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Some studies tried to make transition from Type-1 to interval Type-2 membership 

functions, but they get the problems of choosing the footprint uncertainty size in the 

Interval Type-2 Membership Functions. In this paper, our objective is to employ two 

optimization methods: Invasive Weed Optimization (IWO) and Particle Swarm 

Optimization (PSO) for tuning the Transitioning from Type-1 To Interval Type-2 Fuzzy 

Logic Controller for Boost DC-DC Converters and compare their performances. Also, we 

will discuss the effects of the PID values in the operation of transition from Type-1 to 

interval Type-2 fuzzy logic Controller for Boost DC-DC Converters. The simulation 

results show IWO optimization methods is helpful to Tuning the Transitioning from Type-

1 To Interval Type-2 Fuzzy Logic Controller for Boost DC-DC Converters. Moreover, 

when we tune both PID values and the FOU size in T2-MFs of Interval Type-2 Fuzzy 

Logic PID-controller, we will get the best performance for interval Type-2 Fuzzy Logic 

PID-controller for Boost DC-DC Converter. To sum up; the optimal footprint of 

uncertainty (FOU) size in interval Type-2 membership functions, they have an essential 

role and good effect in the performance of Interval Type-2 fuzzy logic Controller for Boost 

DC-DC Converters.
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1. INTRODUCTION

The membership functions (MFs) enable establishing a

relationship between numerical values and linguistic labels. 

Type-1 fuzzy MFs (T1-MF) are two dimensional and 

represent the membership degree µ for a variable x. Type-2 

fuzzy MFs (T2-MF) are three dimensional: 

They consider an uncertainty U of the membership degree. 

T1-MFs are a particular case of T2-MFs where the uncertainty 

value is 0. Membership functions are classified as (Figure 1 

and Figure 2): 

The concept of Type-2 fuzzy set was initially proposed as 

an extension ofType-1 fuzzy set by Prof. Zadeh [1]. 

Figure 1. Membership functions (a) singleton, (b) Interval 

Type-1, (c) Type-1 

(a) 

(b) 

Figure 2. Membership functions (a) interval Type-2, 

(b) general Type-2
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The Type-2 fuzzy system is characterized by a fuzzy 

membership function, i.e., the membership grade for each 

element of this set is a fuzzy set in [0,1], contrary a Type-1 

fuzzy set where the membership grade is a crisp number in 

[0,1]. Such sets are very useful in circumstances where they 

are difficult to determine an exact membership function for a 

fuzzy set; hence, they are useful for incorporating uncertainties. 

Type-2 fuzzy sets are appropriate for modeling uncertainty as 

Type-2 fuzzy sets include FOU (Footprint of Uncertainty) and 

third dimension, offering extra degrees of freedom to Type-2 

fuzzy sets in comparison to Type-1 fuzzy sets [2, 3]. 

The performance of Type-2 Fuzzy Logic Controller (T1 

FLC) is affected by the Footprint of uncertainty size in interval 

Type-2 membership functions [4-8].  

Some studies propose [7, 8] to transition from type-l to 

interval Type-2 fuzzy sets, through varying the size FOU 

(Footprint of uncertainty) in interval Type-2 membership 

functions, but there are problems of tuning the footprint of 

uncertainty size parameter in The Interval Type-2 Membership 

Functions. 

In this work, we developed a new approach to transit from 

Type-1 to interval Type-2 fuzzy logic Controller using the 

optimization methods (IWO and PSO). Also, we used the 

optimization methods (IWO and PSO) for tuning the PID 

values and the footprint uncertainty size in the Interval Type-

2 Membership Functions of Interval Type-2 Fuzzy Logic PID 

Controller for Boost DC-DC Converters. 

This paper will be organized as following: 

Section 2: Converter modeling. section 3: The Type-2 TSK 

Fuzzy Logic Controller. section 4: Invasive Weed 

Optimization Algorithm. section 5: Fuzzy PID Controller for 

Boost DC-DC Converters. section 6: Simulation Phases and 

Results. section 7: Conclusion. 
 

