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The transit time on roads is essential to the intelligent traffic system in urban areas. If the 

transit time is predicted accurately, the traffic management system can work more 

effectively, and the public will enjoy rational travel strategies. However, the traditional 

prediction algorithms for transit time cannot adapt well to the complex road network and 

the sparsely deployed sensors in cities. By contrast, the particle filtering (PF) algorithm has 

strong adaptability to such a stochastic nonlinear problem. Therefore, this paper measures 

the spatiotemporal similarity between historical data on different roads at different 

moments with speed matrices, aiming to prevent the data degradation in transit time 

prediction. Besides, the PF algorithm was innovatively applied to build a transit time 

prediction model on urban roads. The traffic trend in historical data was modelled with 

weighted particles. Finally, the effectiveness of our algorithm was demonstrated through an 

empirical analysis. The results show that our algorithm outperforms the other transit time 

prediction algorithms in prediction accuracy and computing performance. 
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1. INTRODUCTION

The prediction accuracy of urban road transit time 

determines the efficiency of urban traffic management, 

playing an important role traffic management and planning [1, 

2]. If the transit time is predicted accurately, the travelers will 

access the correct information on road traffic. This enables the 

drivers to optimize their travel strategies in time, and 

circumvent the congested roads. Being a performance index of 

the traffic system, the transit time also facilitates the 

effectiveness comparison between different traffic 

management strategies in a quantitative manner. Hence, it is 

an effective way to enhance the efficiency of traffic 

management system by accurately predicting the road transit 

time. 

The existing prediction methods for road transit time are 

either driven by data or based on models. The data-driven 

methods forecast the transit time by mining the relationship 

between historical and current traffic modes. This type of 

methods only examines the traffic modes reflected by the 

traffic data, instead of depicting the internal properties of the 

traffic flow or setting up the state transfer function between 

traffic states of adjacent moments. If classified by theories and 

principles [3], the methods driven by data are either parametric 

and nonparameteric [4-13]. The classification of the data-

driven methods is illustrated in Figure 1 below. 

Most of the model-based methods predict road transit time 

in three steps: building a dynamic macro model of the traffic 

network, calibrating the model parameters with historical data, 

and forecasting future transit time by the calibrated model. 

Early model-based prediction methods for road transit time are 

all grounded on dynamic models of the traffic network on the 

marco, meso and micro scales. The assumptions of these 

methods are too ideal to demonstrate the effects of various 

factors on road transit time in actual traffic environment. 

With the development of computer technology, the AI 

algorithm based on particle filtering (PF), has been introduced 

to predict road transit time [14-16]. These algorithms enjoy 

two unique advantages: First, the state transfer function can be 

obtained accurately from macro traffic model, revealing the 

relationship between traffic states of adjacent moments; the 

state transfer function thus obtained manifests the inherent 

physical law of traffic flow, and overcomes a major defect of 

the state transfer function derived from historical data, namely, 

the interference from the noises in historical data. Second, the 

measurement and time are updated simultaneously at each 

moment under the Bayesian filtering model; once obtained, a 

measured value is used to make a new estimation, and derive 

a new prediction via the state transfer function. 

The PF-based AI algorithm outperforms the methods that 

directly utilize historical data in transit time prediction. 

However, the assumption that the noises are distributed 

normally contradicts the complex scenarios in the real world. 

This problem can be resolved by the PF, a sequential Monte-

Carlo (MC) method. The PF can solve dynamic problems with 

strong nonlinearity, without needing the above assumption. 

Over the years, fruitful results have been achieved in transit 

time prediction with the PF and nonlinear state transfer 

function [17-21]. The urban traffic network is highly nonlinear, 

making the PF the best prediction strategy for transit time on 

urban roads. However, most PF algorithms are designed for 

transit time prediction on expressways, which is much easier 

than that on urban roads. It is an arduous task to predict the 

transit time on urban roads in an accurate manner. For one 

thing, the traffic data in urban traffic network are not suitable, 

due to the complex traffic environment in urban areas, as well 

as the diversity and sparsity of the data collected by probe 

vehicles; for another, the traffic lights and intersections on 

urban roads pose severe challenges to traffic flow modelling 

and estimation [22]. 
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Figure 1. The classification of the data-driven methods 

 

To sum up, the existing prediction methods for transit time 

each has its limitations and defects on the forecast of urban 

road transit time. Therefore, this paper adopts the speed matrix 

to measure the spatiotemporal similarity of historical data of 

different road sections at different moments, preventing data 

degradation in transit time prediction. Besides, the PF 

algorithm was innovatively applied to build a prediction model 

of transit time on urban roads. The traffic trend in historical 

data was modelled with weighted particles. Finally, the 

prediction accuracy and adaptability of the proposed approach 

were tested through empirical analysis. 

