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We present the elastic buckling problem of moderately thick and thick beams as a 

boundary value problem of the classical mathematical theory of elasticity. The study 

considered homogeneous, isotropic, linear elastic beams. Small deformation assumptions 

were used together with kinematic, constitutive relations and the differential equations of 

equilibrium to obtain the governing field equations as a fourth order non-homogeneous 

ordinary differential equation (ODE) when both axial, compressive and transverse loads 

are considered, and a fourth order homogeneous ODE when only axial compressive force 

is considered. Using trial function method, the homogeneous ODE is solved in general 

for any end support conditions to obtain a general solution for the buckled beam in terms 

of four unknown constants of integration. The boundary conditions corresponding to the 

four cases of end support conditions considered were used to obtain the characteristic 

buckling equations, which were expanded to obtain transcendental equations with an 

infinite number of roots in each case, thus yielding an infinite number of buckling loads. 

The least root of the transcendental equations was used to obtain the critical buckling 

load, which was found to depend on the ratio h/l and the Poisson’s ratio, . Critical 

buckling loads for each end support condition was calculated and tabulated. The results 

show that for each end support condition, as h/l < 0.02, the critical buckling load 

coefficient obtained was approximately equal to the critical buckling load coefficient of 

Euler – Bernoulli beam. As h/l > 0.02, which is the threshold for thin beams, the critical 

buckling load is found to be much smaller than the critical buckling load obtained from 

Euler – Bernoulli theory. It is thus concluded that the shear deformable theory is 

necessary for a more realistic analysis of the critical load buckling capacities of 

moderately thick, and thick beams for safety in their design. 
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1. INTRODUCTION

Elastic buckling analysis of thick beams are fundamentally 

two dimensional problems of the mathematical theory of 

elasticity and are formulated and solved using the tools and 

analytical methods. The simplification of elastic buckling 

problem of thick beams from a two dimensional problem of 

the theory of elasticity to one dimensional approximate 

problems have always been the focus and objective of 

researchers who worked in the area of thick beam stability [1, 

2]. 

Various beam theories have been developed in the literature 

for the problem of beam buckling. The classical Euler – 

Bernoulli beam theory (EBT) was formulated using the Euler 

– Bernoulli hypothesis that the plane cross-sections initially

orthogonal to the neutral axis before deformation would

remain plane and orthogonal to the neutral axis after

deformation [3, 4]. The Euler – Bernoulli theory has been used

in the literature to model flexural, dynamic and stability

analysis and behaviours of beams. The Euler-Bernoulli

hypothesis implies that the effects of transverse shear

deformation are ignored, thus effectively limiting the scope

and applicability of the EBT to slender (thin) beams where

transverse shear deformation effects contribute negligibly to 

the overall behaviour. The limitations of the classical EBT 

have been observed for flexural, dynamic and stability 

problems of thick and moderately thick beams. 

The EBT underestimates the values of displacements and 

overestimates the frequencies and buckling loads of thick and 

moderately thick beams where shear deformation effects 

become significant in the flexural, dynamic and buckling 

behaviours of such beams. Other models and theories of beams 

were developed to address the shortcomings of the EBT [5]. 

The Timoshenko beam theory (TBT) which is a first order 

shear deformation theory (FSDT) for beams was formulated 

on the hypothesis that the plane cross-sections that are initially 

orthogonal to the neutral axis of the beam before deformation 

would remain plane but not necessarily orthogonal to the 

neutral axis after deformation [6, 7]. 

First order shear deformation theory thus involves a 

relaxation of the normality condition. The theory considers the 

linear variation of mid plane displacement. The theory 

considers that the transverse shear strain distribution is 

constant through the beam thickness, and thus violates the 

shear stress free boundary conditions on the top and bottom 

surfaces of the beam. The theory thus requires problem 
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dependent shear stress correction/modification factors in order 

to appropriately represent the strain energy of deformation [8-

10]. Timoshenko beam theory and other FSDT of beams are 

formulated in terms of two unknown functions. 

The limitations and inadequacies of both the EBT, and the 

FSDT for the analysis of beam flexure, dynamics and buckling 

inspired the formulation and development of higher order 

shear deformation theories for the analysis of thick and 

moderately thick beams that would adequately account for the 

effect of transverse shear deformation, and also appropriately 

satisfy the shear stress free boundary conditions on the beam 

top and bottom surfaces. 

Levinson [11], Krishna Murty [12], Heylinger and Reddy 

[13] and many other researchers have presented parabolic 

shear deformation theories for the analysis of thick and 

moderately thick beams under flexure, dynamics and buckling 

conditions. 

Ghugal [10] extended the parabolic shear deformation 

theory of thick and moderately thick beams to include 

transverse normal strains and transverse shear strain effects for 

the flexure, dynamics and buckling analysis of isotropic thick 

beams. Ghugal and Shimpi [8] formulated and presented a 

trigonometric shear deformation theory that accounts for 

transverse shear deformation effects and which is thus 

applicable for the analysis of the flexural, dynamic and 

buckling behaviours of thick and moderately thick beams. 

