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ABSTRACT. Waiting times for elective procedures are a major health policy concern in many
European countries. Initiatives to control waiting times involve supply-side policies that en-
compass raising public capacity, and demand-side policies with a prioritization of patients
according to need for a better management of waiting lists. On a microeconomic level, comple-
mentary approaches to tackle the issue of waiting times include the use of Operational Research
techniques. The present paper is in line with these approaches and provides strategies to reduce
the waiting time for elective surgery in any speciality requiring multiple constrained resources.
In the medium run, the objective is to determine the best admission policy at the tactical level.
The resulting tactical plan which is based on a fixed number of patients derived from historical
data of arrivals can be adjusted to patients in the queue to provide an operational plan. Several
strategies to translate a tactical plan into an operational plan are considered and assessed
in terms of hospital performance and patient satisfaction. We propose a new strategy that
allows for substantial decrease in waiting time while keeping a high hospital performance. The
hospital performance is measured by a weighted sum of several criteria such as additional
and cancelled operations, plan changes and deviations of resource consumptions compared
to their target levels. Weights in the hospital performance indicator are drawn at random in
selected intervals to portray a wide spread of managers’ assessments. Simulation results show
that several strategies are dominant whatever the assessment profile. We also identify the best
strategies to reach a limited waiting time.
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RÉSUMÉ. Les délais d’attente pour les chirurgies non urgentes constituent un enjeu majeur de
santé publique dans la plupart des pays européens. Des initiatives de contrôle des temps
d’attente s’appuient sur des politiques d’offre orientées vers une augmentation des capac-
ités et des politiques axées sur la demande s’appuyant sur une priorisation des patients pour
une meilleure gestion des listes d’attente. A un niveau microéconomique, des approches com-
plémentaires incluent l’utilisation de techniques de recherche opérationnelle. Cet article ex-
ploite ce type de techniques pour développer des stratégies de réduction des délais d’attente
des chirurgies électives, pour toute spécialité nécessitant le recours à de multiples ressources
critiques.
A moyen terme, l’objectif est de déterminer la meilleure politique d’admission des patients au
niveau tactique. Le plan tactique des chirurgies qui en résulte est établi sur la base d’un nom-
bre fixe de patients déterminé à partir des historiques d’arrivée. Mais ce nombre diffère du
nombre de patients qui seront effectivement enregistrés sur la liste d’attente. Le plan tactique
peut alors être ajusté en fonction des patients de la liste afin de proposer un plan opérationnel
des chirurgies. Nous considérons plusieurs stratégies d’adaptation du plan tactique à la liste
d’attente afin d’obtenir un plan opérationnel des chirurgies et nous évaluons ces stratégies en
termes de performance hospitalière et de satisfaction des patients. Nous définissons une nou-
velle stratégie qui permet une réduction substantielle du temps d’attente tout en maintenant
une performance hospitalière élevée. La performance hospitalière est mesurée par une somme
pondérée de plusieurs critères comme les reports et les ajouts d’interventions chirurgicales, les
changements du plan, les écarts entre consommation des ressources et leur valeur cible. Les
pondérations dans cet indicateur de performance sont tirées au hasard dans des intervalles
spécifiques de sorte à refléter un large éventail de profil d’évaluation par les gestionnaires
d’hôpitaux. Les résultats des simulations montrent que plusieurs stratégies sont dominantes,
quel que soit le profil d’évaluation. Nous identifions aussi les meilleures stratégies permettant
d’atteindre un délai d’attente limité.

KEYWORDS: hospital performance, waiting time, assessment profile, dominance, tactical and op-
erational planning, multiple constrained resources.

MOTS-CLÉS : performance hospitalière, délai d’attente, profil d’évaluation, dominance, planifi-
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1. Introduction

Breakthroughs in surgical technology and new demographic trends (ageing popu-
lation) entail rising costs of healthcare which is therefore a major concern for policy
makers. With less tax money as a result of ageing population and the economic crisis,
expenditure cuts are unavoidable and lead consequently to fewer available resources
that affect waiting times. Most European countries have to deal with ever longer
waiting times. The question is how to sustain health care systems with a satisfactory
trade-off between patient satisfaction and resources use efficiency.

