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 The traditional multipath channel algorithms cannot estimate low signal-to-noise ratio 

(SNR) in an accurate manner, which drags down the quality of the entire channel. To solve 

the problem, this paper puts forward a novel low SNR estimation algorithm for multipath 

channels. The core idea of the algorithm is as follows: the noise variance of received signals 

is estimated based on the good autocorrelation of periodical sequences; the signal amplitude 

is solved according to the statistical features of white Gaussian noise (WGN); finally, the 

SNR is estimated despite its low level. Matlab simulations show that our algorithm greatly 

outperformed the classic SNR estimation algorithms in accuracy, and its advantage increases 

with the decline in the SNR. The proposed algorithm has a great potential in the field of 

channel detection.  
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1. INTRODUCTION 

 

Channel estimation aims to improve the accuracy of the 

received signals by estimating the state parameter and 

time/frequency domain response of the channel, and 

correcting and receiving the received data [1-3]. In practice, 

the quality of channel transmission is evaluated by the 

following parameters: signal-to-noise ratio (SNR), bit error 

rate (BER), frame error rate (FER), received signal strength 

(RSS), delay spread and Doppler frequency shift [4-5]. The 

BER and FER are the fundamental indices that directly reflect 

the transmission quality of a communication system. However, 

neither of them can track the channel state well, if the channel 

changes very quickly: the two indices require a massive 

amount of data to ensure their estimation accuracy, and 

consume a long time to output the estimates, exhibiting a poor 

real-time performance [6-8]. 

Among the channel quality metrics, the SNR has a great 

practical significance in measuring channel quality, thanks to 

its good real-time performance, and direct correlation with the 

BER and FER. Therefore, the SNR is an important parameter 

for channel estimation [9-10]. The SNR estimation is a key 

link in communication, because the SNR serves as the prior 

knowledge on many occasions, namely, channel equalization, 

power control, modulation identification, and iterative 

decoding of Turbo codes. The accuracy of the SNR estimation 

directly affects the performance of the communication system. 

If the SNR is not estimated accurately, the adaptive 

technologies in the system cannot operate normally in 

complex environments, such as coded modulation, multi-beam 

allocation, handover, and carrier recovery. 

Many SNR estimation algorithms have been developed at 

home and abroad [11]. Some are data-aided (DA) and some 

are non-data-aided (NDA). The DA algorithms mainly include 

the maximum likelihood (ML) estimation and the least squares 

(LS) algorithm. The most representative DNA algorithms are 

frequency-domain estimation (FDE) and M2M4 estimation 

[12-14]. Ishtiaq and Sheikh [15] predicted the SNR through 

ML estimation. Fu et al. [16] described the M2M4-based SNR 

estimation algorithm and derived its formulas. Through ML 

estimation, Ye et al. [17] forecasted the binary phase shift 

keying (BPSK) signal with white Gaussian noise (WGN). Du 

and Xu [18] derived the M2M4-based SNR estimation 

algorithm for real signal channel and complex signal channel 

with additive white Gaussian noise (AWGN); simulation 

results show that the algorithm estimates the SNR more 

accurately with the growing length of observed data, but 

performs not so well when the SNR is lower than -5dB. 

Based on M2M4 algorithm, Yang et al. [19] proposed a 

deep learning algorithm for SNR estimation, and verified the 

performance and robustness through experiments; the 

proposed algorithm is suitable for baseband signals and 

incoherent signals; compared with the M2M4, the proposed 

algorithm has a large application range of modulation method, 

and estimates the SNR in the middle layer in an accurate 

manner. Zhang et al. [20] introduced the derivation and details 

of the FDE: the noise energy is obtained through spectral 

segmentation, and used to calculate the SNR; the algorithm 

performs poorly if the SNR is very low. Han et al. [21] presents 

an SNR algorithm that estimates noise power based on the 

variance of the phase change in received signal, but the 

algorithm only applies to phase modulated signals. Targeting 

linearly modulated signals in the AWGN channel, Ali and 

Erçelebi [22] created an improved SNR estimation algorithm 

which does not need to estimate the total received signal power 

and enjoys a low complexity. 