Sayyad and Ghugal [14] formulated trigonometric shear and 

normal deformation theory that considered the effects of 

transverse shear and normal deformations for the flexure of 

thick and moderately thick isotropic and laminated beams. 

Soldatos [15] proposed a hyperbolic shear deformation 

theory for the flexural, dynamic and buckling analysis of thick 

and moderately thick isotropic, homogeneous beams under a 

variety of support conditions. Soldatos’ theory was extended 

by Ghugal and Sharma [16].  

Karama et al. [17] developed an exponential shear 

deformation theory for the analysis of thick and moderately 

thick beams under flexure, vibration and buckling and for 

different support conditions. 

Sayyad [18] presented a unified beam theory [UBT] for the 

flexure, eigen frequency and stability analysis of thick and 

moderately thick beams. In the UBT, parabolic, trigonometric, 

hyperbolic, and exponential functions are used in terms of the 

thickness coordinates to represent the effect of transverse 

shear deformation, rendering the theory suitable for the 

modelling of thick and moderately thick beams. 

Elastic buckling of beams is a failure situation where the 

beam is no longer able to carry lateral loads when the axially 

applied compressive force attains a critical value. The ratio of 

beam thickness to length and shear deformation effects have 

been known to affect the critical buckling loads since non-

dimensional critical buckling load reduces with increase in the 

ratio of beam thickness-to-length. 

Unlike the TBT and FSDT that assume a constant transverse 

shear strain variation through the beam thickness, and hence 

require shear correction factors, HSDT of beams assume more 

realistic polynomial distribution of transverse shear strain 

through the beam thickness. 

Despite the merits of the FSDT and HSDT in suitably 

describing /and modelling thick and moderately thick beams, 

they are generally governed by a system of coupled differential 

equations which increases the analytical rigours involved in 

their solution. Their governing equations involve increased 

number of independent unknown displacements and their 

solution require the specification of increased number of 

boundary conditions. 

In this work, the problem of elastic buckling of a 

homogeneous isotropic beam of prismatic cross-section is 

derived and presented from fundamental principles as a 

boundary value problem of the theory of elasticity. The BVP 

is then solved in closed form to obtain exact solutions for 

different end support conditions. 

 

 

2. THEORETICAL FORMULATION OF THE 

THICK BEAM BUCKLING PROBLEM 

 

2.1 Thick beam considered 

 

The thick beam considered in this study as shown in Figure 

1 is defined by the system of three dimensional (3D) Cartesian 

coordinates: 

 

0 ;x l  /2 /2;b y b−    /2 /2h z h−     

 

where, x, y, z are the 3D Cartesian coordinates l is the length 

of the beam, b is the width and h is the total depth (thickness) 

of the beam. The longitudinal domain is defined by the x 

coordinate variable while the cross-sectional dimensions are 

defined by the yz coordinates. The thick beam can be 

submitted to any loading and boundary (support) conditions. 

 

 
 

Figure 1. Thick beam buckling problem considered 

 

2.2 Fundamental assumptions 

 

The fundamental assumptions of the formulation are as 

follows: 

(i) The inplane displacement field u is decomposable into a 

displacement component analogous to the pure bending 

displacement in the classical Euler – Bernoulli beam 

bending theory and a displacement component 

attributable to shear deformation. 

(ii) The transverse displacement field component in the z 

coordinate direction is a function of the longitudinal 

coordinate position only. 

(iii) Stress – strain relations are one dimensional. 

(iv) The displacements are infinitesimally small compared to 

the beam thickness, resulting in strains that are 

considered infinitesimal. 

(v) body forces are ignored but can be accounted for by the 

inclusion of external forces. 

(vi) The transverse displacement w(x, z) is made of two 

components namely flexural component wb(x) and shear 

component, ws(x) 

(vii) The beam material is homogeneous, linearly elastic and 

isotropic. 

 

2.3 Displacement field 

 

The displacement field components are: 
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( , ) ( ) ( )u x z u x z x= +   (1) 

 
0( , )v x z =  (2) 

 

( , ) ( ) ( ) ( )b sw x z w x w x w x= = +  (3) 

 

where, (x) is the rotation of the cross-section at the neutral 

axis; u(x, z) is the displacement of the beam centre line in the 

x direction; v(x, z) is the displacement field in the y direction; 

w(x, z) is the transverse displacement of the beam centreline in 

the z direction; u(x) is the axial displacement according to the 

classical Euler-Bernoulli linear bending theory which is linear 

through the beam thickness; z(x) is the displacement due to 

the transverse shear deformation which is nonlinear through 

the beam thickness. 

