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In this study, the Ritz variational method was used to analyze and solve the bending
problem of simply supported rectangular Kirchhoff plate subject to transverse hydrostatic
load distribution over the entire plate domain. The deflection function was chosen based
on double series of infinite terms as coordinate function that satisfy the geometric and
force boundary conditions and unknown generalized displacement parameters. Upon
substitution into the total potential energy functional for homogeneous, isotropic
Kirchhoff plates, and evaluation of the integrals, the total potential energy functional was
obtained in terms of the unknown generalized displacement parameters. The principle of
minimization of the total potential energy was then applied to determine the unknown
displacement parameters. Moment curvature relations were used to find the bending
moments. It was found that the deflection functions and the bending moment functions
obtained for the plate domain, and the values at the plate center were exactly identical as
the solutions obtained by Timoshenko and Woinowsky-Krieger using the Navier series

method.

1. INTRODUCTION

Plates are commonly applied in many engineering fields as
roof slabs, building floor slabs, bridge deck slabs, foundation
footings, water tanks, bulkheads, retaining walls, turbine disks,
aerospacecraft panels, and ship hulls [1, 2, 3]. Their
applications cut across the various branches of engineering
and plates are used in civil, structural, marine, naval, aerospace
and mechanical engineering.

Plates are subjected to transversely applied loads, causing
flexure and the development of flexural deformation and
stresses. Plates are defined by their shapes as rectangular,
square, circular, elliptical, skew, quadrilateral plates, etc. They
are also defined by: their constituent materials as
homogeneous, non homogeneous, isotropic, anisotropic, and
orthotropic [1, 2, 3]. They are also classified as membranes,
thin plates, moderately thick plates, and thick plates,
depending on the ratio (h/a) of their thickness, h to the least
inplane dimension, a.

Plates can be subjected to static loads or dynamic loads, and
can also be subjected to inplane compressive loads that cause
buckling. Thus, plates can respond to applied loads by static
flexural response, dynamic flexural response or by buckling;
depending on whether the loads are static or dynamic or
compressive.

Research aim and objectives

The research aim is to apply the Ritz variational method to
the flexural analysis of simply supported Kirchhoff plate under
transverse hydrostatic load distribution over the entire plate
domain. The objectives include:

() to determine the total potential energy functional for
the simply supported Kirchhoff plate under transverse
hydrostatic load distribution for a suitable choice of
displacement basis function

(i) to apply the variational principle to the total potential
energy functional determined and hence find the unknown
displacement parameters which minimize the total potential
energy functional

(iii) to determine the bending moment distributions from
the bending moment curvature relations, and find the bending
moments at the center of the plate

(iv) to find the deflection at the center of the plate.

2. LITERATURE REVIEW
Review of plate theories

Sophie Germain used the method of variational calculus to
derive from the first principles, the differential equation
governing thin plates subject to transverse distributed loads.
Her differential equation was however defective, as she
neglected the contributions to the strain energy due to the
twisting deformations of the plate middle surface. Lagrange
later obtained the corrected governing differential equation for
transversely loaded thin plates that accounted for the warping
(twisting) of the plate middle surface. Subsequently, Navier,
[4] using the theory of elasticity, obtained the differential
equation of bending of rectangular plates under distributed
transverse loads. Navier [4] also used the Fourier double
trigonometric series method to solve and obtain exact



solutions for the deflection of simply supported rectangular
thin plates under transverse loads.

Poisson [5] [6] extended Navier’s research to the problem
of circular plates. Kirchhoff [7] presented an extended theory
of plates which considered both the transverse distributed
loads and the in-plane loads on plates. Kirchhoff also applied
the method of virtual displacements in solving plate problems.
Hencky [8, 9] and Reissner [10, 11] have presented
improvements to the Kirchhoff plate theory which considered
the effect of transverse shear deformation on the behaviour of
plates, and thus allow their application to the problem of
moderately thick and thick plates. Their theories are first order
shear deformation plate theories.

