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 In this study, the Ritz variational method was used to analyze and solve the bending 

problem of simply supported rectangular Kirchhoff plate subject to transverse hydrostatic 

load distribution over the entire plate domain. The deflection function was chosen based 

on double series of infinite terms as coordinate function that satisfy the geometric and 

force boundary conditions and unknown generalized displacement parameters. Upon 

substitution into the total potential energy functional for homogeneous, isotropic 

Kirchhoff plates, and evaluation of the integrals, the total potential energy functional was 

obtained in terms of the unknown generalized displacement parameters. The principle of 

minimization of the total potential energy was then applied to determine the unknown 

displacement parameters. Moment curvature relations were used to find the bending 

moments. It was found that the deflection functions and the bending moment functions 

obtained for the plate domain, and the values at the plate center were exactly identical as 

the solutions obtained by Timoshenko and Woinowsky-Krieger using the Navier series 

method. 
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1. INTRODUCTION 

 

Plates are commonly applied in many engineering fields as 

roof slabs, building floor slabs, bridge deck slabs, foundation 

footings, water tanks, bulkheads, retaining walls, turbine disks, 

aerospacecraft panels, and ship hulls [1, 2, 3]. Their 

applications cut across the various branches of engineering 

and plates are used in civil, structural, marine, naval, aerospace 

and mechanical engineering. 

Plates are subjected to transversely applied loads, causing 

flexure and the development of flexural deformation and 

stresses. Plates are defined by their shapes as rectangular, 

square, circular, elliptical, skew, quadrilateral plates, etc. They 

are also defined by: their constituent materials as 

homogeneous, non homogeneous, isotropic, anisotropic, and 

orthotropic [1, 2, 3]. They are also classified as membranes, 

thin plates, moderately thick plates, and thick plates, 

depending on the ratio (h/a) of their thickness, h to the least 

inplane dimension, a. 

Plates can be subjected to static loads or dynamic loads, and 

can also be subjected to inplane compressive loads that cause 

buckling. Thus, plates can respond to applied loads by static 

flexural response, dynamic flexural response or by buckling; 

depending on whether the loads are static or dynamic or 

compressive. 

 

Research aim and objectives 

 

The research aim is to apply the Ritz variational method to 

the flexural analysis of simply supported Kirchhoff plate under 

transverse hydrostatic load distribution over the entire plate 

domain. The objectives include: 

(i) to determine the total potential energy functional for 

the simply supported Kirchhoff plate under transverse 

hydrostatic load distribution for a suitable choice of 

displacement basis function 

(ii) to apply the variational principle to the total potential 

energy functional determined and hence find the unknown 

displacement parameters which minimize the total potential 

energy functional 

(iii) to determine the bending moment distributions from 

the bending moment curvature relations, and find the bending 

moments at the center of the plate 

(iv) to find the deflection at the center of the plate. 

 

 

2. LITERATURE REVIEW 

 

Review of plate theories 

 

Sophie Germain used the method of variational calculus to 

derive from the first principles, the differential equation 

governing thin plates subject to transverse distributed loads. 

Her differential equation was however defective, as she 

neglected the contributions to the strain energy due to the 

twisting deformations of the plate middle surface. Lagrange 

later obtained the corrected governing differential equation for 

transversely loaded thin plates that accounted for the warping 

(twisting) of the plate middle surface. Subsequently, Navier, 

[4] using the theory of elasticity, obtained the differential 

equation of bending of rectangular plates under distributed 

transverse loads. Navier [4] also used the Fourier double 

trigonometric series method to solve and obtain exact 

Mathematical Modelling of Engineering Problems 
Vol. 5, No. 1, March, 2018, pp. 1-10 

 

Journal homepage:http://iieta.org/Journals/MMEP 
 

1



 

solutions for the deflection of simply supported rectangular 

thin plates under transverse loads. 

Poisson [5] [6] extended Navier’s research to the problem 

of circular plates. Kirchhoff [7] presented an extended theory 

of plates which considered both the transverse distributed 

loads and the in-plane loads on plates. Kirchhoff also applied 

the method of virtual displacements in solving plate problems. 