Ijaz et al. [23] put forward a novel NDA SNR estimation 

algorithm for BPSK and quadrature phase shift keying 

(QPSK) signals; the algorithm is less complex than the 

statistical moment-based method; the estimation performance 

is improved based on the constant amplitude of in-phase and 

quadrature components. Shbat and Tuzlukov [24] proposed a 

coding-aware joint estimation algorithm of carrier phase and 

SNR. Yong et al. [25] estimated the prior SNR based on 
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modified sigmoid gain function, which overcomes the delay in 

decision-directed (DD) SNR estimation. For linear systems, 

Suliman et al. [26] developed a high-precision SNR estimation 

algorithm by producing received signals one after another. 

Queiroz et al. [27] probed into the moment method, a SNR 

estimation technique, in fading channel models. Wang et al. 

[28] proposed a priori SNR estimator based on harmonic 

regeneration, which effecitvely enhances the high-order 

harmonic components at a low SNR and promotes the 

performance of speech enhancement algoithtm. Ji et al. [29] 

improved the prior DD SNR estimation algorithm, and 

combined the improved algorithm with the noise estimation 

algorithm, which is based on the existence probability of 

speech; the combined method can estimate the power 

spectrum of noises well, and track rapidly changing noises in 

real time. Focusing on the data link communication of 

unmanned aerial vehicles (UAVs), Sun et al. [30] integrated 

convolutional neural network (CNN) and long short-term 

memory (LSTM) to estimate the SNR; as one of the earlies 

attempts to apply deep learning (DL) to SNR estimation, the 

CNN-LSTM algorithm has better accuracy than traditional 

SNR estimation algorithms. To predict the real-time SNR in 

the long run, Soleymani et al. [31] designed the adaptive long-

term SNR estimation algorithm, whose SNR estimates only 

changes under non-transient variations in signals or noises; 

with low cost and fast update speed, the proposed algorithm is 

suitable for real-time speech processing. 

This paper mainly explores the SNR estimation in multipath 

channels. Therefore, two classic SNR estimation algorithms, 

namely, M2M4 and FDE, were taken into account. On this 

basis, a low SNR estimation algorithm was developed for 

multipath channels. The proposed algorithm mainly estimates 

the low SNR, using the good autocorrelation of periodic 

sequences. Simulation results show that the proposed 

algorithm greatly outperformed M2M4 and FDE in the 

estimation accuracy of low SNR. 

The remainder of this paper is organized as follows: Section 

2 introduces the classic SNR estimation algorithm, and 

describes the principles of M2M4 and FDE; Section 3 details 

the principle, derivation and implementation of the proposed 

algorithm; Section 4 compares the performance of the 

proposed algorithm, M2M4 and FDE through Matlab 

simulations; Section 5 puts forward the conclusions. 

 

 

2. CLASSIC SNR ESTIMATION ALGORITHM 

 

The low pass of the received signals on multipath channel 

can be defined as: 
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where, y(n) is transmitted signals; w(n) is the AWGN with a 

mean power of φ2; δi, Bi and τi are the arrival phase, amplitude 

attenuation factor, and transmission delay of the i-th channel, 

respectively. The SNR of multipath channel can be expressed 

as: 
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where, ps, ps,i and pw are the total mean power, the mean power 

per channel and the mean power of noise, respectively. The 

short-term changes of δi, Bi and τi are negligible, due to the 

slow fading of the channel [32]. 

 

2.1 Principle of M2M4 

 

In the WGN, the second-order statistic is the only nonzero 

element, i.e. the only noisy element. Thus, the SNR of the 

MPSK signals in a WGN-containing channel can be expressed 

as: 
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where, m2 and m4 are second-order moment and fourth-order 

moment, respectively: 
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where, a(n) is a sequence of received signals (n=0, 1, …, N-1). 

On the upside, the M2M4 is a simple algorithm. On the 

downside, the algorithm cannot estimate low SNR accurately, 

under the effect of noises [33]. 

