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When the basic nonlinear filtering problem for dynamic systems is considered, in such case, 

the particle filter is one of the suitable methods that has perhaps become one of the most 

commonly used methods in recent years. Positioning or localization falls under such a 

nonlinear filtering problem. Positioning is a matter of interest for both domestic and 

industrial application, due to its potential use in wide range of context-aware services that it 

can enable by leveraging the Internet of Things approach. However, in areas where GPS 

signals are not available such as underground tunnel roadways, where the localization is 

done mostly using radio beacons. This study mathematically simulates tracking operation in 

such a tunnel-like situation and studied the position estimation by the particle filter. From 

the results, we were able to visualize how varying different configuration parameters affect 

the estimation accuracies and also get an idea of worst-case estimates by seeing its standard 

deviation of estimated positions for different instances of repeated experiments. And our 

results also confirmed that deploying additional beacons have a contribution to the 

improvement in error tolerance. However, the improvements are significantly notable only 

around the point where beacon has been added. When the basic nonlinear filtering problem 

for dynamic systems is considered, in such case, the particle filter is one of the suitable 

methods that has perhaps become one of the most commonly used methods in recent years. 

Positioning or localization falls under such a nonlinear filtering problem. Positioning is a 

matter of interest for both domestic and industrial application, due to its potential use in wide 

range of context-aware services that it can enable by leveraging the Internet of Things 

approach. However, in areas where GPS signals are not available such as underground tunnel 

roadways, where the localization is done mostly using radio beacons. This study 

mathematically simulates tracking operation in such a tunnel-like situation and studied the 

position estimation by the particle filter. From the results, we were able to visualize how 

varying different configuration parameters affect the estimation accuracies and also get an 

idea of worst-case estimates by seeing its standard deviation of estimated positions for 

different instances of repeated experiments. And our results also confirmed that deploying 

additional beacons have a contribution to the improvement in error tolerance. However, the 

improvements are significantly notable only around the point where beacon has been added. 
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1. INTRODUCTION

Indoor localization has recently got increased attention, due 

to the potential use in wide range of context-aware services it 

can enable by leveraging the Internet of Things (IoT) approach, 

and ubiquitous digital connectivity that current generation of 

communication technology is offering. The process of 

localization or positioning consists of mainly two primary 

steps, ‘perception’ and ‘interpretation’. In perception, the 

information that can help estimate the position of the targeted 

subject is acquired using different sensors. Then in next step 

with the help of algorithms, the position of the target entity is 

estimated from the acquired data. In cases of positioning 

without GPS, the common practice is to localize the target with 

the help of radio beacon based techniques. Any parameter that 

is measurable and shows spatial variation has potential to serve 

as the information that can help in localization. For the target 

sites where wireless coverage is present for communication; in 

such case, the RSSI values of these wireless access points is 

and readily available means for localization.  

Localization with RSSI value is a highly non-linear 

mathematical operation. Though linear approximation is 

possible, still use of particle filter is a good option if we wish 

to include nonlinear factors such as map constraints, complex 

radio wave propagation and nonlinearities of state prediction 

and observation models in our localization filters. The particle 

filter is a recursive Bayesian state estimator; it uses discrete 

particles to approximate the posterior possibilities of the 

estimated state. The original literature on particle filter is [1]. 

Thereafter there have been several improvements over this 

particle filter approach [2-3]. To use the particle filter properly, 

we need to optimally specify parameters such as the number 

of particles, the initial particle locations, the motion and sensor 

models, the state transition and likelihood estimation methods. 

The state transition function comes from motion model, and 

the suitable system noise is also part of this model. The 

measurement likelihood function is basically a probability 

distribution function that is developed in accordance with 

sensor model. The details of conventional particle filter can be 

found in [2, 4-5] and a description of how we modelled our 
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problem in particle filter is discussed in the methodology 

section.  

Localization in the tunnel-like environment is of high 

importance for application in underground mines. After 

several mining accidents in early 2006, the United States 

Congress enacted the Mine Improvement and New Emergency 

Response (MINER) Act 2006 [6]. For the sake of emergency 

planning and rescue operations to proceed in a more efficient 

manner, the act made it necessary to deploy a communication 

and tracking systems for underground mines for saving lives 

in case of mine disasters. Enactment of this law had 

significantly contributed to the research in the development of 

communication and tracking systems for underground mines 

which was not a common practice a decade back. And in fact, 

not only safety but a precise positioning system also has the 

potential to increase operational efficiency of mines, 

simplifying the safety monitoring and coordination among the 

persons working underground [7]. 