Hencky [8, 9] and Reissner [10, 11] have presented 

improvements to the Kirchhoff plate theory which considered 

the effect of transverse shear deformation on the behaviour of 

plates, and thus allow their application to the problem of 

moderately thick and thick plates. Their theories are first order 

shear deformation plate theories. 

Mindlin [12] used a displacement based formulation to 

obtain the governing differential equation for first order shear 

deformable plates, and incorporated the effect of rotary inertia. 

Mindlin’s theory, however, requires a shear correction factor 

to account for the error introduced by the assumption of a 

constant shear strain through the plate thickness. 

Other plate models and theories that have been developed 

to account for the limitations and imperfections of the classical 

Kirchhoff-Love plate theory include: Shimpi refined plate 

theory [13], Higher Order Plate Deformation theory [14], 

Reddy’s third order plate theory [15], Leung’s plate theory 

[16], Osadebe plate model [17], and modified plate theories 

[18]. 

The plate problem is generally, a boundary value problem 

which is a system of differential equations which are required 

to be satisfied in the plate domain and the associated boundary 

conditions to be satisfied at the plate boundaries [19]. The 

plate problem has been successfully solved in the technical 

literature using two fundamental methods; namely: analytical 

closed form methods and numerical or approximate methods. 

Ladeveze [20] introduced a new approach for the analysis 

and solution of homogeneous, isotropic elastic plates with 

constant thickness under arbitrary distributed flexural loads. 

His theory was described as exact because it lead to exact 

values of the generalized two dimensional quantities. Contrary 

to classical plate theories, Ladeveze’s approach was not 

limited to thin plates. Analytical closed form methods that 

have been used in solving the plate problem include the double 

trigonometric series method by Navier [4], the single 

trigonometric series method by Levy [21]; closed form 

solutions have also been obtained by Nadai [22]. 

Other researchers that have presented closed form 

mathematical solutions to the plate problem include Mama et 

al [23] who used the finite Fourier sine transform method to 

solve the problem of simply supported rectangular Kirchhoff 

plates under uniformly distributed transverse loads over the 

entire plate surface, uniformly distributed patch load over a 

given area of the plate, and point load on the plate. Numerical 

methods have also been used to find approximate solutions to 

the plate bending problem. Nwoji et al [24] used the 

Kantorovich-Vlasov method to solve the simply supported 

plate problem for the case of uniformly distributed transverse 

load applied over the entire plate surface. Osadebe et al [25] 

applied the Galerkin-Vlasov method to the flexural analysis of 

simply supported Kirchhoff plates under uniformly distributed 

transverse loads applied on the entire plate under region. 

Nwoji et al [26] applied the Galerkin-Vlasov method to the 

flexural analysis of rectangular Kirchhoff plates with clamped 

and simply supported edges for the case of uniformly 

distributed transverse loads. Ike [27] used the Kantorovich-

Euler-Lagrange-Galerkin’s method to solve the flexural 

problem of Kirchhoff plates with clamped and simply 

supported edges. Other researchers who have worked on the 

plate problem include Mama et al [28], Ezeh et al [29] and 

Aginam et al [30]. 

 

 

3. RITZ VARIATIONAL METHOD 

 

The Ritz variational method for the flexural analysis of the 

Kirchhoff plate under given applied loads and edge support 

conditions is based on the application of the principle of 

stationary total potential energy. The principle of minimum 

total potential energy states that the displacement field 

corresponding to the minimum total potential energy 

functional of the structure under applied loads represents a 

state of equilibrium provided the displacement field satisfies 

the prescribed boundary conditions of the structure. Hence, for 

the plate flexure problem, the Ritz variational method seeks to 

determine the displacement field w(x, y) defined over the plate 

domain, where x and y are the plate domain coordinates and 

w(x, y) is the displacement function or the displacement field, 

such that the geometric and force boundary conditions are 

satisfied and the total potential energy functional,   of the 

Kirchhoff plate, which is the sum of the stain energy in 

bending and the potential of the external distributed load is 

minimized. 