Mindlin [12] used a displacement based formulation to
obtain the governing differential equation for first order shear
deformable plates, and incorporated the effect of rotary inertia.
Mindlin’s theory, however, requires a shear correction factor
to account for the error introduced by the assumption of a
constant shear strain through the plate thickness.

Other plate models and theories that have been developed
to account for the limitations and imperfections of the classical
Kirchhoff-Love plate theory include: Shimpi refined plate
theory [13], Higher Order Plate Deformation theory [14],
Reddy’s third order plate theory [15], Leung’s plate theory
[16], Osadebe plate model [17], and modified plate theories
[18].

The plate problem is generally, a boundary value problem
which is a system of differential equations which are required
to be satisfied in the plate domain and the associated boundary
conditions to be satisfied at the plate boundaries [19]. The
plate problem has been successfully solved in the technical
literature using two fundamental methods; namely: analytical
closed form methods and numerical or approximate methods.

Ladeveze [20] introduced a new approach for the analysis
and solution of homogeneous, isotropic elastic plates with
constant thickness under arbitrary distributed flexural loads.
His theory was described as exact because it lead to exact
values of the generalized two dimensional quantities. Contrary
to classical plate theories, Ladeveze’s approach was not
limited to thin plates. Analytical closed form methods that
have been used in solving the plate problem include the double
trigonometric series method by Navier [4], the single
trigonometric series method by Levy [21]; closed form
solutions have also been obtained by Nadai [22].

Other researchers that have presented closed form
mathematical solutions to the plate problem include Mama et
al [23] who used the finite Fourier sine transform method to
solve the problem of simply supported rectangular Kirchhoff
plates under uniformly distributed transverse loads over the
entire plate surface, uniformly distributed patch load over a
given area of the plate, and point load on the plate. Numerical
methods have also been used to find approximate solutions to
the plate bending problem. Nwoji et al [24] used the
Kantorovich-Vlasov method to solve the simply supported
plate problem for the case of uniformly distributed transverse
load applied over the entire plate surface. Osadebe et al [25]
applied the Galerkin-Vlasov method to the flexural analysis of
simply supported Kirchhoff plates under uniformly distributed
transverse loads applied on the entire plate under region.
Nwoji et al [26] applied the Galerkin-Vlasov method to the
flexural analysis of rectangular Kirchhoff plates with clamped
and simply supported edges for the case of uniformly
distributed transverse loads. Ike [27] used the Kantorovich-
Euler-Lagrange-Galerkin’s method to solve the flexural

problem of Kirchhoff plates with clamped and simply
supported edges. Other researchers who have worked on the
plate problem include Mama et al [28], Ezeh et al [29] and
Aginam et al [30].

3. RITZVARIATIONAL METHOD

The Ritz variational method for the flexural analysis of the
Kirchhoff plate under given applied loads and edge support
conditions is based on the application of the principle of
stationary total potential energy. The principle of minimum
total potential energy states that the displacement field
corresponding to the minimum total potential energy
functional of the structure under applied loads represents a
state of equilibrium provided the displacement field satisfies
the prescribed boundary conditions of the structure. Hence, for
the plate flexure problem, the Ritz variational method seeks to
determine the displacement field w(x, y) defined over the plate
domain, where x and y are the plate domain coordinates and
w(X, y) is the displacement function or the displacement field,
such that the geometric and force boundary conditions are
satisfied and the total potential energy functional, IT of the
Kirchhoff plate, which is the sum of the stain energy in
bending and the potential of the external distributed load is
minimized.

Ritz assumed the displacement field w(x, y) in terms of a
linear combination of products of basis (shape or coordinate)
functions of the plate in the x and y coordinate directions
chosen such that these shape (basis or coordinate) functions
satisfy apriori the end conditions along the x and y coordinate
directions. The Ritz deflection field w(x, y) for plates is
generally given by the double series of infinite terms:

W) = 3 S W Xen (X)Yo () "

m=1n=1

where Xn(x) and Yn(y) are the basis (coordinate or shape)
functions in the x and y coordinate directions, respectively; and
Wmn are unknown parameters of the displacement field, which
are sought. wm, are called generalized displacement
parameters.