The rotation (x) is 

 

( )
( ) bdw x
x

dx
 = −  (4) 

 

where, wb is the transverse deflection due to bending. Hence, 

Equation (1) becomes: 

 

( )
( , ) ( ) bdw x

u x z u x z
dx

= −  (5) 

 

2.4 Strain-displacement relations 

 

The strain – displacement relations are: 

 

( )
( ) b

xx

dw xu
u x z

x x dx

   
 = = − 

  
2

2

( )( ) bw xu x
z

x dx


= −


 

(6) 

 

 

0
( , )

yy

v x z

y


 = =


 (7) 

 

0zz

w

z


 = =


 (8) 

 

0
( , ) ( , )

xy

u x y v x z

y x

 
 = + =

 
 (9) 

 

0
( , ) ( , )

yz

v x z w x z

z y

 
 = + =

 
 (10) 

 

( )( , ) ( , ) s
xz

dw xu x z w x z

z x dx

 
 = + =

 
 (11) 

 

where, xx, yy, zz are normal strains, xy, yz and xz are shear 

strains. 

 

2.5 Stress-strain relations 

 

The one – dimensional stress – strain relations are: 

 

2

2

( )( ) b
xx xx

d w xdu x
E E Ez

dx dx

 
 =  = −  

 
 (12) 

 

( )s
xz xz

dw x
G G

dx
 =  =  (13) 

 

where, E is the Young’s modulus of elasticity G is the shear 

modulus or modulus of rigidity. 

 

2.6 Stress resultants 

 

The bending moment M(x) is: 

 

2

xx xx

R

M z dydz=   
(14) 

 

R2 is the two dimensional region of integration. 

For beam column and beam buckling problems. 

 

2

2 2
2

2

( ) ( )b b
xx

R

d w x d w x
M Ez dydz EI

dx dx
= − = −  (15) 

 

where, I is the moment of inertia, 

 

2

2 2

2 2

2 2

/ /

/ /

h b

h bR

I z dydz z dydz

− −

= =    (16) 

 

The shear force Qxx is 

 

2

( )s
x xz

R

dw x
Q dA G dydz

dx
=  = 

( )sdw x
Gbh

dx
=  (17) 

 

Introducing a shear correction/modification factor, k, shear 

force is 

 

( ) ( )s s
x

dw x dw x
Q kGhb kGA

dx dx
= =  (18) 

 

2.7 Differential equations of equilibrium 

 

The differential equation of equilibrium in the x direction is 

 

0
xy xzxx

xf
x y z

 
+ + + =

  
 (19) 

 

where, fx is the body force component in the x direction. 

For the thick beam problem, when body force fx is 

disregarded, the differential equation of equilibrium becomes: 

 

0xzxx

x z


+ =

 
 (20) 

 

From this, we have: 

 

2

0xzxx

R

z dydz
x z

 
+ = 

    (21) 
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Hence, 

 

             

2 2

0xx xz

R R

z dydz dydz
x


 +  =

    (22) 

 

0xx x

d
M Q

dx
− =  (23) 

 

where, 

 

2

zx x

R

dydz Q =  
(24) 

 

and   

 

xz zx = −  (25) 

 

Hence by substitution, 

 
2

2
0

( )b
x

d w xd
EI Q

dx dx

 
− − = 
 

 (26) 

 

Rearranging, 

 
2

2

( ) ( )b s
x

d w x dw xd
EI Q kAG

dx dxdx

 
− = = 

 
 (27) 

 

Re-expressing Eq. (27) we have: 

 

1( ) ( )s bdw x dw xd
EI

dx kAG dx dx

 
= −  

 
 (28) 

 

Integrating Eq. (28) with respect to x, we have: 

 

1( ) ( )
( )s s

s

dw x dw xd
dx w x EI dx

dx kAG dx dx

 
= = −  

    (29) 

 
2

2

1 ( )
( ) b

s

d w x
w x EI

kAG dx
= −  (30) 

 

But  

 

2 1( )

E
G =

+ 
 (31) 

 
2 2

2 2

2 1

/2 1

( ) ( )( )
( )

( ( ))

b b
s

d w x d w xEI I
w x

kA E kAdx dx

− − + 
= =

+ 
 (32) 

 

For rectangular cross-sections, 

 

A bh=  (33) 

 
3

12

bh
I =  (34) 

 

5

6
k =  (35) 

then, 

 
2 22 2

2 2

1 1

5 6

( ) ( )( ) ( )
( ) b b

s

d w x d w xh h
w x

kdx dx

− +  − + 
= =  (36) 

 

For circular cross-sections, of diameter, d: 

 
2

4

d
A


=  (37) 

 
4

64

d
I


=  (38) 

 

then, 

 
4

2

2 2

2 1
64

4

( )
( )

( ) b
s

d

d w x
w x

d dx
k


− + 

=


22

2

1

8

( ) bd w xd

k dx

− + 
=  

(39) 

 

The differential equation of equilibrium in the z direction is: 

 

0
zyzx zz

zf
x y z

 
+ + + =

  
 (40) 

 

where, fz is the body force component in the z direction. 