Ritz assumed the displacement field w(x, y) in terms of a 

linear combination of products of basis (shape or coordinate) 

functions of the plate in the x and y coordinate directions 

chosen such that these shape (basis or coordinate) functions 

satisfy apriori the end conditions along the x and y coordinate 

directions. The Ritz deflection field w(x, y) for plates is 

generally given by the double series of infinite terms: 

 

1 1

( , ) ( ) ( )mn m n

m n

w x y w X x Y y
 

 

   (1) 

 

where Xm(x) and Yn(y) are the basis (coordinate or shape) 

functions in the x and y coordinate directions, respectively; and 

wmn are unknown parameters of the displacement field, which 

are sought. wmn are called generalized displacement 

parameters. 

For Kirchhoff plates under transversely applied static loads, 

the total potential energy functional for small deformation 

assumptions and linear elastic, isotropic and homogeneous, 

material properties, becomes in terms of the displacement field: 
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m n m n
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      
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( , ) mn m n

m nR

p x y w X Y dxdy
 

   (2) 

 

where the primes denote space derivatives of the basis 

functions. 

Applying the principle of stationary total potential energy, 

Ritz variational method requires that for equilibrium, the total 

potential energy functional   should be minimized with 

respect to the unknown displacement field. Hence, for an 
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extremum of   with respect to wmn, the following condition 

is imposed: 

 

0
mnw





 (3) 

 

This yields a system of algebraic equations: given generally 

by: 

 

1 1 1 1

mn mn mn

m n m n

k w F
   
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   (4) 

 

where kmn are stiffness and Fmn are force terms 

and 

 

mn m n k l m k n l m k n l m k n l

R

k X Y X Y X X Y Y X X Y Y X X Y Y            

 2(1 ) m n k l m k n lX Y X Y X X Y Y dxdy            (5) 

 

1
( , )mn m n

R

F p x y X Y dxdy
D

   (6) 

 

2 2( )( ) (1 )mn m n k l m k n lk X Y X Y X X Y Y       
  

2m k n l m k n lX X Y Y X X Y Y dxdy          (7) 

 

An approximation to the displacement field is achieved in 

the Ritz variational method by a truncation of the Ritz 

displacement field such that m and n are finite values. Thus, m 

= 1, 2, … M;  n = 1, 2, ... N. 

Consequently, the matrix equation becomes a finite system 

of algebraic equations in terms of the unknown displacement 

parameters wmn, which can be solved by matrix inversion, and 

other methods of matrix algebra. 

 

 

4. APPLICATION OF THE RITZ VARIATIONAL 

METHOD 

 

Consider a rectangular Kirchhoff plate with isotropic, 

homogeneous material properties and all edges simply 

supported. The plate is subjected to a hydrostatic load 

distribution of intensity q(x); where 0( )z
xq x q

a
  where 

q0 is the intensity at x = a, and q(x) acts over the entire area of 

the plate surface. The plate is defined by the Cartesian 

coordinate system shown in Figure 1, with the origin chosen 

at a corner of the plate. The plate domain is defined by 

0 , 0x a y b     

where a, and b are the length and width of the plate, 

respectively. The geometric and force boundary conditions are 

 

( 0, ) ( , ) 0

( , 0) ( , ) 0

( 0, ) ( , ) 0

( , 0) ( , ) 0

xx xx

yy yy

w x y w x a y

w x y w x y b

w x y w x a y

w x y w x y b

   

   

   

   

 (8) 

 

 
 

Figure 1. Rectangular Kirchhoff plate with simply supported 

edges carrying hydrostatic load in the x-coordinate direction 

 

A suitable displacement field that satisfies all the geometric 

and force boundary conditions of simple supports at the four 

edges is given by: 

 

1 1

( , ) sin sinmn

m n

m x n y
w x y C

a b

 

 

 
   (9) 

 

where m = 1, 2, 3, …   

n = 1, 2, 3, …   

 

Cmn are the generalized displacement coordinates of the 

displacement function which are unknowns, and which we 

seek to determine in order to find the deflection function w(x, 

y). The total potential energy functional   for a Kirchhoff 

plate made with homogeneous isotropic material is given by 

 

bU V    (10) 

 

where Ub is the strain energy functional for bending of the 

Kirchhoff plate and V is the potential energy functional due to 

the applied transverse load q(x, y). 

 

2 2 2( ) 2(1 )( )
2

xy

b xy xx yy

R

D
U w w w w dxdy      

  (11) 

where 

2
2

2 2x y

 
  

 
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w
w

x y



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2

2xx

w
w

x





 

2

2yy

w
w

y





 

 

D is the plate flexural rigidity, and   is the Poisson’s ratio 

of the plate material. 