For Kirchhoff plates under transversely applied static loads,
the total potential energy functional for small deformation
assumptions and linear elastic, isotropic and homogeneous,
material properties, becomes in terms of the displacement field:

[Z z Winn XYy j (Z z WmnXmYn”] dxdy

m n m n

[ B0 Y) 3 Wi XY ey ®
R m n

where the primes denote space derivatives of the basis
functions.

Applying the principle of stationary total potential energy,
Ritz variational method requires that for equilibrium, the total
potential energy functional I1 should be minimized with
respect to the unknown displacement field. Hence, for an



extremum of IT with respect to wmn, the following condition
is imposed:

oIl
ow
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mn

This yields a system of algebraic equations: given generally
by:

z z kmnWmn = Z Z an 4
m=1n=1 m=1n=1

where kmn are stiffness and Fpn are force terms
and

K = [ XY Xy + X XY+ Xy XYY"+ X X, Y,
R

+ 21— w) (XLYa XY, = Xp X, Yy, )] dxdy (5)
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An approximation to the displacement field is achieved in
the Ritz variational method by a truncation of the Ritz
displacement field such that m and n are finite values. Thus, m
=1,2,...M; n=1,2,..N.

Consequently, the matrix equation becomes a finite system
of algebraic equations in terms of the unknown displacement
parameters Wmn, Which can be solved by matrix inversion, and
other methods of matrix algebra.

4. APPLICATION OF THE RITZ VARIATIONAL
METHOD

Consider a rectangular Kirchhoff plate with isotropic,
homogeneous material properties and all edges simply
supported. The plate is subjected to a hydrostatic load

distribution of intensity q(x); where g, (X) = 0, % where

Qo is the intensity at x = a, and g(X) acts over the entire area of
the plate surface. The plate is defined by the Cartesian
coordinate system shown in Figure 1, with the origin chosen
at a corner of the plate. The plate domain is defined by
0<x<a 0<y<b

where a, and b are the length and width of the plate,
respectively. The geometric and force boundary conditions are
w(x=0,y)=w(x=aYy)=0
w(x,y=0)=w(x,y=hb)=0
W, (x=0,y)=w,(x=2ay)=0
Wy, (X, y =0) =w, (X y=b)=0

(8)
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Figure 1. Rectangular Kirchhoff plate with simply supported
edges carrying hydrostatic load in the x-coordinate direction

A suitable displacement field that satisfies all the geometric
and force boundary conditions of simple supports at the four
edges is given by:

w(x, y) = ZZCmnsin@sinM ©)
m=-1n-1 a b

wherem=1,2,3, ... ©
n=1,2,3,... ©

Cmn are the generalized displacement coordinates of the
displacement function which are unknowns, and which we
seek to determine in order to find the deflection function w(x,
y). The total potential energy functional IT for a Kirchhoff
plate made with homogeneous isotropic material is given by

where Uy is the strain energy functional for bending of the

Kirchhoff plate and V is the potential energy functional due to
the applied transverse load q(x, y).
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D is the plate flexural rigidity, and p is the Poisson’s ratio
of the plate material.

Ryy is the two dimensional domain of the plate defined by
0<x<a0<y<b z=0
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where ny - Wxnyy is called the Gaussian curvature of the

plate.
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The orthogonality properties of the sinusoidal basis
functions of the plate lead to the vanishing of the second term
in the expression for the integral 1; and the simplification of I,
to become:
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The potential energy functional due to the applied
distributed transverse load q(x, y) is
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wherem=1,2,3,4,5, ...
n=1,3,5709,...

The total potential energy functional is given in Equation
(10)
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For extremum of IT with respect to the generalized
coordinates, the principle of minimization of the total potential
energy functional with respect to Cn requires that:
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Deflection at the plate center (X = a/ )

v=)

The deflection at the plate center is given by
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For square plates, the center deflection is given by
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For square plates, summing up to m = n = 3, the center
4

a
deflection is obtained as W, = 0.002024q0T which is

not significantly different from the center deflection for a one
term Ritz variational solution.