 

2. THE DC–DC BOOST CONVERTER 
 

In this study we will use the DC–DC Boost converter 

(Figure 3 and Table 1). 

 

 
 

Figure 3. The DC–DC boost converter 

 

Table 1. The parameters of the DC–DC boost converter 

 
the parameters of the DC–DC Boost converter 

Series Inductance L = 20[mH]. 
Parallel Capacitance C = 20[µf] 

load resistance R = 30[Ω] 
Input Voltage Vg = 15[V] 

Switching frequency fSW = 5[kHz]. 

 

Vg : Represents power supply voltage. iL: The current 

through the inductance L . sw: An electronic switch. 

VD: Voltage of the diode. vc: The voltage on the capacitor C. 

u0(t): Voltage output across the resistive load R . 

Continuous conduction mode (CCM) has two topologies 

depending on the position of switch swand. In this simulation, 

we use the Boost DC-DC Converter operating in continuous 

conduction mode (CCM). 

The following equations represent the first topology (Figure 

4) of DC–DC Boost converter: 
 

𝐿
𝑑

𝑑𝑡
i𝐿(𝑡) = 𝑉g(𝑡) 

𝑑

𝑑𝑡
𝑣c(𝑡) = −

1

𝐶𝑅
𝑣𝑐(𝑡) 

𝑢0(𝑡) = 𝑣𝑐(𝑡) 

(1) 

 

 
 

Figure 4. The first topology (sw closed, VD opened) 

 

The following equations represent the second topology 

(Figure 5) of DC–DC Boost converter: 

 

 
 

Figure 5. The second topology (sw opened, VD closed) 

 

𝐿
𝑑

𝑑𝑡
i𝐿(𝑡) = 𝑣g(𝑡) − 𝑣𝑐(𝑡) 

𝑑

𝑑𝑡
𝑣𝑐(𝑡) =

1

𝐶𝑅
(𝑅 i𝐿(𝑡) − 𝑣c(𝑡)) 

𝑢0(𝑡) = 𝑣𝑐(𝑡) 

(2) 

 

The state equation of the boost DC-DC converter can be 

stated as [9]: 

 

�̇� = 𝐴𝑖𝑥 + 𝐵𝑖𝑉g(𝑡) 

𝑢0 = 𝐶𝑖𝑥 with 𝑥 = [𝑖𝐿𝑣c]
𝑇

 
(3) 

 

where, subscript 1 stands for transistor ON, and subscript 2 

stands for transistor OFF of the converter circuit. 

Ai , Bi and Ci are system Matrices of the constituent linear 

circuits. 

The system matrices can be obtained for different operating 

modes as: 

𝐶1 = [0    1], 𝐶2 =  [0     1]. 𝐴1 = [
0 0

0 −
1

𝑅𝐶

], and 𝐴2 =

[
0 −

1

𝐿
1

𝐶
−

1

𝑅𝐶

]. 𝐵1 = 𝐵2 = [
1

𝐿
 0]

𝑇
.  

 

The State-Space Averaged model represented in the 

following equations [10-13]: 

 

{

�̇� = 𝐴𝑎𝑣𝑔𝑥 + 𝐵𝑎𝑣𝑔𝑢

𝑎𝑛𝑑
𝑦 = 𝐶𝑎𝑣𝑔𝑥

 (4) 
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where, {

𝐴𝑎𝑣𝑔 = 𝑑𝐴1 + (1 − 𝑑)𝐴2

𝐵𝑎𝑣𝑔 = 𝑑𝐵1 + (1 − 𝑑)𝐵2

𝐶𝑎𝑣𝑔 = 𝑑𝐶1 + (1 − 𝑑)𝐶2

. 

 

 

3. THE TYPE-2 TSK FUZZY LOGIC CONTROLLER 
 

A Type-2 TSK fuzzy logic controller was firstly introduced 

by Mendel and Liang. We have three models of T2 TSK fuzzy 

logics based on the type of the antecedent and consequent part 

of rules [14-16] (Table 2 and Table 3). 
 