The remainder of this paper is organized as follows: Section 

2 establishes a prediction model of transit time on urban roads 

based on the PF algorithm, considering the complex features 

of urban road network, and fully explains the basic principles 

of the algorithm; Section 3 verifies the proposed model 

through case analysis, and confirms the effectiveness of the PF 

algorithm through the selection of model parameters and 

comparison with two regular model-based methods; Section 4 

puts forward the conclusions of this research. 

 

 

2. METHODOLOGY 

 

Under the complex scenarios of urban roads, the strong 

nonlinearity of traffic data and non-Gaussian distribution of 

noises must be considered in transit time prediction. Compared 

with other algorithms, the PF algorithm can easily handle 

stochastic nonlinear problems with non-Gaussian distribution. 

Therefore, this paper takes the speed matrix of each urban road 

as a particle, and applies the PF algorithm to predict the transit 

time on urban roads, aiming to achieve accurate predictions 

under complex scenarios. 

 

2.1 Basic principles of the PF algorithm 

 

 
 

Figure 2. The standard flow of the PF algorithm 

Proposed by Gordon in 1993, the PF algorithm mainly relies 

on the MC method to calculate the posterior probability 

density of random samples, and thus obtain the quasi-optimal 

solution to physical models. The PF algorithm (Figure 2) can 

be implemented through initialization, particle weight update, 

and importance sampling. 

 

2.2 PF-based prediction of transit time 

 

To reflect the spatiotemporal features of urban traffic 

network, this paper treats the speed matrix of each road as a 

particle for transit time prediction. The speed matrix M is a 

tool to characterize the spatiotemporal features of traffic flow. 

The matrix contains the speed on each road in the set of roads 

R={r1, r2, …, rm} at every moment in the set of moments T={t1, 

t2, …, tn}. Every element Vi, j in the matrix M describes the 

speed on road i at moment j. Figure 3 gives an example of 

speed matrix.  

 

 
 

Figure 3. An example of speed matrix M 

 

In the PF algorithm, the set of roads R contains the target 

road r and any other road whose distance from r is no greater 

than 2; the set of moments T covers the current moment t and 

the previous p-1 moments, i.e. T={t-p+1, t-p+2, …., t-1, t}. 

For convenience, the roads whose distance from r is 1 are 

called one-hop roads, and the roads whose distance from r is 2 

are called two-hop roads. 

According to the definition of the speed matrix, this paper 

models the similarity between different traffic modes at 

different moments. Firstly, the particles were initialized by 

randomly generating speed matrices. Next, the particle 

weights were updated by the weight formula. Further, the 

necessity of resampling was determined by evaluating the 

degree of degradation. The particles failing to satisfy the 

threshold were resampled by random importance resampling 

algorithm. Finally, the weighted mean of all effective particles 

was taken as the prediction result, completing the forecast of 

transit time on complex urban roads. The workflow of the PF-

based prediction of transit time are as follows: 

Step 1. Particle initialization  

Taking the speed matrix on each road as a particle, particle 

initialization is equivalent to setting up the initial speed 

matrices. Suppose the target road r and other n-1 roads belong 

to the same set R, and the initial speed matrices are generated 

randomly at moment 𝑡0
𝑖 . Then, an initial speed matrix 𝑀0

𝑖 can 

be expressed as: 

 

 
 

Figure 4. An initial speed matrix 𝑀0
𝑖  
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Step 2. Particle weight updates 

In our PF algorithm, each particle represents a speed matrix. 

