PZ |5 PEZ; | B
]

Using limits given by (65) and (67), 6(k,l) given by
(61) can be rewritten

(U, = KPP, 0, ) i 120

L = YopZ, 9Py | DPEG 1Y )T2, 0, )]

Ok, 1) = it l<li<t
(A AT AR AT AR KE N

it 1=t

(68)

Consequently, lots of terms in 6(k,/) are equal to zero

without any technical assumption. The problem is now
to study more precisely the first column of 6(k,l). The
following result assures a more simple formulation for
this column.

LEMMA 2 For a filtering problem given by (9)

i @10 = i P11
Jm p([ %)= lim pB %D (69)

Jim p(, %)= lim p(, 5.

1216
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Lemma 2 is proved in Appendix B2. Using previous
lemma, 6(k,[) formula given by (68) becomes

—m¢{(l) 0 0 O
000
0k, 1) = 8y 0 oo
0 000
where
PGt [P 52r2 if 1=0,
0= P(Z | YD | Y)p(Y, | YI—])-I.%:W/Z a0
if 0<i<t,
PZy.1: Y00 5=x)2 if [=t

Incorporating 6(k,/) new formula given by (70) in
O(k,!) formulation given by (61), yields

—mp(Zy. Yo: M g=rp 0 0 0
0 000
=%y 0 000
0 000
1)

Putting the new expression of ©(k,/) given by (71) in
Cy., formula given by (58), we deduce that Cy., is a
diagonal matrix with diagonal element:

L—ap(B)l,, 0 0 0
100
Co. (D) = (72)
010
0 00 1
APPENDIX B1. A CLOSED-FORM FOR P(Y, ,, | ¥;)

The aim of this section is to derive the pdf of ¥,
given Y. The classical approach consists of proving
that there exists a function gy/(.) such that

B(Y, €A = /A 2101 DAL

¢ aca(-35[xw)

(73)

where B(] 77r/2,7r/2[x]R3) is the o-algebra of Borel
subsets of ] —7/2,7/2[ xR and A(.) is Lebesgue
measure. If this property is true then gy, (.) is the
distribution density function of ¥, given Y. To obtain
this result we use the distribution density function

of X,,, given X,. However, computation is not easy
because there is no direct bijection between Cartesian
and LPC system. We only have (7) and (8). Then we
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have

Py, €A[Y)
=P(f*(X,, ) €A|Y)
=P(f"(X,,) € A| Y. {r,() > OPP({r,()) > 0} | )
74
+P(fP(X,, ) € A| Y, {r,() < OPP({r,(1) <O} | ¥).
(75)

Then, using the pdf of X, given X, and the change
of variable theorem, we obtain the pdf of ¥}, given ¥}:

P, | 1) = ’14+1P(Xl+| | X)e(¥)
with

— 31X —AXiI—HU |}
PX 1 X)) = e 21X —AX; /HL),

1
472 /de(0)
o) =1, o0 P({r, (D > 0} | Y))
+1, <o) PUry (D) <0} [ ).

(76)

One can remark that the Jacobian term is r, | where
1,1 is the relative range at time ¢ + 1. Moreover
p(X;, 1 | X)) is the pdf of the diffusion process given
by (3). This term can be rewritten as function of

Y, and Y}, | using Cartesian-to-LPC state mapping
function given by (7).

APPENDIX B2. LEMMA 2 PROOF

First Relation of Lemma 2
According to (4), the pdf of Z, given ¥, is

1 e*(Zy*d,—/(ﬂ')z/ani 1

V2mos i

Pz | Y= —n[2<Z<m[2"

an

We can see examples of pdf of Z, given ¥, in Fig. 1.
Using p(Z, | Y)) given by (77), we can see that the first
relation of Lemma 2 is true.

Second Relation of Lemma 2

Looking at (76), we can see that we have just to
prove that

lii‘}/zp(x' [ X, )= ;f,lirf/zp(x’ [ X, ). (78)

B

Then we need to express X, as a function which
depends on ;. Using (7), we obtain

,,,li,mﬂ/zp(x’ [ X)) = u,lig/z P(f/;(yl) [ X1, =0

+ lim pf50D 1 X ), 010
79
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‘,,/ILT/ZP(X/ [ X)) = d}i‘;‘/zp( (XD [ X,- D1, )50

+ 'i,lirfr]ﬂp(_ﬁ;(x) | X[Al)l,-\([)<0'
Now if we note
— r,,f;’,]*

X2 =15, 0 rp (80)

we finally obtain

/2

d,liznw/zp(xz [ X0 =pX7"" | X))+ P(*X/W/z [X,_1)

(81)
‘1Iin1/2p(X, [ X_1) = P(*X;T/z [X1) +P(X/ﬂ/2 1%, 1)
Bi—m,

so that the second relation of Lemma 2 is true.