Table 2. Classification of other t2 tsk fls models [15, 16] 

 
 Antecedent Consequent The Rule Base 

T2 TSK 

FLS 

Model I 

Type-2 

fuzzy sets 

Type-1 

fuzzy sets 
IFx1 isF̃1

i and…xp 

isF̃p
i  THEN yl =

C0
l + C1

l x1 … + Cp
l xp 

T2 TSK 

FLS 

Model II 

Type-2 

fuzzy sets 

Crisp 

Numbers 
IFx1 isF̃1

i and…xp 

isF̃p
i  THEN 

yl

= c0
l + c1

l x1 …

+ cp
l xp 

T2 TSK 

FLS 

Model 

III 

Type-2 

fuzzy sets 

Type-1 

fuzzy sets 
IFx1 isF̃1

i and…xp 

isF̃p
i  THEN yl =

C0
l + C1

l x1 … + Cp
l xp 

 

Table 3. The final output of other T2 TSK FLS models 

 
 The final output Of T2 TSK Models 

T2 TSK 

FLS- Model 

I 

The final output is also an interval Type-1 set 

and is calculated as follows [15-17]: 

 

𝑌(𝑌1, . . . 𝑌𝑀, 𝐹1, . . , 𝐹𝑀) = [𝑦𝑙 , 𝑦𝑟]  

=∫ … ∫ ∫ … ∫ 1
∑ 𝑓𝑖𝑦𝑖𝑀

𝑖=1

∑ 𝑓𝑖𝑀
𝑖=1

⁄
𝑓𝑀𝑓1𝑦𝑀𝑦1  

Where M is the number of rules fired,yi ∈ Yi, 

and Yi = [yl
i, yr

i ], (i = 1 … M) 

T2 TSK 

FLS -Model 

II 

The final output Is a special case of  (5), because 

now each 𝑌𝑖 is a crisp value  𝑦𝑖 . 

So 

𝑌(𝑓1 , . . , 𝑓𝑀) = [𝑦𝑙 , 𝑦𝑟]  =∫ … ∫ 1
∑ 𝑓𝑖𝑦𝑖𝑀

𝑖=1

∑ 𝑓𝑖𝑀
𝑖=1

⁄
𝑓𝑀𝑓1  

T2 TSK 

FLS -Model 

III 

The final output is special case of (5), because 

now each 𝐹𝑖 is a crisp value 𝑓𝑖  

So 

𝑌(𝑌1, . . . 𝑌𝑀) = [𝑦𝑙 , 𝑦𝑟]  =∫ … ∫ 1
∑ 𝑓𝑖𝑦𝑖𝑀

𝑖=1

∑ 𝑓𝑖𝑀
𝑖=1

⁄
𝑦𝑀𝑦1  

 

where, 𝑖 = 1,2, … … … . , 𝑀, 𝐶𝑘
𝑖 (𝑘 = 1,2, … . 𝑝)  are the 

consequent parameters whitch are Type-1 fuzzy set, 𝑐𝑘
𝑖 (𝑘 =

1,2, … . 𝑝)  are the consequent parameters that are crisp 

numbers, 𝑌𝑙  are the  outputs of the 𝑙th rule, �̃�𝑗 
𝑖  (𝑗 = 1 … . . 𝑝) 

are Type-2 fuzzy setsof input state j in rule 𝑀, given an inputs 

𝑥1, 𝑥2 … … 𝑥𝑝, 𝐹𝑗 
𝑖  (𝑗 = 1 … . . 𝑝) are Type-1 fuzzy sets. 

The firing strength of the ith rule𝐹𝑖 (𝑥) with meet operation 

under product or minimum t-norm is an interval Type-1 set 

expressed as: 

 

𝐹𝑖 (𝑥) = [𝑓𝑖(𝑥), 𝑓
𝑖
(𝑥)] (5) 

 

where,  

𝑓𝑖(𝑥) = µ�̃�1
𝑖(𝑥1) ∗ … µ�̃�𝑝

𝑖 (𝑥𝑝)  

𝑓
𝑖
(𝑥) = µ

�̃�1
𝑖(𝑥1) ∗ … µ

�̃�𝑝
𝑖 (𝑥𝑝) 

 