For the thick beam problem, the equilibrium equation is: 

 

0zx
zf

x


+ =


 (41) 

 

Hence,  

 

2

0zx
z

R

f dydz
x

 
+ = 

   (42) 

 

2 2

0zx z

R R

dydz f dydz
x


 + =

    (43) 

 

0xQ q
x


+ =


 (44) 

 

2.8 Stability equation 

 

The stability equation is given by: 

 

0
( )

x xx x

dw x d
N M Q

dx dx
+ − =  (45) 

 

0xdQ

dx
=  if 0q =  (46) 

 
2

2
0

( )
( ( ) ( )) b

x b s x

d w xd d
N w x w x EI Q

dx dx dx

 
+ + − − = 

 
 (47) 
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For prismatic, homogeneous beams, 

 
3

3
0

( ) ( )
( ) s b

x b x

dw x d w xd
N w x EI Q

dx dx dx

 
+ − − = 

 
 (48) 

 
3

3

( ) ( ) ( )b s b
x x

dw x dw x d w x
Q N EI

dx dx dx

 
= + − 

 
 (49) 

 

Differentiation yields: 

 
3

3

( ) ( ) ( )x b s b
x

dQ d dw x dw x d w x
N EI

dx dx dx dx dx

  = + −  
  

 (50) 

 

From Eq. (48) we have 

 
3

3

( ) ( ) ( )
( )b s b

x

d dw x dw x d w x
q xN EI

dx dx dx dx

   = −+ −  
  

 (51) 

 
2 2 4

2 2 4

( ) ( ) ( )
( )b s b

x

d w x d w x d w x
N EI q x

dx dx dx

 
+ − = − 

 
 (52) 

 

Using Eqns. (36) and (39) for ws(x) in Eq. (52) we obtain 

the fourth order ordinary differential equations: 

 
4 2 22 2

4 2 2 2

1

6

( ) ( ) ( )( )b b b
x x

d w x d w x d w xd h
EI N N q

kdx dx dx dx

 + 
− − − = 

 
 (53) 

 

for rectangular cross-sections and, 

 
4 2 22 2

4 2 2 2

1

8

( ) ( ) ( )( )b b b
x x

d w x d w x d w xd d
EI N N q

kdx dx dx dx

 − + 
− − = 

 
 (54) 

 

for circular cross-sections. 

Further simplifications yield: 

 
4 2 4 2

4 4 2

1

5

( ) ( ) ( ) ( )
( )b x b b

x

d w x N h d w x d w x
EI N q x

dx dx dx

+ 
+ − =  (55) 

 
4 2 4 2

4 4 2

1

8

( ) ( ) ( ) ( )
( )b x b b

x

d w x N d d w x d w x
EI N q x

kdx dx dx

+ 
+ − =  (56) 

 

where, Nx is tensile. 

For axial compressive force Px we have ,x xP N= −  and we 

obtain the governing equations as: 

 
2 4 2

4 2

1

5

( ) ( ) ( )
( )x b b

x

P h d w x d w x
EI P q x

dx dx

 + 
− + = 

 
 (57) 

 

for rectangular cross-sections and 

 
2 4 2

4 2

1

8

( ) ( ) ( )
( )x b b

x

P d d w x d w x
EI P q x

k dx dx

 + 
− + = 

 
 (58) 

 

for circular cross-sections. 

For elastic buckling problems where q(x) = 0, the governing 

equations are: 

 

2 4 2

4 2

1
0

5

( ) ( ) ( )x b b
x

P h d w x d w x
EI P

dx dx

 + 
− + = 

 
 (59) 

 
2 4 2

4 2

1
0

8

( ) ( ) ( )x b b
x

P d d w x d w x
EI P

k dx dx

 + 
− + = 

 
 (60) 

 

 

3 RESULTS 

 

3.1 Solution 

 

We apply the classical method of trial functions to solve the 

fourth order homogeneous ordinary differential equation 

(ODE) – Equation (60) – for the buckling of first order shear 

deformable beam under arbitrary end support conditions. The 

equation to be solved is expressed as: 

 
4 2

4 2 2
0

1

5

( ) ( )

( )

b x b

x

d w x P d w x

dx P h dx
EI

 
+ = 

+ 
 −
 

 
(61) 

 

Or, 

 
4 2

2

4 2
0

( ) ( )b bd w x d w x

dx dx
+  =  (62) 

 

where, 

 

2

2 1

5

( )

x

x

P

P h
EI

 =
+ 

−

 
(63) 

 

We assume a trial function for wb(x) in exponential form as: 

 

( ) expbw x x=   (64) 

 

where,  is an unknown parameter of the trial solution we seek 

to determine. 

Then the governing equation becomes: 

 
4 2 2exp expx x  +   = 4 2 2 0( )exp x +   =  (65) 

 

For non trivial solutions, 0exp x    

The characteristic (auxiliary) polynomial is the fourth order 

equation: 

 
4 2 2 0 +   =  (66) 

 

Factorising,      

 
2 2 2 0( )  +  =  (67) 

  

The roots are:        

 

0 =  (twice) (68) 

 
i =    (69) 
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The basis of solutions is: 

 

1( ) , ( ) ,

( ) exp , ( ) exp( )
b b

b b

w x w x x

w x i x w x i x

= =

=  = − 
 (70) 

 

The general solution is then: 

 

1 2 3 4( ) exp( ) exp( )bw x c c x c i x c i x= + +  + −   (71) 

 

where, c1, c2, c3, c4 are the four integration constants.  