 

2.2 Principle of FDE 

 

The FDE estimates the SNR based on the noise energy, 

which is obtained by spectral segmentation. Let A(n) be the N-

point discrete Fourier transform of a(n), and Q=N/Z be the 

number of frequency points in each of the Z equal-width 

segment of channel bandwidth. Then, the mean noise power 

and the SNR can be respectively expressed as: 

 

1,1,0,)(min
1

ˆ
1)1(

2
−=













= 

−+

=

ZikA
Q

p
Qi

iQk

w   (5) 

 

( 1) 11
2 2

0

( 1) 1
2

ˆ

ˆ ˆ ˆ

ˆ ˆ

1 1
( ) min ( )

1
min ( )

SN

S a W

W W

i QN

k k iQ

i Q

k iQ

U

p p p

p p

A k A k
N Q

A k
Q

+ −−

= =

+ −

=

−
= =

 
−  

 =
 
 
 

 



 

(6) 

 

It can be seen that the FDE is a simple way to accurately 

estimate the SNR of narrow-band signals in a channel with 

AWGN. If the SNR is low, however, this algorithm will have 

difficulty in SNR estimation, for the signal spectrum is 

affected by the noise spectrum [34]. 

 

 

3. LOW SNR ESTIMATION ALGORITHM FOR 

MULTIPATH CHANNEL 

 

3.1 Basic principle 

 

The proposed algorithm mainly estimates the SNR based on 
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the periodic sequences that carry no data [35]. The periodic 

sequence x(n) with L and N periods can be expressed as: 
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where, s(n) is the sequence of intervals for principal values 

(n=0, 1, …, L-1). The autocorrelation function of x(n) can be 

expressed as: 
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Since x(n) and Uτ are both periodic and have the same 

period, we have: 
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The accuracy of SNR estimation increases with the 

autocorrelation of x(n). As mentioned before, the short-term 

changes of δi, Bi and τi are negligible, due to the slow fading 

of the channel. Here, the short-wave multipath slow-fading 

channel is observed for T≤50ms. Let V be the velocity of x(n). 

Then, N=TV/L within T. 

 

3.2 Algorithm derivation 

 

The widely used two-path channel (short-wave multipath 

slow fading channel) was adopted to derive the formulas of the 

proposed algorithm. Suppose that the signals on the two path 

are synchronized, and the transmission delay τ is known (path 

2 signals are delayed by τ code elements compared to path 1 

signals). 

 

 
 

Figure 1. Local sequence and received signals 

 

As shown in Figure 1, the signal amplitudes of the two paths 

are denoted as A1 and A2, respectively. The local sequence (the 

sequence of principal value intervals) was used to perform a 

sliding operation on the received signals. The sliding operation 

lasts M periods, sliding over 1 code element per period. Then, 

the the k-th correlation value in the m-th period can be 

expressed as: 
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where, Cm(0) and Cm(τ) are the correlation values 

synchronized with path 1 and path 2 in the m-th period, 

respectively; m= 0, 1, …, M-1; k= 0, 1, …, L–1. Let Em(k) be 

a Gaussian random variable with the mean of zero and 

variance of φ2. Then, the mean, variance and second-order 

moment of the variable can be respectively described as: 
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The mean signal power and the noise variance must be 

obtained to estimate the SNR. Since the signal amplitudes of 

the two paths are denoted as A1 and A2, respectively, the mean 

of Cm(0) and Cm(τ) can be derived from the statistical features 

of the WGN: 
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Suppose )]0([)0( mCWC =  and )]([)(  mCWC = . The 

following can be derived from formula (11): 
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Thus, the mean signal power can be solved as: 
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If the mean of Cm
2(k) is known, the noise variance φ2 can be 

obtained. The mean Cm
2(k) can be obtained by formula (11): 
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The correlation values can improve the estimation accuracy. 