Third Relation of Lemma 2

Looking at (76), we can see that we have to prove
that

Jim pOt | XpaQ) = lim p(Xi,. | Xpach.
(82)
The proof is a little bit more difficult because we

need to study a(¥)) limit. First let us remark that a(Y))
definition given by (76) can rewritten as

aX) =P(r,(1) > 0| [r,(DDg, >0

+P(r, ()< 0] |r_\'(l)‘)1{r‘.(l)<0}' (83)
Now to study a(Y)) limit, we need the following
lemma.
LEMMA 3 For X a scalar random variate
Px (x)
PX>0||X|=x)= ——2———
¢ i Px(X) + px(=x)
(84
Px(=x)

P X| = — EXN W
X <Ol Xl =0 = S+ px

where py is the pdf of X.
PROOF OF LEMMA 3  First let us remark that for a
positive €, we can write
PX>0||X|€[x—ex+e])
o py (o

= — 85
[ hdss [ pods )

so that
M <PX>0||X|€lx—ex+e) <M*
with

inf,_qPx(®)

M- =
SUP[—cvae Px(X) +SUP_ o 1y Px(X) 86)
Mt = SUP|y_c 4 Px (X)
©infqpx@ +inf_ g px ()
1217
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Then let € converge to zero so that the first relation
of the lemma is proved. The second relation is
straightforward.

Applying Lemma 3 with X = r,(/) and finally
remarking that limy ., (l) = lii'n’,,ﬁw/2 r,()=0,
we obtain ) '

lim

L &7)
fi——m,

o) = lim a(t) =}

so that

ljf‘;/z/’(xm [ XDa(¥) = %f’(xul ‘ ’Xlﬁ/:) + %/’(Xm ‘Xlﬁ/z)
(88)

Jim pX, 1 X,-0a0) = 3puy | X7 + 39Ky [ =X

3

with X[/ defined by (80). The third relation of
lemma is proven.

APPENDIX C.
AND G

PROPERTIES OF OPERATORS F

Operators F and G are defined by (33). Before
investigating the properties of such operators, let us
remark that these operators can be rewritten using
direct tensor product. First, let us study Fy which
represents the derivative of the LPC-to-Cartesian
mapping w.r.t. state in LPC. Using (7), we have

B S {vx (%) if r0>0
R A O 10 A B N R}
(89)

&

Using now ol definition given by (7), we have

cos f3,
—sinf,

VLo =, :
wip®) =1 ,€08 3, — 3,sin 3,

79‘1 Sinﬂ/ - Bx COS/}I b[ COS/GI - ﬂ.z Sinﬁz

We can notice the block structure of Vy fi(¥).
Then using (89) and (90), Fy, can be rewritten using
Kronecker products, so that (33) can be rewritten as

00
Fy =Id,,®Ry + [1 0} &V, Gy =Idy,®V

where
_ { r‘,(t) r\_(t):| and v, = [ v),(r) vr\_(t)]
—r,(t) 10 ! V(0 w0
(C2Y)

Now let us detail the basic properties of F' and G
operators.

X

1218
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PROPERTY | G and F are linear operators, i.e., let
X, and X, to state vector, then Fy.z =F + F;(’ and
GX,+)-(, = GX, + G)-(/.

PROPERTY 2 Reminding that
A= [1 6’] ®Id,,,
0 1
terms G qy, and Fyy stand as follows:
Gy, = Gy,

Fyx, = Fx, +k6,Gy,, 92)

Proofs are omitted.

APPENDIX D. CLOSED FORMS FOR D}!, D}?> AND
D3 AND D3
We show in this section that (28) can be rewritten
as
1

o2

max

1 _
D'=

E{F;A"Q"'AF, }

1 o K
D? = ———E{FA"Q ' Fyx } - 1,

max

1 S
D122 = TE{FAX,Q ]FAX,} +C+TI22

Omax (93)
Lz 000
L)
pP=|0 000
0 000
0 000
sin 3, 0 0
cos f3, 0 0
- ; . (90)
psinf, + B,cosf, cosfB, sinf,
—sinf, cosp,

with

T2 = Fiy AQ ' Fyy,, — Fix, A"Q ' Fyy,

2 _ =1 « =1
Y7 =Fay,, Q" Fux,,, —Fapx, Q" Fazx,

00 0 0
08 0 0
2
I . 0
Oé3O£|—'&2
2
Q30—
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Considering at D}', D} and D?? and D}* formulas
given by (28), it is necessary to derive p(Y,,, | ¥,) and
p(Z, | Y,). According to Appendix B1:

p(Y;H ] Y;) = rr4+lp(xr+l | Xr)oz(Y;), (94)
More precisely, according to (28), we need
VyInp(¥, | Y), Vy, Inp(¥,, |¥) and VyInp(Z, | Y).
Using p(Y,, | ¥)) as given by (94) and remarking that
Vya(Y) =0, we obtain