Using the Euler formula, the general solution is: 

 

( ) cos sinbw x a a x a x a x= + +  + 1 2 3 4  (72) 

 

where, a1, a2, a3 and a4 are four integration constants which 

are found from the end support conditions. 

 

3.2 Solution for simply supported ends for first order shear 

deformable beam with simply supported ends (x = 0, x = l) 

 

The boundary conditions for the first order shear 

deformable beam with simple supports at x=0 and x=l as 

shown in Figure 2 are: 

 

0 0 0 0 0 0( ) ; ( ) ; ( ) ; ( )b b b bw x w x w x l w x l = = = = = = = =  (73) 

 
2 2

3 4( ) cos sinbw x a x a x = −   −    (74) 

 

 
 

Figure 2. First order shear deformable beam with simple 

supports at x = 0, x = l 

 

Using the boundary conditions, we have the homogeneous 

equation: 

 

1
2

2

3
2 2

4

1 0 1 0 0

0 0 0 0

1 0

00 0

cos sin

cos sin

a

a

al l l

al l

    
    −
  =   

     
      −  −  

 (75) 

 

The characteristic buckling equation is 

 

2

2 2

1 0 1 0

0 0 0
0

1

0 0

cos sin

cos sin

l l l

l l

−
=

 

−  − 

 (76) 

 

Expansion of the determinant yields the characteristic 

buckling equation as: 

 

0sin l =  (77) 

 

Solving, 

 
1 0sin ;l m− = =    1 3 5 7 9 11, , , , , ,...m =  (78) 

 

m

l


 =  (79) 

 

Hence, 

 
2

2

2 1

5

( )

x

x

P m

lP h
EI

 
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 + 
−

 
(80) 

 
2 2 1

5

( )x
x

P hm
P EI

l

 +  
= −   
   

 (81) 

 
2 22 1

1
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x

h m m
P EI

l l

 +      
+ =     

     
 (82) 
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(83) 
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 

 
(84) 

 

crxP  is tabulated for  = 0.25, and  = 0.30 as shown in 

Table 1 for various values of beam depth to span ratio (h/l). 

 

Table 1. Exact critical buckling load for first order shear 

deformable beam for various ratios of h/l and for  = 0.25 

and  = 0.30 (rectangular cross-sections) 

 

h/l 
(×EI/l2) 

for 0 25( . )
crxP  =  

(×EI/l2) 

for 0 30( . )
crxP  =  

Pakhare et al. 

[2]  

0 30( . )
crxP  =  

0.01 9.86717 9.8671 9.8671 

0.02 9.85987 9.8595 9.8595 

0.05 9.8091 9.8067 9.8067 

0.10 9.63195 9.6227 9.6227 

0.15 9.35050 9.3309 9.3309 

0.20 8.98302 8.9509 8.9509 

0.25 8.55094 8.5055 8.5055 

0.30 8.07616 8.0179 8.0179 

0.35 7.57885 7.5091 7.5091 

0.40 7.07608 6.9969 6.9969 

0.45 6.58128 6.49472  

0.50 6.10422 6.01246  

 

3.3 Solution for fixed pinned ends for a first order shear 

deformable beam fixed at x = 0, and pinned at x = l 

 

 
 

Figure 3. First order shear deformable beam fixed at x = 0, 

and pinned at x = l 

 

The boundary conditions for the shear deformable beam 

with support conditions shown in Figure 3 are: 

 

0 0 0 0 0 0( ) ; ( ) ; ( ) ; ( )b b b bw x w x w x l w x l = = = = = = = =  (85) 
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Enforcement of boundary conditions yield the system of 

homogeneous algebraic equations: 

 

1

2

3

4

1 0 1 0 0

0 1 0 0

1 0

0 0 0

cos sin

cos sin

a

a

al l l

al l

    
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=    
      
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 (86) 

 

For nontrivial solutions, 

 
1 0 1 0

0 1 0
0

1

0 0

cos sin

cos sin

l l l

l l


=

 

 

 (87) 

 

Expansion of the determinant yields the characteristic 

buckling equation as the transcendental equation: 

 

0tan( )l l − =  (88) 

 

Using software, or iterative methods – Newton Raphson, 

Regula-Falsi, simple iteration, the first four nontrivial roots of 

the transcendental equation are: 

 

1 4 49341.l =   (89) 

 

2 7 72525184.l =   (90) 

 

3 10 9041266.l =   (91) 

 

4 14 0661939.l =   (92) 

 

Each root can be used to compute a buckling load. 

The smallest root yields the critical buckling load. The 

critical buckling load 
crxP is found as: 
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1
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l P h
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(93) 

 

Solving for 
crxP , 

 

2 2

2

20 19073

1 4 038146 1

.