There have been several works in the direction of modelling 

and enhancing the understanding of tracking systems for 

underground mines. In the Doctoral thesis [8] on 

communication and tracking system for underground mines, 

the author has studied radio beacon based positioning 

approaches for underground mine roadways. The thesis also 

proposes an evaluation strategy for positioning system 

deployment in underground mine roadway tunnels, with the 

help of simulation-based study of the deployments. [9] 

experimented with WiFi AP based positioning within building 

corridors assuming Wi-Fi propagation characteristic in 

building galleries shall be similar to that of mine tunnels, and 

tested their Monte Carlo localization based pedestrian tracking 

algorithms, which presume and multilayer Markov model for 

their prediction model the pedestrians. [10–12] proposed a 

particle filter based method for filtering vehicle position with 

map constraints of underground mine tunnels. And with 

simulated experiments validated their proposition. In the 

future scope of their work they also mentioned the need for 

studies for identifying the best configuration parameter for 

particle filter for this estimation purpose. Similarly [13] tested 

particle filter based positioning algorithms within building 

corridors assuming Wi-Fi propagation characteristic in 

building galleries shall be similar to that of mine tunnels and 

proposed their improvements.  

And there also been studies for enhancing understanding of 

the underlying mathematics of particle filters in tracking 

application. Article [5] is a detailed simulation-based study of 

positioning performance of particle filter for the outdoor 

environment. Article [14] is one of the early work on studying 

the performance of ‘particle filter’ and its variations in the 

field of mobile robot localization in an indoor environment. 

[15] conducted a simulation-based study with WiFi-based 

tracking system using ‘particle filter’ and from the simulated 

experimental results, they established that incorporating 

single-hidden layer feed-forward networks (SLFNs) in 

measurement likelihood model has positive contributions in 

improving positioning estimation. [16] in their simulation-

based study of the positioning with ‘particle filter’ and UWB 

radio beacons established the fact that when ‘particle filter’ 

fails that failure can be detected by computing the 

Mahalanobis distance between the sensor observation and the 

filtered sensor observation, and thereby certainty of the state 

estimation by the filter can be computed assuming that the 

sensor noise that leads to this wrong estimation is normally 

distributed. Thus, the square of ‘Mahalanobis’ distance 

between real observation and estimated observation shall 

follow a ‘Chi-Square’ distribution. And when the deviation 

crosses a certain threshold at that moment if ‘particle filter’ is 

bypassed and correction is estimated with Finite Impulse 

Response filter, then the overall combination gives better 

results. Further [17] did a simulation-based study for UWB 

radio beacon TOA based localization for non-line of sight 

applications. And the authors finally compared the 

performance of their approach with other baseline methods. 

Among the different approach taken by other researchers, 

we take a mathematical simulation modelling based approach 

to better understand the underlying mathematical dynamics of 

the ‘particle filter’ in localization application. And investigate 

the effects of different configuration parameters on the 

‘particle filter’ estimation when used as localization filter in 

the tunnel-like environment.  

 

 

2. PURPOSE AND RATIONALE BEHIND THIS STUDY 

 

Before deployment of the position tracking infrastructure, 

we first require an understanding of how the positioning and 

tracking system is expected to perform in the targeted 

deployment environment. For position estimation using 

‘particle filter’, it will be helpful to have a quantitative 

understanding of the impact of different configuration 

parameters of the ‘particle filter’ algorithm on our position 

estimation. This process of position estimation has several 

components of complexity and multiple sources of error, those 

are tough to model accurately, and the algorithm used for 

estimation is itself is probabilistic by nature, this is why for the 

same configuration and on same input data, the ‘particle filter’ 

may give a different estimation of positions. And the degree of 

these variations shall be dependent on what configuration 

parameters we put in our ‘particle filter’, and how we model 

the tracking system’s stochastic behaviour in our Hidden 

Markov Model; the model based on which likelihood function 

and prediction function of the ‘particle filter’ for such 

applications are developed. 