Bending moment distribution

The bending moment distribution M,y and Myy are given by:
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B, is the bending moment coefficient for M and is given
by:
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Byy is the bending moment coefficient for My, and is given
by:
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The deflection coefficients for the center of the plate for m
=1, n=1inthe Ritz variational solution are tabulated in Table
1, for various aspect ratios of the rectangular plate.

The deflection coefficient for the center deflection of the
plate m = 1, 3; n = 1, 3 in the Ritz variational solution are
tabulated in Table 2, for various plate aspect ratios.

Table 1. Deflection coefficients at center of simply supported Kirchhoff plate under hydrostatic load (for m =1, n = 1) in the Ritz
variational method

*= ba We = Fl(a)qob%
1 2.0803x1073
11 2.4945x107°
12 2.8983x1073
13 3.2844 x107°
14 3.6485x107°
15 3.9883x1073
16 4.3030x107°
17 4.5929 x107°




18 4.8590 x103
19 5.1027 1073
2 5.3256 x103
3 6.7402x1073
4 7.3711x10°°
5 7.6935x10°
* 8.3213x107°

Table 2. Deflection coefficients at center of plate simply supported under hydrostatic load (for m =1, 3; n = 1, 3 in the Ritz
variational method)

o= b a Fl(a) TiVT/g?ESCvksok ;_nd Relative error (%)
Krieger

L0 | 5 0277 %107 = 0.00203 0.00203 0
L1 | 5 42963% 107 = 0.00243 0.00243 0
12| 28200210 = 0.00282 0.00282 ;
13| 318955x10° = 0.00319 0.00319 0
14| 353307 x10°° = 0.00353 0.00353 q
L5 | 3.8516x10°° = 0.00385 0.00386 026
L8 4.1412 x10™° = 0.00414 0.00415 024
LT | 4.40325x107 = 0.00440 0.00441 023
L8 | 4.6389x1073 = 0.00464 0.00465 02
L9 | 484972 %107 = 0.00485 0.00487 o1
2| 5.03791x107 = 0.00504 0.00506 o
> | 6.02264x10° =0.00602 | 0062 163
! 6.21131x 107 = 0.00621 0.00641 EXT,
> 0.00648

s 0.00651

For m =1, n = 1 in the Ritz variational solution for 3, for By = 0.02399 = 0.0240 where Myy _ ByyCIoaz-
a=1 B, =0.02669 = 0.0267, and for The results are tabulated in Table 3.
a=15=Db/a B, =0.0446

. . o . Table 4. Deflection coefficients for y; hydrostatic load on
Form =1, 3; n =1, 3, in the Ritz variational solution for

B for =1 P, =0.02346 = 0.0235 and for simply supported Kirchhoff plate
XX? XX - * !
o =1.5 B,, =0.0399499 = 0.03995 where 4
) b W=v002/_ 3
M,y = Bquoa2 A Et
Similarl f —1m=13n=13 x=0.252a x=0.5a x=0.75a
imilarly, or a=Lm=LsNn=L9 1 0.0143 0.0221 0.0177
Byy =0.02346 andfor . =1.5 m=13;, n=13, 1.2 0.0203 0.0308 0.0241
14 0.0257 0.0385 0.0298
Table 3. Bending moment coefficients form=1,3;n=1,3 16 0.0303 0.0453 0.0346
in the Ritz variational method 1.8 0.0342 0.0508 0.0385
2 0.0373 0.0553 0.0417
o Exact Relative error 3 0.0454 0.0668 0.0498
Byy Xt By | ey 4 0.0477 0.0700 0.0521
1.0 0.0235 0.0239 -1.67 0 0.0484 0.0711 0.0529
15 0.0240 0.0249 -3.61




Convergence to exact solution for the bending moment
coefficients 3, and B, is achieved usingm =1, 3, 5,7, 9;
n=1,3,5,7,9in the solution obtained by the Ritz variational
method. The converged results for deflection and bending
moment coefficients for various values of the ratio b/a are
presented for x = 0.25a, x = 0.5a and x = 0.75a, for the
deflection coefficients and for x = 0.5a for the bending
moment coefficients and tabulated in Tables 4 and 5.