. ( )

xcr

EI
P

h l

l
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+ + 

 
(94) 

 

For 0 25. = :  

 

2 2

2

20 19073
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(95) 

 

For 0 30. : =   

 

2 2

2

20 19073
0 30

1 5 2495898

.
( . )

.
crx

EI
P

h l

l

= =

+

 
(96) 

The critical buckling load is calculated and tabulated in 

Table 2 for various values of the ratio h/l for  = 0.25 and  = 

0.30 

 

Table 2. Exact critical buckling loads for shear deformable 

beam fixed at x = 0, pinned at x = l for various ratios of h/l 

and for 0 25 0 30. , . =  =  (rectangular cross-sections) 

 

h/l 2
0 25.xcr

EI
P

l

 
 =  
 

 
2

0 30( . )xcr

EI
P

l
 =   

0.01 20.180544 20.180136 

0.02 20.150045 20.148422 

0.05 19.939111 19.929180 

0.10 19.220539 19.183666 

0.15 18.131486 18.057817 

0.20 16.798909 16.68678 

0.25 15.348565 15.202725 

0.30 13.883554 13.712215 

0.35 12.476192 12.288382 

0.40 11.169732 10.973614 

0.45 9.984758 9.786873 

0.50 8.926368 8.731514 

 

3.4 Solution for fixed-fixed ends 

 

A shear deformable beam of length l fixed at the two ends  

x = 0, and x = l as shown in Figure 4, is considered. 

 

 
 

Figure 4. Shear deformable beam with fixed ends (x=0, x=l)  

 

The boundary conditions are: 

 

0 0 0 0 0 0( ) ; ( ) ; ( ) ; ( )b b b bw x w x w x l w x l = = = = = = = =  (97) 

 

Enforcement of the boundary conditions yield the 

homogeneous algebraic equations given by: 
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cos cos
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 (98) 

 

For nontrivial solutions, the characteristic buckling 

equation is found from the determinantal equation: 

 

1 0 1 0

0 1 0
0

1

0 1

cos sin

sin cos

l l l

l l


=

 

−   

 (99) 

 

Expansion of the determinant yields the transcendental 

equation: 

 

2 2 0sin cosl l l  +  − =  (100) 

 

The first four nontrivial roots of the transcendental equation 

are found using software or iterative methods – Newton-

Raphson, simple iteration, Regula-Falsi as: 
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1 6 28318530717959.l =   (101) 

 

2 8 98681891581813.l =   (102) 

 

3 12 5663706143592.l =   (103) 

 

4 15 4505036738754.l =   (104) 

 

The critical buckling load is found from the smallest 

nontrivial root, 1. Thus, 
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(105) 
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Solving for Pxcr, 
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For 0 25. : =  

 

2 2

2

39 478414
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For 0 30. : =   

 

2 2

2
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.
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.
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P
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l
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(109) 

 

The critical buckling load is calculated and presented in 

Table 3 for various values of the ratio h/l for  = 0.25 and  = 

0.30. 

 

Table 3. Exact critical buckling load for first order shear 

deformable beam with fixed-fixed ends for various values of 

h/l and for  = 0.25 and  = 0.30 

 

h/l 2
0 25( . )xcr

EI
P

l
 =   

2
0 30( . )xcr

EI
P

l
 =   

0.01 39.43949 39.43793 

0.02 39.32317 39.31699 

0.05 38.52778 38.49071 

0.10 35.93206 35.80341 

0.15 32.30465 32.07154 

0.20 28.30432 27.98745 

0.25 24.41687 24.04985 

0.30 20.90725 20.52112 

0.35 17.87141 17.48854 

0.40 15.30684 14.94092 

0.45 13.16564 12.82376 

0.50 11.38560 11.07049 

 

 

3.5 Solution for pinned-fixed ends 

 

For a shear deformable beam of length l pinned at x = 0 and 

fixed at x= l, as shown in Figure 5, the boundary conditions 

are: 

 

( ) ; ( ) ;b bw x w x= = = =0 0 0 0  

( ) ; ( )b bw x l w x l= = = =0 0  
(110) 

 

 
 

Figure 5. Elastic buckling of shear deformable beam with 

pinned-fixed ends 

 

Enforcement of boundary conditions yield: 
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 (111) 

 

For nontrivial solutions, we obtain determinantal equation: 

 

2

1 0 1 0

0 0 0
0

1

0 1

cos sin

sin cos

l l l

l l

−
=

 

−   

 (112) 

 

Expansion of the determinant yields the characteristic 

buckling equation as Eq. (88). This is the same result obtained 

for first order shear deformable beams fixed at x = 0 and 

pinned at x = l. The buckling loads are the same as obtained 

for fixed-pinned ends and the critical buckling load for shear 

deformable beams pinned at x = 0, and fixed at x = l for various 

ratios of h/l and for μ = 0.25, and μ = 0.30 for rectangular cross 

sections are the same as shown in Table 2 for fixed-pinned 

ends. 