The primary intention behind this work is to study the 

behaviour of the positioning algorithm in tunnel-like 

environment and influence of beacon placement in overall 

estimation of position. In real tracking experiment the data we 

acquire from the tracking is influenced by different sources of 

error, and how much is the contribution of such different 

sources is nearly impossible to identify with any feasible 

means. This is why analysis with simulation data is the more 

sensible approach for our study, as in this case, we have 

precise control over the errors and other specifications of the 

data. Thus, we may conclusively relate the effect of different 

beacon placement and ‘particle filter’ configuration 

parameters on the final position state estimation. Otherwise, 

for experimentally measured data, it will be nearly impossible 

to predict whether the fluctuations in position estimation is 

contributed by the control variables of the experiment or other 

sources of error such as limitations in radio propagation model, 

wrongly estimated sensor error distribution etcetera. This is 

why doing such analysis with experimental data may not be 

applicable for broader scope. Most importantly, with the data 

from simulation we are able to side by side visualizer effect of 

fluctuations in RSSI value measurements on the position state 

estimates; thus we are able to get a better insight of the 

underlying mathematical aspects of the process. In case of 

experimental data, we do not have any easy means to know the 
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RSSI measurement errors accurately. That is why with 

experimental data such in-depth analysis of this filtering 

process shall not be possible. 

For achieving this purpose, we developed a mathematical 

model that represents this tracking process with a ‘particle 

filter’, incorporating all prominent stochastic components of 

this process, with the help of the model simulated data for a 

fixed tracking trace. Now, ‘particle filtering’ being a stochastic 

process it often shows variability in estimation if applied on 

the same dataset repeatedly. This is why only from the single 

result is not rational to comment on the performance of particle 

filters. That is why for each set of controlled experiment with 

the ‘particle filter’ (explained in Section 3.2) we repeated the 

filtering operation for thirty times, and finally studied the 

whisker plots to draw the conclusions on the performance. Our 

criteria for performance evaluation is first to observe the mean 

accuracy of the 30 repeated filtering, and then we observe the 

standard deviation of the estimation error for these 30 repeated 

filtering results. High standard deviation means more 

fluctuation in estimation thus we may conclude the particular 

set of configuration parameters of the applied filter may give 

bad results in worst case situation though mean error from 30 

different filtering result is close to zero. And if the standard 

deviation is low, in such case, we can conclude that 

fluctuations in the estimation are less. Which means that there 

is less statistical/random error in the estimation process by the 

filter. This is why, in our perspective, good performance of the 

filter is seen as both low values of the mean error and low 

values of the standard deviations. As low value of standard 

deviation ensures consistent performance in the worst case 

scenario. 

 

 

3. METHODOLOGY 

 

This study has two components, first simulation of data, and 

then application of the filter on the simulated data for different 

filter configuration parameters, following the planned design 

of the experiment (DOE) that is explained in this section.  

 

 
 

Figure 1. Overview of the methodology 

 

In our process, we first consider a straight 100m tunnel 

section with radio beacons placed in the 50m interval. With 

the three beacons present in our section, one at beginning ‘B0’ 

one at middle ‘B50’ 50m apart from ‘B0’ and last one at 

another end ‘B100’ as shown in Figure #!. Next, in our 

simulation of wireless positioning operation, we generate 

simulated RSSI readings along the trace of a moving tracker 

in this tunnel environment, considering the beacons are 

emitting radio waves that are propagating through tunnel 

roadway. How the radio wave propagates through the 

particular environment, which will decide the RSSI values at 

different points in the region. The simulation of this process 

has three main components. 

1. The trace of target: In this study trace is a straight line 

moving at constant velocity. 

2. Model errors in RSSI observation by the tracker. 

3. Radio Propagation model through the tunnel. 

The radio propagation behaviour in the tunnel-like 

environment has been studied and reported in the literature 

[18–21]. Next there are several distributions for modelling the 

wave path loss; namely, Rayleigh, Nakagami, Rice, Weibull 

and log-normal shadowing are among the most commonly 

used models.  