Vyp( 1Y)

! ‘ pr -
= B ATQT (X, = AX = Up(X, | Xa(k)
max

Yy P |5 ©95)

1+1
1
=riy (—=—F;, Q7' (X, —AX,—U) +[0 4 0 O
omax
* Py | XDalt)

where Fy is defined by (33). Then, using (94) and
(95), we obtain

Traitement du Signal. Volume 27 — n° 4-5/2010

1

D' = —B{RAQ7(X,,, —AX,~U)
* (X, —AX, = U)'Q7' AR},
1
D = ———B{F A0 (X, - AX, - U)
max
X (X —AX, —U)Q'Fy ),
> 1 8 e
DP = ——B{F; 07'(X,, — AX,~U)
* (X —AX, —U)'Q'F )
1
- E{F;MQ"(XM—AX,—U,)}[O400]

max

1 . .
——[0 4 0 OVE((X,,, - AX, - U)'Q'Fy }
ax

+[0 4 0 0]°[0 4 0 0].

on

Now, we are dealing with the calculation of each
elementary term of (97) separately.

D! Formula: Let us rewrite D! as given by
(97), we have

1
DI“ = TE{F)ZA*QA(XHI _AXI - Ur)(XHl _AXI - Ul)*QilAFX,}

max

1 5 e - _
= UTIE{FX,A 0 IE{(XH[ —AX, - U)X, —AX, - U)" | X,} 0 IAFX,}-

(98)

max

Vi Inp(y [X)

1 * A% )—
= z—FxlA o ](Xl+l _AXr_Uf)
max
(96)
vXq lnp(Y;“ ‘ Y;)
1
= gUZ—F;MQ"(Xm —AX,-U)+[0 4 0 O]

max

N
=0 @

Then using the statistical property of X, , given X,,
ie., N(AX, + U, 02,,0) given by (3), we obtain D;!
formula as given by (93).

D)? Formula: Our aim is now to render explicit
D)2 given by (97). Let us first use the linear property
of F:

=0

1

12 _
D" =—

max

1 =
- UTE{F;,A*Q I(XH-I - AXr -

max

Incorporating Vy Inp(Y,,, | ¥), Vy  Inp(¥,, |Y) given
by (96) in (28), we obtain:

BREHARD & LE CADRE: CLOSED-FORM POSTERIOR CRAMER-RAO BOUNDS FOR BEARINGS-ONLY TRACKING

ot E{F;,Akgil(xfﬂ - AXI =

UD(X,p1 = AX, —UY'Q 'Fy | ax, -y}

U)X,y —AX, —U)' Q' Fyy oy ) 99)

Using the statistical property of X, , i.e., X,,, given
X, is an N(AX, + U,,Q), we obtain

1219
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i i where
D = ———B{{A'Q ' Fyx } = ——Fix A'Q7'Fy. B a0 oA Q7 A ax, -y}
max max
(100) i 1 BARS, ax, -0y A Q' AG  ax, -y}
Now remarking that U, = EX,,; — AX, and the linearity i E{Gy,—ax,_,-u_) A" Q" ARy, _ax,_,—y_}
of operator F, we obtain D,? expression given by
93). E{G-ax,.1-u pA" Q™ AGax, -}
2 s § 2 o
D; ) Formu'ld. St‘artm_g from D;* given by (97) (103)
and using again the linearity of F:
=0
1 ” = —
DP = 04_]E{FAX,+U,Q 'Kpp1 = AX, = U)X,y — AX, —U)°Q IFXM~AX,—U,}
max
1 - P
+ g B{Fx.uQ Xy = AX, = U)X,y = AX, = U)'Q ' Fiy ) +C (101)
max
with

1 . i’ —
C=——EB{Fg, _ax-uQ K1 = AX, = U)X,y — AX, —U)'Q 1Fx,,.fo,fu}
max
1 " =
= ——B{F, _ax 4@ (X1 —AX, —UD}(O 4 0 0)
o'l]]aX

1 . pp— 5
— > E{(0 4 0 0)'E(X,,, — AX,-U)"Q IFX,,.fo,fu,}*'(O 400)(0 40 0).