To compute Y it is only necessary to compute its two end-

points yl and yr can also be computed more efficient by the 

KM Algorithm and the Defuzzified output is: 

 

𝑦 =
𝑦𝑙 + 𝑦𝑟

2
 (6) 

 

 

4. INVASIVE WEED OPTIMIZATION ALGORITHM 

 

Invasive weed optimization (IWO) was developed by 

Mehrabian and Lucas in 2006 [18, 19], The invasive weed 

optimization technique is a population-based evolutionary 

optimization method inspired by the behavior of weed 

colonies, Invasive weed optimization technique has been 

successfully used to a variety of optimization problems [20-

25]. The process is addressed in these steps (Figure 6): 

 

 
 

Figure 6. Invasive weed optimization algorithm flowchart 
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The procedure starts off evolved with initializing a 

population. Its capacity that a populace of preliminary options 

is randomly generated over the problem space. Then 

contributors of the population produce seeds relying on their 

relative fitness in the population. In other words, the range of 

seeds for every member is starting with the value of Smin for 

the worst member and increases linearly to Smaxfor the first-

rate member. For next step, these seeds are randomly scattered 

over the search area by way of generally distributed random 

numbers with mean equal to zero and an adaptive standard 

deviation [18, 19]. the standard deviation (SD) [18, 19] for 

every generation is in: 

 

σiter =
(itermax − iter)n

(itermax)n
(σinit − σfinal) + σfinal 

 
(7) 

n: is the nonlinear modulation index, σiter: is the standard 

deviation at the current iteration and itermax: is the maximum 

number of iterations. The produced seeds, accompanied 

through their parents are viewed as the practicable solutions 

for the subsequent generation. Finally step, a competitive 

exclusion is conducted in the algorithm, i.e., after a number of 

iterations the population reaches its maximum, and an 

elimination mechanism have to be employed. To this end, the 

seeds and their parents are ranked together and those with 

better fitness live on and end up reproductive [18, 19]. 

 

 

5. FUZZY PID CONTROLLER FOR BOOST DC-DC 

CONVERTERS 

 

Fuzzy PID Controller systems (Figure 7 and Figure 8) have 

double inputs and single output. The error (e) and the change 

of error (de) are used as the inputs and the change of the control 

signal d1̂ is used as the output of the FLC 

 

 
 

Figure 7. The FLC-PID controller for boost dc-dc converters 
 

 
 

Figure 8. Structure of a fuzzy logic PID Controller (FLC-

PID) 

 

𝐾pi , 𝐾pd are values of PID. 

𝐺1, 𝐺2 values of the gains normalization of the fuzzy system 

inputs. 

where, 𝐺1 = 0.5 and 𝐺2= 9.  

The reference voltage: Vref= 37.5 V. sensor of gain: 𝐾𝑠𝑒𝑛  

=0.04 

And Vrefim = Ksen ∗ Vref, e =  Vrefim − Ksen ∗ u0 

This system is constructed from the human experience 

formulated in a collection of fuzzy rules in the following form: 

jth : IF e is E0
j
 and de is E1

j
 THEN d̂1 = Cj(e, de) 

With  E0
j
 E1

j
 are respectively the fuzzy sets of the error 

voltage e and its time derivative de Cj is the jth output singleton. 

The strategy of fuzzy control is derived using the following 

knowledge on the system: 

The change of duty cycle d̂1 must be large, when u0 is far 

from the reference. 

Vreffor provides a small response time. 

The small change of duty cycle d̂1 is sufficient to reach the 

reference providing that  u0approaches the reference. 

The duty cycle must be unchanged as long as u0 is in the 

vicinity of the reference with a sufficient approaching speed, 

for preventing the output overshoot. 

When u0 reaches the reference and continue growing up: 

first, we decrease the duty cycle change, then if u0  remains 

closer to the reference, the duty cycle changes must be zero 

otherwise, it must be negative.  

Thus, the final control action d̂applied to the converter is 

given by: 
 

d̂ = G1d̂1 +  G2 ∫ d̂1 d (8) 

 

We obtain 25 fuzzy rules with 17 output singletons issued 

from the human expertise (Table 4). 