 

 
 

Figure 2. Layout showing beacon positions in the 100m long 

tunnel section that is considered for simulation 

 

For our simulation purpose, we choose Ray-Tracing model 

considering one reflection for propagation modelling; and for 

path loss to used log-distance path loss model. Compared to 

other models we prefered Ray-Tracing model for its 

mathematical simplicity [18] and ease of implementation fir 

the simulated cases. Coefficient used in the radio propagation 

model were derived from experimental readings, for 

reproduction of this work in some real mine or underground 

tunnel, an experimentally developed RSSI map can be used.  

 

 
 

Figure 3. Simulated RSSI map of three beacons in the 100m 

gallery section 

 

For the measurement likelihood model of the particle filter, 

this simulated RSSI map of the tunnel is used for the respective 

beacons in the simulation. And our ‘particle filter’ estimates 

observation vector of RSSI values for each particle using the 

values from this interpolated map generated using simulated 

observation points added with Gaussian noise with variance 5 

units (of RSSI value) as sensor error. 
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3.1 Modeling the filter 

 

The state estimation is the procedure of gaining information 

about the unknown state of a system by observing the other 

related quantity whose relationship with the state is 

mathematically modelled to sufficient extent. In a Bayesian 

framework, the state, as well as the measurement, are treated 

as stochastic vectors. The likelihood of measurement Z for 

given the state X be denoted by P(𝑍𝑡│𝑋𝑡) where the subscript 

‘t’ denotes the time instance in the particular stochastic process.  

Localization problems, in general, is modelled as Hidden 

Markov Model (HMM), when developing ‘particle filter’ 

model or similar MCL based localization filters. The position 

state that we are trying to estimate is a hidden parameter as we 

are not able to measure it directly, but we have some sensor 

measurements and some prior knowledge and mathematical 

understanding of how the system behaves. 

 

 
 

Figure 4. Abstract representation of tracking as HMM. 𝑋𝑡 

refers to position state that is unknown and to be estimated 

and 𝑍𝑡 refers to the sensor observation information 

 

In case of radio beacon based positioning systems, the 

position of the tracker is the hidden variable. And the vivid 

heterogeneous sensor information such as RSSI readings 

observed by the tracker and the several other possibly useful 

information for indoor tracking is the observation or 

measurements vector that is represented as 𝑍𝑡 in this paper.  

Next, by considering the prior knowledge about the state X 

that is denoted by ( 𝑋𝑡
̅̅ ̅ ), a estimation and probability 

distribution of X we can get before obtaining the measurement, 

which is denoted by belief(𝑋𝑡
̅̅ ̅) where  

 

belief((𝑋𝑡
̅̅ ̅)=P(𝑋𝑡

̅̅ ̅│all the priory information)                     (1) 

 

With this, we can formulate the joint density of the state and 

the observation we got from our sensors P(𝑍𝑡,( 𝑋𝑡
̅̅ ̅)  

 

P((𝑍𝑡̅,(𝑋𝑡
̅̅ ̅)=P(𝑍𝑡│𝑋𝑡

̅̅ ̅)*belief(𝑋𝑡
̅̅ ̅)            (2) 

 

With application of Bayesian theory, we can say 

 

belief(𝑋𝑡) or P(𝑋𝑡 |𝑍𝑡)=  
(P(𝑍𝑡│𝑋𝑡̅̅ ̅)∗𝑏𝑒𝑙𝑖𝑒𝑓(𝑋𝑡̅̅ ̅)

𝑃(𝑍𝑡)
           (3) 

 

In the formulation P(𝑍𝑡) is incorporated in the normalization 

constant ‘η’ this is why there is no need for separate estimation. 

Finally the equation dealing with positioning takes the 

following form where prediction update computes the priori 

probability distribution belief(𝑋𝑡
̅̅ ̅) and the priory estimate then 

further corrected with the help of observations. The particle 

filtering is one of such technique which in general can be used 

to solve formulations such as this.  