The similarity between speed matrices determines the value of 

particle weights. Hence, the particle weights were updated 

based on the similarity between speed matrices. The weight of 

particle i can be updated by: 

 

𝑤𝑡
𝑖=w𝑡−1

𝑖 ∗ [𝜌(𝑚1
𝑖 , 𝑚1

𝑐) +
𝜆1

𝑛1

∑ 𝜌(𝑚1+𝑗
𝑖 , 𝑚1+𝑗

𝑐 )

𝑛1

𝑗=1

+
𝜆2

𝑛2

∑ 𝜌(𝑚1+𝑛1+𝑗
𝑖 , 𝑚1+𝑛1+𝑗

𝑐 )

𝑛2

𝑗=1

] 

(1) 

 

where, 𝑀𝑡
𝑖 and 𝑀𝑡

𝑐 are the speed matrices for the traffic mode 

of particle i and that of current traffic mode at moment t, 

respectively; mi is the data on the i-th row of a speed matrix; 

n1 and n2 are the number of one-hop and two-hop roads, 

respectively; ρ is the linear correlation coefficient between the 

element of a road in 𝑀𝑡
𝑖  and that in 𝑀𝑡

𝑐 ; λ1 and λ2 are the 

weights of one-hop and two-hop roads, respectively. 

Step 3. Importance resampling 

Before importance resampling, the necessity of resampling 

was determined by evaluating the degree of degradation of 

each particle. Let Neff be the number of effective particles, and 

𝑤𝑡
𝑖  be the weight of particle I at moment t. Then, the degree of 

degradation was assessed by the relative numerical efficiency 

(RNE) proposed by Ren et al. [23]: 

 

𝑁𝑒𝑓𝑓 =
1

∑ (𝑤𝑡
𝑖)

2𝑁
𝑖=1

 (2) 

 

Let Nth be the threshold of the number of effective samples. 

If Neff＞Nth, go to Step 4; if Neff≤Nth, conduct importance 

resampling by random. 

In the random importance resampling method, the length of 

the sampling interval depends on the corresponding 

importance. The length was calculated based on the similarity 

between the historical data and the current day data. For each 

particle to be resampled, a random value 𝜎𝑖 ∈ [0, 𝑐𝐷]  was 

generated within its sampling interval, and used to create a 

new speed matrix for transit time prediction. In this way, the 

interval length can be determined with the traffic mode the 

most similar to that represented by historical data. 

Step 4. Transit time prediction 

Through the above steps, the speed matrices at multiple 

sampling moments were obtained. Then, the data of all 

particles were moved along the time window by P moments, 

without changing the weight of any particle. The weighted 

mean of all particles was taken as the prediction result. In other 

words, the transit time 𝑥𝑡+𝑝 can be predicted by: 

 

𝑥𝑡+𝑝 =
∑ 𝑤𝑡

𝑖𝑥𝑡+𝑝
𝑖𝑁

𝑖=1

∑ 𝑤𝑡
𝑖𝑁

𝑖=1

 (3) 

 

where, wi
t is the weight of particle i; xi

t+p is the transit time 

after moment p. 

 

 

3. EXAMPLE ANALYSIS 

 

This section aims to verify our PF algorithm with the dataset 

collected by a real probe vehicle in a region [24, 25]. In the 

dataset, each frame of data consists of the ID, coordinates of a 

vehicle, and time. Based on the regional dataset, the data on 

typical congested urban roads were selected as the basic data 

to verify the algorithm. 

 

3.1 Parameter selection 

 

To disclose how different parameters affect the prediction, 

the errors of our PF algorithm were analyzed by changing one 

of the following three parameters under different forecast 

periods (10, 20, 30, 40, 50 and 60min): data length, number of 

particles and resampling ratio.   

Figures 5-7 provide the mean percentage absolute errors 

(MAPEs) of our PF algorithm, with the data length p 

increasing from 1 to 10, the number of particles N growing 

from 0 to 400, and the resampling ratio rising from 0.1 to 0.9, 

respectively. 

 

 
 

Figure 5. Relationship between algorithm error and data 

length 

 

 
 

Figure 6. Relationship between algorithm error and the 

number of particles 
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From Figures 5-7, it can be seen that, with the extension of 

the forecast period, the algorithm error was steadily on the rise. 

Thus, the prediction is more accurate under a short forecast 

period, which agrees with the views of relevant research. 

As shown in Figure 5, the algorithm error first decreased 

and then increased, with the growth in data length. The 

minimum MAPE was achieved at the data length of 4. Thus, 

the optimal data length was set to 4. 