 

Table 4. Rules and output membership functions [8, 26] 

 
e\de PH PL Z NL NH 

PH 1 0.81 0.49 0.36 0.25 

PL 0.64 0.36 0.16 0.04 0 

Z 0.16 0.04 0 -0.04 -0.16 

NL 0 -0.04 -0.16 -0.36 -0.64 

NH -0.25 -0.36 -0.49 -0.81 -1 

 

 

6. SIMULATION PHASES AND RESULTS 
 

In this work, we propose using the optimizations methods 

(IWO and PSO) to tuning the footprint of uncertainty size 

(FOU) in interval Type-2 fuzzy sets. Besides; We discuss the 

effects of the PID values in the operation of transition from 

Type-1 to interval Type-2 fuzzy logic Controller for Boost 

DC-DC Converters (Figure 9). 
 

 
 

Figure 9. The FLC-PID controller with optimizations 

methods 
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We use the two inputs fuzzy sets (e and de) are composed 

of five membership functions [8, 26] are defined in (Figure 10).  

 

 

 
 

Figure 10. The two inputs fuzzy sets (e and de) 

 

The transition from Type-1 membership functions to 

interval Type-2 membership functions shown in (Figure 11). 

[7, 8, 27]. The uncertainty size parameter (U) in the interval 

Type-2 membership functions is to be determined and 

optimized, using optimization algorithms (IWO and PSO). 

 

 
 

Figure 11. Interval Type-2 membership functions [7, 8, 26] 

 

After make transition from Type-1membership functions 

(Figure 12) to interval Type-2 membership functions 

 

 
 

Figure 12. Type-1 membership functions 

 

where,  

 

∆𝐱𝟏 = 𝐱𝟐 − 𝐱𝟏; ∆𝐱𝟐 = 𝐱𝟑 − 𝐱𝟐 

The uncertainty (U) in the membership functions is the third 

considered parameter. we need to avoid overlapping between: 

x1
lower  𝑎𝑛𝑑 x3

lower , so, we propose: U∈ [𝟎, 𝟏] ⇒ ∆𝐱𝟏 ∗ 𝐔 ≤
∆𝐱𝟏𝒂𝒏𝒅∆𝐱𝟐 ∗ 𝐔 ≤ ∆𝐱𝟐 

 

𝒙𝟏
Upper

= 𝐦𝐚𝐱 (−𝟏  , 𝐱𝟏 −△ 𝐱𝟏 ∗ 𝐔 𝟐⁄ ). 

𝒙𝟏
𝒍𝒐𝒘𝒆𝒓 = 𝒎𝒂𝒙(−𝟏 + ∆𝐱𝟏 ∗ 𝐔, 𝒙𝟏 +△ 𝐱𝟏 ∗ 𝐔 𝟐⁄ ). 

x3
lower = 𝐦𝐢𝐧(𝟏 −△ 𝐱𝟐 ∗ 𝐔, 𝐱𝟑 −△ 𝐱𝟐 ∗ 𝐔 𝟐⁄ ). 

𝒙𝟑
Upper

=  𝐦𝐢𝐧 (𝐱𝟑 +△ 𝐱𝟐 ∗ 𝐔 𝟐⁄ , 𝟏). 

 
The uncertainty size Parameter (U) is to be determined and 

optimized, using optimization algorithms (IWO and PSO). 

The objective function as following:  

 

𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
(103)

𝑛
∑[𝑒(𝑡)]2

𝑛

𝑡=0

 (9) 

 

In this work we have two types of simulation. 

Firstly: tuning the FOU size in T2-MFsof Interval Type-2 

Fuzzy Logic PID controller. 

where, 

(1) we make transitioning from Type-1 to Interval Type-2 

Fuzzy Logic controller and optimizing the FOU size (U∈
[0,1]) in interval Type-2 membership functions using 

optimization algorithms (IWO and PSO). 

(2) The PID gains ( 𝐾𝑝𝑑 And 𝐾𝑝𝑖 ) are given [26]: 

𝐾𝑝𝑑=0.25,𝐾𝑝𝑖=255. 