Predicted State 

 

belief((𝑋𝑡) )=∫{ P(𝑋𝑡│𝑋𝑡−1), 𝑈𝑡 )*belief(𝑋𝑡−1)} d(𝑋𝑡−1)    (4) 

 

Correction after observation 

 

belief(𝑋𝑡)=η*∫{ P(𝑍𝑡│𝑋𝑡
̅̅ ̅)*belief(𝑋𝑡

̅̅ ̅)} d(𝑋𝑡
̅̅ ̅)          (5) 

 

 
 

Figure 5. Illustration attempting to explain the mathematics 

behind the probabilistic tracking algorithm 

 

The diagram above is very much simplified illustration of 

this mathematical formulation, however, in practice, these 

probability distributions are unknown and estimation of those 

probability distributions as to be done, by case specific models, 

developed using analytical derivation and experimental data.  

P(𝑋𝑡│𝑋𝑡−1 ,  𝑈𝑡 ) this PDF in eq. 4 is related the state 

transition function of a particle filter, that helps to evolve the 

particles to the next state from a preceding state. It is used 

during the prediction step of the ‘particle filter’ Workflow in 

Figure 6. In our formulation, the state transition function 

assumes a Gaussian motion model with a constant velocity 

equal to the velocity given in the simulated trace of the tracker. 

The function uses a Gaussian distribution to determine the 

position of the particles in the next time step. In case of real 

application this has to be replaced with a suitable distribution 

that better represents the dynamics of the subject that is been 

tracked (e.g. pedestrians, drone, wheeled robot, mine car etc.) 

Next, the trace of the tracker in our simulation is a straight line 

moving with a constant velocity thus in the posterior state in 

the motion model of the ‘particle filter’ we use the eq. 6  

 

𝑋𝑡+1= 𝑋𝑡+V* δt +~N(0, Σ𝑝).              (6) 

 

where, Σ𝑝  is the process noise covariance. And V is the 

velocity of tracker. 

After predicting the next state, you can use measurements 

from sensors to correct your predicted state. This measurement 

likelihood function, by definition, gives a weight for the state 

hypotheses (each particle is a state hypothesis) based on a 

given measurement. The high value of likelihood represents a 

certainty that observed measurement actually matches with the 

RSSI values that the tracker has observed. This likelihood 

value is used as a weight for the state hypothesis represented 

by these particles. Although the prediction step can prove 

accurate for a small number of intermediate steps, however, to 

get accurate tracking, we use the sensor RSSI observations to 

correct the states of particles, by means of resampling. 
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Observation model in our case is derived from the simulated 

RSSI map of the beacons as shown in Figure 3. For any 

particle placed in the tunnel, we can get respective RSSI values 

for each beacon from the RSSI map that is shown in Figure 3. 

For our study the observation 𝑍̂𝑡 =Vector of RSSI values 

measured for state 𝑍𝑡. 

Likelihood weight function in case of the real sensor 

observation vector is 𝑍𝑡 taking it as multivariate normal. 

 

Likelyhood=
𝑒𝑥𝑝(−

1

2
(𝑍𝑡−𝑍̂𝑡)TΣ𝐿

−1(𝑍𝑡−𝑍̂𝑡)) 

√(2𝜋)𝑘|Σ𝐿|

           (7) 

 

where, Σ𝐿 =Likelihood covariance; k=number of beacons or 

the number of variable in the vector.   

 

 
 

Figure 6. Workflow of the ‘particle filter’ algorithm in this 

work 

 

The radio propagation characteristic for underground tunnel 

environments is often more complicated than simplified ray 

tracing model, which don’t consider factors like wall 

roughness, interference etc. Still, for our study, this shall work 

fine as the motive of this study is to primarily study the 

performance of ‘particle filter’ and effect of different beacon 

deployment schemes in tunnel-like environment. That is why 

even the simplified radio propagation model like Ray tracing 

model with single reflection consideration shall server our 

purpose. 

There is another important parameter that is the number of 

particles, each particle in the ‘particle filter’ is a state 

hypothesis that is tested against the observation model and the 

sensor data. Either the particle with the highest likelihood or 

the likelihood-weighted mean of all particles is taken to 

determine the best state estimate. In our application, we 

compute the best estimate by means of taking the likelihood-

weighted average of all the particles. Finally for resampling 

the standard resampling policy described in [4] is used. 

 

3.2 Design of experiment 

 

As discussed before in section 2, we wish to observe the 

error in the estimation of ‘particle filter’ along with variance 

of error for same simulated data, with different ‘particle filter’ 

configuration. In our design of experiment (DOE) the process 

is the application of particle filter, the fixed input is the data 

from the simulation, and control parameters are the ‘particle 

filter’ configuration and beacon layout.  