As shown in Figure 6, the algorithm error continued to drop, 

as the number of particles grew from 0 to 100. With further 

growth in the number of particles, however, the algorithm 

error declined at an increasingly slow speed and basically 

remained the same. Therefore, the optimal number of particles 

was determined as 100. 

 

 
 

Figure 7. Relationship between algorithm error and 

resampling ratio 

 

As shown in Figure 7, the algorithm error had a wavelike 

increase, with the growth in resampling ratio. The MAPE 

reached the minimum at the resampling ratio of 20%, which 

was thus taken as the optimal resampling ratio. 

In the light of the above, the optimal parameters for 

algorithm verification were configured as follows: the data 

length in speed matrices p=4; the number of particles N=100; 

the resampling ratio of particles, 20% (i.e. the number of 

effective particles Nval=80). 

 

3.2 Algorithm verification 

 

To verify its prediction effect of transit time on urban roads, 

our PF algorithm was compared with two popular algorithms 

in transit time prediction, namely, the Kalman filtering (KF) 

algorithm and the nearest neighbor (NN) algorithm. 

To predict the transit time, the KF algorithm mainly adopts 

the ratio between measured values at adjacent moments as the 

state transfer function, and models the transit time prediction 

as a linear system problem. Similarly, the NN algorithm is a 

mainstream strategy to solve linear problems. This algorithm 

searches for the n historical data most similar to the current 

traffic mode, and takes the weighted mean of these data as the 

prediction result. 

Let N be the total number of samples. The mean absolute 

error (MAE) and the MAPE were calculated to compare the 

effects of the three algorithms: 

𝑀𝐴𝐸 =
1

𝑁
  ∑ |𝑇 − 𝑇𝑖|

𝑁

𝑖=1

  (4) 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
  ∑ |

𝑇 − 𝑇𝑖

𝑇
| ∗ 100%

𝑁

𝑖=1

 
(5) 

 

where, Ti and 𝑇 are the i-th predicted value, and the true value, 

respectively. 

Next, the three algorithms were applied under different 

forecast periods, with p=4, N=100 and Nval=80. The prediction 

errors of them are compared in Figure 7. 

 

 
(a) MAE comparison 

 
(b) MAPE comparison 

 

Figure 8. Comparison of prediction results  

 

As shown in Figure 8, our PF algorithm achieved less error 

than the KF algorithm and the NN algorithm, in both MAE and 

MAPE. This means the prediction accuracy of transit time is 

greatly enhanced by introducing the speed matrices of target 

roads to the PF algorithm. 

With different prediction accuracies, the three algorithms all 

exhibited a growing trend in both MAE and MAPE, i.e. a 

gradual decline in prediction accuracy. Thus, our algorithm 

only improves the prediction accuracy to a certain extent, 

failing to fully eliminate the impact of long forecast time on 

prediction error. 

Despite achieving the highest accuracy and lowest error in 

transit time prediction on urban roads, our PF algorithm 

requires a strong computing power and consumes a long 

computing time. There is still ample room for improvement 

before realizing real-time prediction of transit time on urban 

roads.  

On the contrary, the KF algorithm and the NN algorithm 

may not be able to achieve high prediction accuracy as our 

algorithm, but these two classic algorithms boast a high 
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computing efficiency. The NN algorithm outshines similar 

methods in real-timeliness and stability of prediction, while 

controlling the prediction errors in the allowable range. That 

is why this algorithm is widely used in traffic control.  

 

 

4. CONCLUSIONS 

 

The transit time prediction of urban road network has long 

been a hot topic in intelligent traffic control. Considering the 

typical features of congested urban roads, this paper 

establishes a transit time prediction model based on the PF 

algorithm. The speed matrix of each target road was taken as 

a particle, and the initial speed matrices were used to represent 

the traffic mode at a moment of the historical traffic data. In 

addition, the weight coefficients were introduced to promote 

the real-time performance of the prediction. The particles with 

a low weight were subjected to importance resampling to 

prevent the degradation problem of traditional algorithms. 

Through example analysis, our algorithm was proved to 

outperform the traditional KF algorithm and NN algorithm in 

the accuracy and stability of transit time prediction on urban 

roads. Our PF algorithm can improve the prediction accuracy 

of transit time on urban roads to a certain extent. However, the 

computing efficiency should be further improved to meet the 

real-time requirements on intelligent control of urban traffic. 
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