 

 

4. DISCUSSION 

 

In this work, the elastic buckling problem of shear 

deformable beams has been presented from first principles as 

a boundary value problem of the mathematical theory of 

elasticity. The formulation presented is for a thick beam or a 

moderately thick beam with longitudinal coordinate axis on 

the x-axis and the cross-sectional plane on the yz plane. The 

beam material is assumed homogeneous, isotropic and linear 

elastic and the formulation was based on small deformation 

assumptions of classical elasticity theory. Based on 

displacement field assumptions given by Eqns. (1-3), where 

the rotation of the cross-section at the neutral axis is given by 

Eq. (4) the strains and stress fields were found from the 

kinematic relations and the constitutive laws as Eqns. (6-11) 

and (12-13) respectively. The stress resultants were obtained 

as Eqns. (15) and (18) for the bending moment and shear force 

respectively. The differential equations of equilibrium 

expressed in terms of the stress resultants were used to obtain 
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the governing boundary value problem as the fourth order 

differential equation given by Eq. (57) for rectangular cross-

sectional shapes and Eq. (58) for circular cross-sections. 

The method of trial functions was used to solve the 

homogeneous fourth order ordinary differential equation 

(ODE) governing the elastic buckling of shear deformable 

beam when transverse forces are ignored and the beam is 

subject to only axial compression. The assumption of a trial 

solution for the buckled shape of the beam in the form of the 

exponential function given by Eq. (64) reduced the fourth 

order ODE to an algebraic problem described for nontrivial 

solutions by the characteristic (auxiliary) polynomial given by 

the fourth degree polynomial in Eq. (66). The four roots 

(zeros) of the characteristic equation are obtained by 

factorisation as Eqns. (68) and (69). The zeros of the 

characteristic polynomial yielded the solution basis functions 

as Eq. (70). The general solution is then obtained in terms of 

exponential functions as Eq. (71), and in terms of 

trigonometric functions as Eq. (72). The general solution is 

obtained in terms of four integration constants which are 

determined only if the boundary conditions, determined by the 

support conditions are specified. 

Specific cases of end support namely: (i) both ends simply 

supported; (ii) fixed pinned ends; (iii) fixed – fixed ends, and 

(iv) pinned – fixed ends were considered, and analytical 

solutions were presented for each of the cases. For simply 

supported ends, the boundary conditions are given by Equation 

(73). Enforcement of the boundary conditions for simply 

supported ends led to the system of homogeneous algebraic 

equations in terms of the unknowns, given by Eq. (75). For 

nontrivial solutions, the determinant of the coefficient matrix 

would vanish yielding the characteristic buckling equation as 

Eq. (76). The expansion of the determinant yielded Eq. (77) 

which was solved to obtain Eq. (79) which has an infinite 

number of roots. The buckling loads were then obtained for 

simply supported ends as Eq. (83) and the critical buckling 

load found as Eq. (84). The critical buckling load was 

determined for values of Poisson’s ratio  = 0.25 and  = 0.30, 

and for various values of h/l and presented in Table 1. From 

Table 1, it is observed that for both values of Poisson’s ratio, 

as h/l increases, the critical buckling load coefficient decreases. 

For small values of h/l corresponding to the range of values of 

h/l which define thin (slender) beams, the critical buckling 

load coefficient is approximately the same as the critical 

buckling load coefficient of Euler – Bernoulli beams with 

simply supported ends. 

For shear deformable beams with fixed – pinned ends, the 

boundary conditions are given by Eq. (85). Enforcement of the 

boundary conditions yielded the system of algebraic equation 

– Eq. (87), which upon expansion yielded the transcendental 

equation – Eq. (88), which has an infinite number of roots. The 

zeros of the transcendental equation for the first four roots are 

found as Eqns. (89-92), with each root corresponding to a 

buckling load. The smallest root was used to compute the 

critical buckling load as Eq. (94), for any value of , and Eq. 

(95) for  = 0.25 and Eq. (96) for  = 0.30. 

Critical buckling loads for first order shear deformable 

beam with fixed – pinned ends for various values of h/l and for 

 = 0.25 and  = 0.30 were computed as shown in Table 2. 

The elastic buckling problem of first order shear deformable 

beam with fixed – fixed ends was considered with the 

boundary conditions as Eq. (97). Enforcement of the boundary 

conditions resulted in the homogeneous algebraic problem in 

Eq. (98), which gave the characteristic buckling equation for 

nontrivial solution as Eq. (99). Expansion of the determinant 

yielded the characteristic buckling equation as the 

transcendental equation – Eq. (100) – with an infinite number 

of roots. The first four zeros of the buckling equation were 

found as Eqns. (101 – 104) and can be used to find the first 

four buckling loads. The least nontrivial root gave the critical 

buckling load as Eq. (107), for any value of Poisson ratio, and 

Equations (108) and (109) for  = 0.25 and  = 0.30 

respectively. Critical buckling loads for fixed –fixed ends were 

calculated and shown in Table 3. For pinned – fixed ends, the 

boundary conditions are given as Eq. (110). The use of the 

boundary conditions gave rise to the homogeneous algebraic 

equations in Eq. (111). The requirement of nontrivial solutions 

of the algebraic problem yielded the characteristic equation 

shown in Eq. (112). 