Fixed parameters in DOE 

Form simulation we get time series data of RSSI readings 

measured by the tracker moving along the trace line (as shown 

in Figure 2). The data is generated with the help of simulated 

RSSI map (Figure 3) with the added Gaussian noise of 

variance 5 (unit of RSSI). Figure 7 shows the noisy RSSI data 

from each respective beacon which is used as input to the filter 

model. This input is kept as a fixed parameter in the 

experiment throughout. 

 

 
 

Figure 7. Simulated time series data, above is noise free RSSI data; then additional Gaussian noise (middle); below is the noisy 

RSSI data from respective beacon which is used as input to the filter model 

 

Control parameters  

1 The first control parameter is beacon layout, where at 

the first case; we apply the ‘particle filter’ on 

considering the data only from ‘B0’ and ‘B100’ (2 

beacons). And in another case, we consider data from 

all three beacons for position estimation. 

2 Second control parameter that we vary is system 

noise covariance. The values of system noise 

covariance that were used in the experiment: 0.5 I, 1 

I, 2 I, 5 I, 10 I, 20 I (‘I’ stands for identity metrics) 
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3 The third control parameter is Measurement 

Likelihood covariance, values used were: 1 I, 5 I, 10 

I, 20 I, 50 I. 

4 Fourth control parameter in the experiment was the 

number of the particle (state hypothesis) used while 

applying the filter on simulated data. The values taken 

for this control parameter were: 10, 20, 50, 100, 150, 

and 200. 

 

Observations  

We repeated the filtering process for 30 times for each 

combination of control parameters. And then we observed its 

whisker plots for analysis and interpretation of the results. The 

quantitative parameters that we observed and compared 

among the results were mainly the mean error in the estimated 

traces along the tunnel axis direction. And variance in that 

estimation for these 30 repeated applications of filters. 

 

 

4. RESULTS 

 

Few of the important results that we identified from the 

results we observed are discussed in this section. 

 

4.1 Varying the number of particles 

 

By varying the number of particles, we could see that 

accuracy improves with an increase in the particle. And more 

importantly, the variance of estimation for the 30 repetition 

decrease with increase in particle number.  

 

 
 

Figure 8. Comparison of error (above) and variance (below) of ‘particle filter’ estimation with different number of particles  

 

4.2 Varying the process noise 

 

This is a qualitative observation that we make is with a low 

value of process noise there is a tendency of error 

accumulation. And at higher process noise ‘particle filter’ 

performs better in terms of accuracy. 

 

 
 

Figure 9. Whisker plot of error from 30 repeated filter application for different process noise. With 100 particles, 20 I likelihood 

covariance and 2 beacon setup 
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4.3 Varying likelihood covariance  

 

 
 

Figure 10. Comparison of ‘particle filter’ performance with different likelihood covariance. With 100 particles, 10 I process 

noise covariance and 2 beacon setup 

 

4.4 With three beacons at 50m interval 

 

Improvement in position estimate with 3 beacon setup is 

marginal. However, we can find that standard deviation of 

estimation significantly reduces for 3 beacon setup, for 

estimated positions around the additional beacon ‘B50’ around 

the centre of the tunnel section. 

 

 
 

Figure 11. Comparison of ‘particle filter’ performance with the addition of 'B50' beacon at the center of the tunnel. With 100 

particles, 10 I process noise covariance and 20 I likelihood covariance 

 

 

5. DISCUSSION  

 

5.1 Insights on number of particles 

 

From the results, we can understand the obvious fact that 

the number of particles we use in the filter place a vital role in 

the estimation. A low number of particles means incapability 

of capturing the states of possible estimates in a less dense 

manner, thus the best estimate is often missed out. As we can 

see in Figure 8 that reducing the number of particles reduces 

the estimation accuracies and increases the standard deviation. 

However, sometimes when state estimation has to be done on 

low powered embedded computers, in such situation we need 

to implement ‘particle filter’ with less number of particles. 

Though results may be poor, however, for cases where lack of 

precision is tolerable, there a particle filter with less number of 

particle too may work. This is why it was important to study 

the behaviour of the ‘particle filter’ with the particles as low 

as 50 and less. With our study, we get some idea that to what 

extent reduction in the number of particles influences the 

positioning estimate.   