Rxy is the two dimensional domain of the plate defined by 

0 , 0 , 0x a y b z      

 

3



 

( , ) ( , )

xyR

V q x y w x y dxdy    (12) 

 

2 2( ) 2(1 )( )
2 2

b xx yy xy xx yy

D D
U w w dxdy w w w dxdy      

 (13) 

 

2 2( ) (1 ) ( )
2

xy xy

b xx yy xy xx yy

R R

D
U w w dxdy D w w w dxdy      

 (14) 

 

2 2 2( ) (1 ) ( )
2

xy xy

b xy xx yy

R R

D
U w dxdy D w w w dxdy      

 (15) 

 

1 2(1 )
2

b

D
U I D I     (16) 

 

where 
2 2

1 ( )

xyR

I w dxdy   (17) 

 
2 2

2 ( )

xy

xy xx yy

R

I w w w dxdy   (18) 

 

where 
2
xy xx yyw w w  is called the Gaussian curvature of the 

plate. 
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2 2 2( ) sin sinmn

m n

m x n y
w C

a b

   
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 
  (19) 
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a b
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  (20) 

 
2

2 2
2 2( ) sin sinmn

m n

m n m x n y
w C

a b a b

         
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Hence, 
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The sinusoidal functions sin
m x

a


 and sin

n y

b


 are 

orthogonal functions, and from the properties of orthogonal 

functions we obtain 
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sin sin 0
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dx
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sin sin 0
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n x n y

dy
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The orthogonality properties of the sinusoidal basis 

functions of the plate lead to the vanishing of the second term 

in the expression for the integral I1 and the simplification of I1 

to become: 
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Similarly, 
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b mn

m n

D D ab m n
U I C

a b

   
    

 
  (43) 

 
2

4 2 2
2

2 28
b mn

m n

ab D m n
U C

a b

   
   

 
  (44) 

 

The potential energy functional due to the applied 

distributed transverse load q(x, y) is 

 

0 0

( , ) ( , )

a b

eV q x y w x y dxdy    (45) 

 

0

0 0

sin sin

a b

mn

m n

q x m x n y
C dxdy

a a b

   
     (46) 

 

0

0 0

sin sin

a b

mn

m n

q m x n y
C x dxdy

a a b

   
     (47) 

0
3mn

m n

q
C I

a

 

    (48) 

where 3

0 0

sin sin

a b
m x n y

I x dxdy
a b

 
    (49) 

3

0 0

sin sin

a b
m x n y

I x dx dy
a b

 
    (50) 

 

2

3
0

0

sin cos cos

a
b

a m x ax m x b n y
I

m a m a n b

                        

 (51) 

 
2 2

3 sin cos (cos 1)
a a b

I m m n
m m n

      
                    

     (52) 

 
1 2

0

1 1

( 1) 2m
mn

e

m n

q C a b
V

a m n

 

 


 

 
   (53) 

 
1

0
2

1 1

2 ( 1) 1m
mn

e

m n

q abC
V

m n

 

 

 



   (54) 

 

where m = 1, 2, 3, 4, 5, … 

n = 1, 3, 5, 7, 9, … 

The total potential energy functional is given in Equation 

(10) 

 
2

4 2 2 1
2 0

2 2 2

2 ( 1)

8

m
mn

mn

m n m n

q abCab D m n
C

mna b

     
       

 
(55) 

m = 1, 2, 3, …;n = 1, 3, 5, 7, … 

 

( )mnf C   (56) 

 

For extremum of   with respect to the generalized 

coordinates, the principle of minimization of the total potential 

energy functional with respect to Cmn requires that: 

 

0
mnC





 (57) 

 

( )
0e e

mn mn mn

U V VU

C C C

  
  

  
 (58) 

 
2

4 2 2 1
0

2 2 2

2 ( 1)
2 0

8

m

mn
mn m n m n

q abab D m n
C

C mna b

      
       

 
    (59) 

 
2

4 2 2 1
0

2 2 2

2 ( 1)

4

m

mn

m n m n

q abab D m n
C

mna b

     
     

   (60) 

 

1
0
2

2
4 2 2

2 2

2 ( 1)