Table 5. Bending moment coefficients for hydrostatic load

Y =0 % on simply supported Kirchhoff plate

- 2 = 2
y Myx = Bxxdo@ MW - Byqua
a —

By (X =0.5a) BW(X = 0.5a)
1.0 0.0239 0.0239
1.2 0.0313 0.0250
1.4 0.0376 0.0253
1.6 0.0431 0.0246
1.8 0.0474 0.0239
2 0.0508 0.0232
3 0.0594 0.0202
4 0.0617 0.0192
0 0.0625 0.0187

5. DISCUSSIONS

The Ritz variational method has been successfully applied
to the flexural problems of simply supported rectangular
Kirchhoff plates subjected to hydrostatic load distribution of

intensity q(x)=q0% over the entire area

(0<x<a 0<y<b) of the plate surface. A

displacement field was chosen as products of linear
combination of displacement shape or coordinate functions
that apriori satisfied boundary conditions at the plate contours
and unknown generalized displacement parameters, Cpn, as
Equation (9). The total potential energy functional was then
determined using the chosen displacement field as Equation
(55). It was observed that the total potential energy functional
obtained is a double series, and is a function of the generalized
displacement coordinates. The principle of minimum total
potential energy functional was then applied to obtain the
unknown generalized displacement coordinates as Equation
(64). Thus, the displacement field was obtained as Equation
(64). The plate deflection was expressed in terms of the plate

aspect ratios o and o4 as Equations (66) and (67)

respectively. The plate deflection was also obtained for square
Kirchhoff plates as Equation (68). The deflection was found at
the center of the plate as Equations (69) and (70), for
rectangular Kirchhoff plates, and as Equation (72) for square
Kirchhoff plates. Bending moment-displacement relationships
Equations (74) and (75) were used to obtain the bending
moment distribution on the plate as Equations (84) and (89).
The bending moments at the plate center were found as
Equations (86) and (95). Equations for the deflections and
bending moment distributions were found as double series
with rapidly convergent properties. The equations for
deflections were more rapidly convergent that the equations
for bending moments. The Ritz variational solutions obtained

using two terms each of the double series for deflection
yielded a relative error of less than 1% for plates with aspect
ratios less than 2. Convergence to the exact solution obtained
by Timoshenko and Woinowsky-Krieger, who used Levy’s
single Fourier series method, was obtained by using three
terms of the double series for displacement. Similarly,
convergence to the exact solution obtained by Timoshenko
and Woinowsky-Krieger was obtained by using five terms of
the double series for bending moments. However, reasonably
accurate solutions were obtained for both deflection and
bending moments by using a few terms each, of the double
series obtained using the Ritz variational method.

6. CONCLUSIONS

The following conclusions can be made:

(i) the Ritz variational method can be successfully
applied to the solution of rectangular Kirchhoff plate bending
problems for simply supported ends, and transverse
hydrostatic loading distribution over the entire plate area.

(if)  the solutions obtained for the deflection and bending
moment distributions are double sine series with rapidly
convergent properties, thus making the solutions easily
amenable to mathematical analysis

(iif) the solution obtained for the center deflections is a
double series, with rapidly convergent properties; and
convergence to the exact solution is obtained using three terms
each of the double series.

(iv) the solutions obtained for the bending moments Myx
and My, at the plate center are double series with good
convergence properties and convergence to the exact solution
is obtained using five terms each of the double series

(v) the Ritz variational method yielded exactly identical
solutions as the exact solutions obtained by Timoshenko and
Woinowsky-Krieger who used the Navier double Fourier sine
series method. Hence, the Ritz variational method presented in
this work yielded the exact solution for the plate flexure
problem analyzed. This is attributable to the fact that the exact
deflection shape function was used in the Ritz method
presented in this study.
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