 

5.2 Insights on process noise covariance 

 

Next, with the result, we also understand that for successful 

implementation of positioning with ‘particle filter’ we have to 

have a perfect balance between system noise or the process 

noise, and the covariance of likelihood function in the 

observation model. We can see in Figure 9 that if we keep 

system noise low, then there is a possibility that result from 

‘particle filter’ may fail to give a right estimate. Figure 9 also 

shows that there is a higher tendency of error propagation in 
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subsequent estimation by the filter in case of low process noise 

covariance. This propagation of error has potential to cause 

‘particle filter’ to fail and diverge like of example in Figure 12. 

In such case, re-initialization of particle states can be one of 

the possible solutions to recover. At this study, no such 

approach was implemented in out ‘particle filter’ model that is 

used, as our intention at this point is to investigate the 

behaviour of the ‘particle filter’ and identify possible cases 

where ‘particle filter’ may fail. And Improving upon those 

limitations is in the future scope of this work. 

 

 
 

Figure 12. A result showing the failure of ‘particle filter’ due to the accumulation of error due to low process noise covariance. 

With 100 particles, process noise 0.5 I, likelihood covariance 20 I and 2 beacons setup 

 

5.3 Insights on of likelihood covariance 

 

In the results shown in Figure 10, we can see that keeping 

the likelihood covariance in ‘particle filter’ model high leads 

to better accuracy. However, it also increases the variability of 

estimation as we could see in below plot of Figure 10. Previous 

studies on the behaviour of particles filter [2] also pointed out 

the importance of selecting a proper covariance matrix for 

process noise and likelihood covariance. Our results and 

analysis add additional in-depth insight and visual illustration 

of effects of different values of this covariance matrices. As 

discussed in section 5.2 that giving an increased process noise 

in the ‘particle filter’ model ensures better accuracy similarly 

giving increased covariance in the likelihood function helps 

increase the accuracy of estimation. 

 

5.4 Insights on accuracy improvement with additional 

beacons 

 

As we see in Figure 11 the comparison of error plots when 

the additional ‘B50’ beacon is considered. Addition of another 

beacon in the middle of the two existing beacon helped 

improving estimation by the filter. However, this 

improvement is marginal (when compared to two beacon 

setup). Yet another phenomenon we could see is that around 

the additional beacon ‘B50’ the mean error has reduced, and 

the variance has notably decreased around ‘B50’. The reason 

behind this phenomenon can be better appreciated if we see 

the simulated RSSI heat map of Figure 3 in a different 

representation of Figure 13. Where we can visually understand 

(seeing the gradient discontinuities) that around the beacons, 

change in RSSI value is more prominent with small changes 

in position, this is why small changes in tracker position were 

captured well when the simulated tracker was close to the 

beacon. Whereas when the tracker is away from the beacon, 

the RSSI value shows less spatial variation. This is how the 

addition of ‘B50’ beacon helped improve accuracy around the 

centre region of the tunnel as we could see in Figure 11.  

 

 
Figure 13. Gradient map of radio beacon RSSI 

 

 

6. CONCLUSION AND FUTURE WORK 

 

From this study, we gather insights on how configuration 

parameters of particle filters influence the estimation 

accuracies. And our results also confirmed that deploying 

additional beacons have a contribution to the improvement in 

accuracy, and contribution of the additional beacon is more 

prominent in the vicinity of the area where the beacon is added.  
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From our analysis so far with fixed trace and a simplified 

prediction model we got some insight on the underlying 

mathematics of particle filter. Now our next step is to 

investigate further how ‘particle filter’ may work on tracking 

more complex subjects such as mobile ground vehicles, UAVs, 

Pedestrians etcetera in a tunnel-like environment; where the 

state prediction model has more complexity and uncertainties. 

Such studies have significance in pedestrian tracking and 

UAV localization in a tunnel-like environment of underground 

mine roadways, similar to the study [22]. Now it is also a 

matter of interest that how ‘particle filter’ handle those noises 

for these different types of target objects with different 

movement kinematics. With such analysis, we shall be able to 

make more meaningful conclusions. 
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