4

m

mn

q ab

mn
C

abD m n

a b




 

 
 

 (61) 
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1
0

2
2 2

6

2 2

8 ( 1)m

mn

q
C

m n
D mn

a b




 
  

 

  (62) 

Hence, 

1
0

2
2 2

6

2 2

8 ( 1) sin sin

( , )

m

m n

m x n y
q

a bw x y

m n
D mn

a b


 

 



 

  
 

 (63) 

1

0
6 2

2 2

2 2

sin sin ( 1)
8

( , )

m

m n

m x n y
q a bw x y
D m n

mn
a b


 

 



  

 
 

 (64) 

Let b
a
   

 

1
4 4

0
6 2

2 2 2

( 1) sin sin
8

( , )

m

m n

m x n y
q a a bw x y

D mn m n


 

 





  
  

 (65) 

 

1

4
06 2

2 2 2

( 1) sin sin
8

( , )

m

m n

m x n y

a bw x y q b
D mn m n


 

  
 

  
  

 

  

 (66) 

Let 1
a

b
   

 

1

4
06 2

2 2 2
1

( 1) sin sin
8

( , )

m

m n

m x n y

a bw x y q a
D mn m n


 

  
 

 
  

 

  

 (67) 

For square plates, 1,   

 

1
4

0
6 2

2 2

( 1) sin sin
8

( , )

m

m n

m x n y
q a a bw x y

D mn m n


 

 



 

  

 (68) 

Deflection at the plate center  ,
2 2

a bx y   

The deflection at the plate center is given by 

 

1

4
06 2

2 2 2
1

( 1) sin sin
8 2 2,

2 2

m

m n

m n

a b
w x y q a

D mn m n


 

  
  

    
     

 

  

(69) 

 

1

4
06 2

2 2 2

( 1) sin sin
8 2 2

m

m n

m n

q b
D mn m n


 

  
 

  
  

 

  (70) 

For square plates, the center deflection is given by 

 
 

1
4

0
6 2

2 2

( 1) sin sin
8 2 2,

2 2

m

c

m n

m n
q aa bw w x y

D mn m n


 

 


   
 


 (71) 

 

 

2
4 1 2

0
6 2

2 2

8 ( 1) ( 1)

m n
m

c

m n

q a
w

D mn m n

 

   


 
  (72) 

 

For m = 1, n = 1, and square plate, 1   

 
4 4

0 0
6

2
0.002038c

q a q a
w

D D
 


 (73) 

 

For square plates, summing up to m = n = 3, the center 

deflection is obtained as 

4
00.002024c

q a
w

D
  which is 

not significantly different from the center deflection for a one 

term Ritz variational solution. 

 

Bending moment distribution 

 

The bending moment distribution Mxx and Myy are given by: 

 

2 2

2 2xx

w w
M D

x y

  
       

 (74) 

2 2

2 2yy

w w
M D

y x

  
       

  (75) 

 

From Equation (66), 

 

 

2
1

2 4

2 6 2
2 2 2

sin sin ( 1)
8

m

xx

m n

m m x n y
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x D mn m n


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 
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 (76) 
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8

m
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w
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
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    

 
   
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 (77) 

 

Thus, 

 

 

2 2
1

4
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2 2 2
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8

m
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m n

m n m x n y

a b a bqb
M
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

 

       
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
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
(78) 
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2
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     
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 (79) 
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 
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 (80) 
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At the center, ,
2 2

a bx y   
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1 2 2 2

2
0
4 2 2 2 2

( 1) ( )sin sin
8 2 2,

2 2 ( )

m

xx

m n

m n
m n

q ba bM x y
mn m n


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 
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
(85) 
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( )
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m

m n
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

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2

0xx xxM q b   (87) 

 

xx  is the bending moment coefficient for Mxx and is given 

by: 

 

1
1 2 2 22

4 2 2 2 2
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m
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m n

m n

mn m n




      
 

  
 (88) 

 

Similarly, 
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
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       
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At the center, ,
2 2

a bx y   
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8 2 2,
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
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( )
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m
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

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  
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2

0yy xxM q b   (96) 

 

yy  is the bending moment coefficient for Myy and is given 

by: 

 

1
1 2 2 22

4 2 2 2 2

8 ( 1) ( 1) ( )

( )

m n

m

yy

m n

n m

mn m n



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 
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   (97) 

 

The deflection coefficients for the center of the plate for m 

= 1, n = 1 in the Ritz variational solution are tabulated in Table 

1, for various aspect ratios of the rectangular plate. 