Expansion of the determinant yielded the characteristic 

buckling equation as Eq. (88), which was solved to obtain the 

zeros as Eqns. (89-92); the roots were found to be infinite in 

number and the buckling loads were found as Eq. (94). The 

critical buckling load was found as Eqns. (95), (120) for  = 

0.25 and (96) for  = 0.30. The critical buckling loads were 

computed for various values of h/l and  = 0.25,  = 0.30, and 

presented in Table 2. 

From Tables 1, 2, and 3, it is observed that as h/l < 0.02 the 

critical buckling load coefficients obtained for the various end 

support conditions are approximately equal to the critical 

buckling load coefficients for the Euler – Bernoulli beam with 

the corresponding end support conditions. As h/l > 0.02, which 

is the threshold for defining slender beams, the critical 

buckling load coefficient obtained becomes smaller than the 

critical buckling load obtained using the Euler-Bernoulli beam 

theory. For h/l > 0.02, the effect of shear deformation is 

observed to significantly affect the critical buckling load of the 

beam. Hence shear deformation effects need to be considered 

for a more realistic analysis of the critical buckling load 

capacities of moderately thick and thick beams for a safe 

design of such structures. 

 

 

5. CONCLUSION 

 

The conclusions of the study are as follows: 

(i) The elastic buckling problem of shear deformable thick 

and moderately thick beams has been formulated from first 

principles as a boundary value problem of the mathematical 

theory of elasticity. 

(ii) The problem satisfied the kinematic relations, the 

constitutive laws and the differential equations of equilibrium. 

(iii) The boundary value problem was obtained in general 

as a fourth order non homogeneous ordinary linear differential 

equation when there are transversely applied loads in addition 

to the axial compressive load, and a fourth order homogeneous 

ODE when there is only axial compressive load, and no 

transverse load. 

(iv) The method of trial function for the case when no 

transverse force is considered transformed the BVP to an 

algebraic equation, which is solved to obtain the characteristic 

buckling equation found as a fourth degree polynomial whose 

roots yielded the solution basis functions, and led to obtaining 

the general solutions in terms of four unknown constants of 

integration. 

(v) Boundary conditions for the specific cases of end 

supports were used in obtaining the characteristic buckling 

equations, which were solved to obtain the buckling loads. 

91



 

(vi) For / 0 02.h l   which defines slender (thin) beams, the 

critical buckling load coefficients obtained for the various end 

support conditions are approximately equal to the critical 

buckling load coefficients for the Euler – Bernoulli beam with 

the corresponding end support conditions. 

(vii) As / 0 02.h l   which is the threshold for thin beams, 

the critical buckling load coefficient obtained for moderately 

thick beams and thick beams is smaller than the critical 

buckling load from the Euler – Bernoulli beam theory. 

(viii) For / 0 02.h l   shear deformation effect is found to 

significantly reduce the critical buckling load of beams. 

(ix) Shear deformation effects need to be considered for a 

more realistic analysis of the critical buckling load capacities 

of moderately thick and thick beams for safety in their design. 
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NOMENCLATURE 

 

x, y, z Cartesian coordinates 

l beam length 

b beam width 

h beam depth (thickness) 

x longitudinal coordinate 

yz cross-sectional coordinates 

u inplane displacement field 

w transverse displacement field 

w transverse displacement field 

wb flexural component of transverse displacement 

field 

ws shear component of transverse displacement field 

v y component of displacement field 

(x) rotation of the cross-section at the neutral axis 

xx, yy, zz normal strains 

xy, xz, yz shear strains 

xx, yy, zz normal stresses 

xy, xz, yz shear stresses 

E Young’s modulus of elasticity 

G shear modulus or modulus of rigidity 

 Poisson’s ratio 

Mxx bending moment 
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Qx shear force 

R2 two-dimensional region of integration 

I moment of inertia 

k shear correction/modification factor 

fx body force component in the x direction. 

d diameter of beam of circular cross-section 

fz body force component in the z direction 

Nx, Px axial force on beam 

q(x) transverse force distribution 

2 parameter defined in terms of Px, h, , EI 

 unknown parameter of the trial buckling function 

i imaginary number 

exp exponential 

1 2 3 4

1 2 3 4

, , ,

, , ,

c c c c

a a a a
 integration constants 

crxxP   critical buckling load 

m integer 

cos cosine 

sin sine 

tan tangent 

> greater than 

< less than 

A cross-sectional area 

     determinant 

 integral 

 double integral 

d

dx
  ordinary derivative with respect to x 

ODE ordinary differential equation 

EBT Euler – Bernoulli beam theory 

FSDT first order shear deformation theory 

TBT Timoshenko beam theory 

HSDT higher order shear deformation theory 

UBT unified beam theory 

BVP boundary value problem 

3D three dimensional 

/
/ /   derivative 

cr critical 

Pcr critical buckling load
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