max

Let us notice that we can show using F definition
given by (33) and the statistical property of X,,
(€., X,,, given X, is N(AX, + U, 02,,0) distributed)

max

Now remarking that U,_; = EX, — AEX, , and using
linear property of operator F, we obtain

that the C definition given by (102) is equivalent to ]E{F;XHA"Q"AFAXH}
the C definition given by (93). Now, using again the .
statistical property of X,, |, we obtain i r 1 B{Fix,  A"Q7'AG,y, ,} .
F, =Q" + P . + Ar—l
1 5 _ max | E{G* A*O'AF.
D,22 = ) ]E{FAX,+U,Q 1(X/+l 7AX1711I) { Ay Q AXH}
max
E{G;y A'Q7'AG
X (Xl+] 7AX17U1)*Q‘1FAX,+U,} +C. { Ay Q AXH}
(104)
(102)

where A!!} is defined by (36). According to Appendix

To end the proof, the linearity of the operator F and C, Fy =F,  +6Gy andG, =Gy ,so that
=1 =1 =1 11 -1

the equality U, = EX,,, — X, allow us to infer (93)

from (102). M=o +er! + Al (105)
where ¥ is defined by (36). It remains to show that
APPENDIX E1.  PROOF OF PROPOSITION 5.1 Q' has a more simple formula using the following

lemma.
The proof of Proposition 5.1 is based on the

properties of F, and Gy, investigated in Appendix C. LEMMA 4 For X and Y two state vectors, let us define
Developing I''! given by (35) and using the linearity

t E(Fg (X ®@1d,,,)Fy)
of operator F, we obtain
" o E(Fg(E ®1d,,,)Gy)
]E{F(Ax/ 1+ ,7A 0 AF(AX, 140, .)} 0= B(GL(S ®1d,)F) (106)
N s0- x(Z®@1dy,
rit=q! 4 1 ]E{Ff/‘X: |+UMJA 4 IAGMX, 1+U; n} X ey
' Thax | B{Guy, 1y yAQ " AF iy 1y )} E(Gx (X @1dy,5)Gy)
EB{Giux, 40 A" Q' AG 1y, 1y ) where operators F and G are defined by (33). Then
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T QE{RyRy} + £ ®E{V; W} + = 0 E{VyR,} + =, © E{RyVy }

2, @ E{{V,} + S ®E{R}Vy}

3. @B{VV,} + X @E{VR,}
S QE{V;V,}

where
0 1
5= ]
00
- _[0 1]2[0 0]
~lo ool Tl o)

PROOF OF LEMMA 4 We just have to rewrite (106)
using F and G formulas given by (33). We prove
Lemma 4 using direct tensor product properties.

(107)

To end the proof, Lemma 4 is applied with
X=X-AX,_,-U_,

Y=X-AX,_,-U_, (108)

L ®Idyy, = ;ZI—A*Q"A.

max

Then, using the statistical property of X,, i.e., X, given
X,_, is N(AX,_, + U,_,,02,0)-distributed, we obtain

E{RyRy} = 202muxa3ld2x2
E{RY W} = zalznaxa21d2><2
(109)
E{VYRy} = 2‘7§m0‘21d2x2
E{WyV} = 2U§1axalld2x2

so that Q'! is given by (101).

APPENDIX E2.  PROOF OF PROPOSITION 5.2

Using the same approach as in Proposition 5.1
proof, we have

[P2=02+eT%¢-1)+A2

where ¥ and A,‘fl are given by (36) and (42) and

B{FS-ax -0 0A @  Fatmax,_, -y}

o - 1 E{F(;(,fo,,,r.u,,,\A*Qflex,—Ax,,,fuz,‘)}
==

max

« |
B{Gty, -ax, -4 nAQ Fag-ax,_, -y}

E{Gfx,f,sx,,ru,,.)AaQilGA(X,fo,,, Y
(110)

BREHARD & LE CADRE: CLOSED-FORM POSTERIOR CRAMER-RAO BOUNDS FOR BEARINGS-ONLY TRACKING

Lemma 4 is again the key for simplifying Q'2, and is
used with

X=X -AX_,-U_,
Y = AX, - AX,_, ~U_,)
1
AQn
o2 ¢

max

(111)

S ®Idy,, =

Now, using the statistical property of X,, i.e., X, given
X,_; is N(AX,_; + U_,,02,,0)-distributed, we obtain
for Q2 the simple formula given by (39).

APPENDIX E3.  PROOF OF PROPOSITION 5.3

The proof again mimics that of Proposition 5.1.
Thus, we first obtain

T2 =02+ 0T + AP
where ¥ and A??| given by (36) and (42), and

« -1
E{FA(Xﬁ/\Xl @ I'Zux,—/\x,,,—z/,,n}

. -1
1 E{FA(X,fAX, = ,)Q GA(X,fAX,,lf ,,[;}

Tinax E{th,—/axl,l—U,,.)Qilme,—Ax,,,—U‘ o}

B{Gx,-ax, v nQ ' Cax-ax, 1-u, )}
(112)

We prove now that Q%2 has a more simple formula

using Lemma 4 with

X =AX,—AX, ,—U_))

Y =AX,—AX, , -U_))
1

o2

max

(113)

L@ldy,, = o

Then, using the statistical property of X, i.e., X, given
X,_, is N(AX,_, +U_,,02,,0)-distributed, we obtain
for Q22 the formula given by (42).
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