The deflection coefficient for the center deflection of the 

plate m = 1, 3; n = 1, 3 in the Ritz variational solution are 

tabulated in Table 2, for various plate aspect ratios. 

Table 1. Deflection coefficients at center of simply supported Kirchhoff plate under hydrostatic load (for m = 1, n = 1) in the Ritz 

variational method 

 

b
a

   
4

0
1( )c

q b
w F

D
   

1 32.0803 10  

1.1 32.4945 10  

1.2 32.8983 10  

1.3 33.2844 10  

1.4 33.6485 10  

1.5 33.9883 10  

1.6 34.3030 10  

1.7 34.5929 10  
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1.8 34.8590 10  

1.9 35.1027 10  

2 35.3256 10  

3 36.7402 10  

4 37.3711 10  

5 37.6935 10  

  38.3213 10  

 

Table 2. Deflection coefficients at center of plate simply supported under hydrostatic load (for m = 1, 3; n = 1, 3 in the Ritz 

variational method) 

 

b
a

   1( )F   Timoshenko and 

Woinowsky-

Krieger 

Relative error (%) 

1.0 32.0277 10 0.00203   
0.00203 0 

1.1 32.42963 10 0.00243   
0.00243 0 

1.2 32.82002 10 0.00282   
0.00282 0 

1.3 33.18955 10 0.00319   
0.00319 0 

1.4 33.53307 10 0.00353   
0.00353 0 

1.5 33.8516 10 0.00385   
0.00386 –0.26 

1.6 34.1412 10 0.00414   
0.00415 –0.24 

1.7 34.40325 10 0.00440   
0.00441 –0.23 

1.8 34.6389 10 0.00464   
0.00465 –0.22 

1.9 34.84972 10 0.00485   
0.00487 –0.41 

2 35.03791 10 0.00504   
0.00506 –0.40 

3 36.02264 10 0.00602   
0.00612 –1.63 

4 36.21131 10 0.00621   
0.00641 –3.12 

5  0.00648  

   0.00651  

For m = 1, n = 1 in the Ritz variational solution for ,xx  for 

1,  0.02669 0.0267,xx   and for 

1.5 / , 0.0446xxb a      

For m = 1, 3; n = 1, 3, in the Ritz variational solution for 

,xx  for 1,  0.02346 0.0235,xx   and for 

1.5, 0.0399499 0.03995xx     where 

2
0xx xxM q a   

Similarly, for 1, 1, 3; 1, 3,m n   

0.02346yy   and for 1.5, 1, 3; 1, 3,m n     

 

Table 3. Bending moment coefficients for m = 1, 3; n = 1, 3 

in the Ritz variational method 

 
  

yy  Exact yy  Relative error 

(%) 

1.0 0.0235 0.0239 –1.67 

1.5 0.0240 0.0249 –3.61 

 

 

0.02399 0.0240yy   where  
2

0 .yy yyM q a   

The results are tabulated in Table 3. 

 

Table 4. Deflection coefficients for 1  hydrostatic load on 

simply supported Kirchhoff plate 

 

b
a

 

4

1 0 3
aw q

Et
   

x = 0.25a x = 0.5a x = 0.75a 

1 0.0143 0.0221 0.0177 

1.2 0.0203 0.0308 0.0241 

1.4 0.0257 0.0385 0.0298 

1.6 0.0303 0.0453 0.0346 

1.8 0.0342 0.0508 0.0385 

2 0.0373 0.0553 0.0417 

3 0.0454 0.0668 0.0498 

4 0.0477 0.0700 0.0521 

  0.0484 0.0711 0.0529 
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Convergence to exact solution for the bending moment 

coefficients xx  and yy  is achieved using m = 1, 3, 5, 7, 9; 

n = 1, 3, 5, 7, 9 in the solution obtained by the Ritz variational 

method. The converged results for deflection and bending 

moment coefficients for various values of the ratio b/a are 

presented for x = 0.25a, x = 0.5a and x = 0.75a, for the 

deflection coefficients and for x = 0.5a for the bending 

moment coefficients and tabulated in Tables 4 and 5. 