Let 
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The mean noise power can be obtained as: 
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The SNR at the receiving end can be described as: 
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3.3 Algorithm implementation 

 

The SNR estimation requires the length of the periodic 

sequence to be sufficiently long. This requirement is difficult 

to satisfy in actual applications. The arithmetic means of Cm(0), 

Cm(τ) and Cm
2(k) can be approximately as (0)C , ( )C   and 2C , 

respectively: 

 















=

=

=

 





−

=

−

=

−

=

−

=

1

0

1

0

22

1

0

1

0

])(
1

[
1

)(
1

)(

)0(
1

)0(

L

k

M

m

m

M

m

m

M

m

m

kC
ML

C

C
M

C

C
M

C

  
(20) 

 

The SNR can be estimated by substituting formula (20) into 

formula (19). The derivation and implementation demonstrate 

that the proposed algorithm applies to SNR estimation for 

channels with two or more paths. 

 

 

4. SIMULATION VERIFICATION 

 

To verify its correctness and superiority, the proposed 

algorithm was subjected to Matlab simulations, in comparison 

with M2M4 and FDE. The performance of each algorithm was 

measured by the mean SNR estimate, normalized mean square 

error (NMSE), and the bias probability. The closer the mean 

SNR estimate is to the actual SNR, the better the estimation 

performance. The NMSE reflects the deviation of the estimate 

from the actual value; the smaller the NMSE, the better the 

estimation accuracy. The bias probability refers to the 

probability that the difference between SNR estimate and 

actual SNR falls in the bias b; this metric reflects the 

estimation stability in a long-term statistical sense; here the 

bias b was set to 1dB and 2dB; the greater the bias probability, 

the more stable the estimation. 

The simulation parameters were configured as: the number 

of code elements, 496; L=31 and M=16. Figures 2, 3, and 4 

compare the mean SNR estimates, the NMSEs, and the bias 

probabilities of the three algorithms, respectively. 

As shown in Figure 2, the mean SNR estimates of all three 

algorithms were close to the actual value, when the SNR was 

greater than 5dB, indicating that the algorithms have similar 

performance in high SNR estimation. When the SNR was 

below 5dB, the proposed algorithm achieved the best 

performance, as its mean SNR estimate was basically the same 

as the actual value, while the mean SNR estimates of FDE and 

M2M4 deviated greatly from the actual value. Overall, our 

algorithm is much superior to the FDE and M2M4 in low SNR 

estimation. 

As shown in Figure 3, when the SNR was lower than 1dB, 

our algorithm achieved the minimum NMSE; the advantage of 

our algorithm over M2M4 and FDE in NMSE increased with 

the decline of the SNR. This means our algorithm has the best 

estimation accuracy of low SNR. 

 
 

Figure 2. Comparison of mean SNR estimates 

 

 
 

Figure 3. Comparison of NMSEs 

 
 

Figure 4. Comparison of bias probabilities 

 

As shown in Figure 4, under the bias of 2dB, the bias 

probability of our algorithm was above 90% in the whole 

range of SNRs, while the bias probabilities of the two 

contrastive algorithms were far smaller, when the SNR was 

below 0dB. Under the bias of 1dB, our algorithm had a larger 

bias probability than the other two algorithms. When the SNR 

fell between -10 and -5dB, our algorithm had a higher bias 

probability under the bias of 1dB than the M2M4 and the FDE. 

The above results indicate that our algorithm has better 

stability than the two contrastive algorithms. 
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5. CONCLUSIONS 

 

This paper proposes a low SNR estimation algorithm for 

multipath channels. Based on the good autocorrelation of 

periodic sequences, the proposed algorithm fully utilizes the 

statistical features of the WGN to compute the signal 

amplitudes of two paths. On this basis, the mean noise power 

and SNR were estimated. Matlab simulations show that our 

algorithm outperformed two classic SNR estimation 

algorithms, namely, M2M4 and FDE, in the estimation 

accuracy of low SNR; the advantage of our algorithm over 

M2M4 and FDE in NMSE increased with the decline of the 

SNR. Therefore, our algorithm can be widely applied in the 

field of channel detection. 
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