 

Secondly: tuning both the PID values and the FOU size in 

T2-MFsof Interval Type-2 Fuzzy Logic PID controller. 

where, 

(1) We make transition from Type-1 to Interval Type-2 

Fuzzy Logic controller and Optimizing the FOU size (U∈
[0,1]) in interval Type-2 membership functions using 

optimization algorithms (IWO and PSO). 

(2) The PID values (Kpd and Kpi) Are to be determined and 

optimized, using optimization algorithms (IWO and 

PSO). 

 

where, Kpd ∈ [0 , 0.59] And Kpi ∈ [0, 450] [26]. 

 

 

7. CONCLUSIONS 

 

In this paper, we developed a new approach to transit from 

Type-1 to interval Type-2 fuzzy logic Controller using the 

optimization methods (IWO and PSO). We have two types of 

simulation. 

• First: tuning the FOU size in T2-MFs of Interval Type-2 

Fuzzy Logic PID controller (Figure 14, Table 5). 

• Secondly: tuning both the PID values and the FOU size in 

T2-MFs of Interval Type-2 Fuzzy Logic PID controller 

(Figure 17 and Table 7).  

 

Table 5. The optimal controllers’ parameters 

 
 Optimizing the FOU size 

parameter (U) 

IT2F-PID controller with WO 0.8534 

IT2F-PID controller with PSO 0.8534 

Fuzzy Logic PID Controller 

(T1F-PID) [26] 

0 

199



Table 6. Compare results obtained by IWO and PSO 

 
 ISE IAE TR Best-𝒄𝒐𝒔𝒕 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 

IT2F-PID controller with IWO 0.1087 0.1503 0.0206 108.7 

IT2F-PID controller with PSO 0.1087 0.1503 0.0206 108.7 

Fuzzy Logic PID Controller (T1F-PID) [26] 0.1559 0.2250 0.0306 \ 

 

Table 7. The optimal controllers parameters 

 
 𝑲𝒑𝒅 𝑲𝒑𝒊 the FOU size parameter (U) 

IT2F-PID controller with IWO 0.590 392.6647 0.8219 

IT2F-PID controller with PSO 0.590 382.7533 0.8182 

Fuzzy Logic PID Controller (T1F-PID) [26] 0.25 255 0 

 

Table 8. Compare results obtained by IWO and PSO 

 
 ISE IAE TR Best-𝒄𝒐𝒔𝒕 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 

IT2F-PID controller with IWO 0.0958 0.1202 0.0148 95.7732 

IT2F-PID controller with PSO 0.0963 0.1234 0.0160 96.3237 

Fuzzy Logic PID Controller (T1F-PID) [26] 0.1559 0.2250 0.0306 \ 

 

 
 

Figure 13. Iterative convergence curve 
 

 
 

Figure 14. The Type-2 membership function of fuzzy sets of 

inputs interval Type-2 fuzzy logic controller after tuning by 

the IWO (the FOU size parameter U=0.8534) 
 

Simulation results show: 

The Invasive weed optimization (IWO) algorithm 

converges quicker than the Particle Swarm Optimization 

algorithm (PSO) (Figure 13 and Figure 16). The superiority of 

the IT2F-PID controller with IWO comparing with both the 

IT2F-PID controller with PSO and fuzzy Logic PID 

controllers(Figure 15, Figure 18, Table 6 and Table 8), where: 

the IT2F-PID controller with IWO has minimum the Rise time 

(Tr), achieve lower the integral of square of errors (ISE) and 

the integral of the absolute errors (IAE) comparing with the 

other controllers. Finally; Invasive Weed Optimization 

Algorithm is helpful to tuning the PID values and the footprint 

of uncertainty size (FOU) in Interval Type-2 fuzzy logic PID 

controller for Boost DC-DC Converter. 

 
 

Figure 15. The output voltage of different simulation cases 
 

 
 

Figure 16. Iterative convergence curve 
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Figure 17. The Type-2 membership function of fuzzy sets of 

inputs Interval Type-2 fuzzy logic controller after tuning by 

the IWO (the FOU size parameter U=0.8219) 

 

 
 

Figure 18. The output voltage of different simulation cases 
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