 

Table 5. Bending moment coefficients for hydrostatic load 

0
xq

a
   on simply supported Kirchhoff plate 

 

b
a

 

2
0

( 0.5 )

xx xx

xx

M q a

x a

 

 
 

2
0

( 0.5 )

yy yy

yy

M q a

x a

 

 
 

1.0 0.0239 0.0239 

1.2 0.0313 0.0250 

1.4 0.0376 0.0253 

1.6 0.0431 0.0246 

1.8 0.0474 0.0239 

2 0.0508 0.0232 

3 0.0594 0.0202 

4 0.0617 0.0192 

  0.0625 0.0187 

 

 

5. DISCUSSIONS 

 

The Ritz variational method has been successfully applied 

to the flexural problems of simply supported rectangular 

Kirchhoff plates subjected to hydrostatic load distribution of 

intensity 0( ) xq x q
a

  over the entire area 

(0 , 0 )x a y b     of the plate surface. A 

displacement field was chosen as products of linear 

combination of displacement shape or coordinate functions 

that apriori satisfied boundary conditions at the plate contours 

and unknown generalized displacement parameters, Cmn, as 

Equation (9). The total potential energy functional was then 

determined using the chosen displacement field as Equation 

(55). It was observed that the total potential energy functional 

obtained is a double series, and is a function of the generalized 

displacement coordinates. The principle of minimum total 

potential energy functional was then applied to obtain the 

unknown generalized displacement coordinates as Equation 

(64). Thus, the displacement field was obtained as Equation 

(64). The plate deflection was expressed in terms of the plate 

aspect ratios   and 1  as Equations (66) and (67) 

respectively. The plate deflection was also obtained for square 

Kirchhoff plates as Equation (68). The deflection was found at 

the center of the plate as Equations (69) and (70), for 

rectangular Kirchhoff plates, and as Equation (72) for square 

Kirchhoff plates. Bending moment-displacement relationships 

Equations (74) and (75) were used to obtain the bending 

moment distribution on the plate as Equations (84) and (89). 

The bending moments at the plate center were found as 

Equations (86) and (95). Equations for the deflections and 

bending moment distributions were found as double series 

with rapidly convergent properties. The equations for 

deflections were more rapidly convergent that the equations 

for bending moments. The Ritz variational solutions obtained 

using two terms each of the double series for deflection 

yielded a relative error of less than 1% for plates with aspect 

ratios less than 2. Convergence to the exact solution obtained 

by Timoshenko and Woinowsky-Krieger, who used Levy’s 

single Fourier series method, was obtained by using three 

terms of the double series for displacement. Similarly, 

convergence to the exact solution obtained by Timoshenko 

and Woinowsky-Krieger was obtained by using five terms of 

the double series for bending moments. However, reasonably 

accurate solutions were obtained for both deflection and 

bending moments by using a few terms each, of the double 

series obtained using the Ritz variational method. 

 

 

6. CONCLUSIONS 

 

The following conclusions can be made: 

(i) the Ritz variational method can be successfully 

applied to the solution of rectangular Kirchhoff plate bending 

problems for simply supported ends, and transverse 

hydrostatic loading distribution over the entire plate area. 

(ii) the solutions obtained for the deflection and bending 

moment distributions are double sine series with rapidly 

convergent properties, thus making the solutions easily 

amenable to mathematical analysis 

(iii) the solution obtained for the center deflections is a 

double series, with rapidly convergent properties; and 

convergence to the exact solution is obtained using three terms 

each of the double series. 

(iv) the solutions obtained for the bending moments Mxx 

and Myy at the plate center are double series with good 

convergence properties and convergence to the exact solution 

is obtained using five terms each of the double series  

(v) the Ritz variational method yielded exactly identical 

solutions as the exact solutions obtained by Timoshenko and 

Woinowsky-Krieger who used the Navier double Fourier sine 

series method. Hence, the Ritz variational method presented in 

this work yielded the exact solution for the plate flexure 

problem analyzed. This is attributable to the fact that the exact 

deflection shape function was used in the Ritz method 

presented in this study. 
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