To improve hospital management performance, the use of Operational Research
techniques has developed considerably over the years. Such techniques are increas-
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ingly and successfully used to model health care systems as discrete event simulation
systems and to provide valuable planning and scheduling methods for elective and
emergency patients. Organizational structure, strategic positioning or legal constraints
make heterogeneity a characteristic feature of hospitals. This leads to a wide variety
of modelling issues and development of proper solving methods. But, as in many
other organizations, decision making in hospitals also occurs at two main levels. On
the tactical level, (medium-term), the objective is to determine a master surgery plan
that consists of a set of surgeries to be performed on each day of a medium run hori-
zon including all relevant resources and their availability. On the operational level the
problem is to schedule patients on a daily or weekly basis and usually considers more
resources constraints that happen closer to the date of surgery. Obviously, the deci-
sion levels depend on each other since decisions made at one level provide input into
the next decision level. Still, most papers take only one decision level into account
(Cardoen et al. (2010)).

At the tactical level, several objectives with various granularities are examined.
Blake and Donald (2002) or Beliën and Demeulemeester (2007) tackle the problem
of allocating operating theatre resources to specialities. At a less aggregate level,
other contributions consider the allocation of elective surgeries to operating room
(OR) blocks (see van Oostrum et al. (2008); Adan and Vissers (2002) or Adan et
al. (2009)). A large number of manuscripts take into account only one resource, the
operating theatre, which is the bottleneck resource for most surgeries nowadays. First,
a lot of surgeries are now performed on an outpatient basis. Second, the use of less
invasive surgical techniques allow for a faster recovery which implies a limited con-
sumption of other resources like beds and nursing care. However, for some types of
surgery it is clearly not sufficient to consider only the operating theatre availability.
For instance, cardiothoracic surgery procedures often require that patients spend sev-
eral days in the Intensive Care Unit (ICU). For these surgeries, integrating downstream
resources such as beds or nursing care in ICUs leads to a better overall performance
(see McManus et al. (2003); Houdenhoven et al. (2007); Adan and Vissers (2002);
Adan et al. (2009); Gupta (2007); Hulshof et al. (2013)). In a recent survey, Cardoen
et al. (2010) recognize that although strides have been made, integration of hospi-
tal facilities such as ICU or Post-Anaesthesia Care Unit (PACU) still remain a major
research issue.

At the operational level, the problem to be addressed is the so-called Surgical Case
Assignment Problem (SCAP). Lamiri et al. (2008) develop an optimization model for
OR planning with the objective of minimizing the expected OR overtime costs and
the elective cases related costs, where the capacity needed for emergency is random.
Houdenhoven et al. (2007) allow for flexibility in the use of OR blocks to schedule
surgical cases with the goal of minimizing planned slack and the required number
of OR blocks. Guinet and Chaabane (2003) determine an operating theatre solution
satisfying capacity constraints related to several critical resources while minimizing
the overload and patient waiting time costs for each day spent in the hospital before
surgery. Lin et al. (2013) develop a multi-objective simulation optimisation frame-
work to determine optimal resource levels in surgical services.
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A few contributions examine several decision levels simultaneously. Testi et al.
(2007) propose a three-phase approach for scheduling surgery rooms, including the
strategic decision level. Other papers derive an operational schedule from a tactical
plan, using an open scheduling strategy (see for instance Guinet and Chaabane (2003)
or Jebali et al. (2006)). Testi and Tanfani (2009) develop an integer programming
model to solve concurrently the master surgery planning problem and the surgical case
assignment problem with the aim of minimizing patient welfare loss related to excess
waiting. Only OR resources are taken into account and the major contribution is to
directly consider the patient perspective by including prioritization in the objective
function. Ma and Demeulemeester (2013) propose a three-stage integrative approach
to the planning problem under bed and OR block capacity, including the case mix
planning phase, the master surgery scheduling phase and the operational performance
evaluation phase.

Most of the strategies to reduce waiting time are based on prioritization. Comas
et al. (2008) use a simulation model to show that a prioritization system for cataract
surgery decreases waiting time compared with the First In First Out system. Patrick
et al. (2008) formulate the problem of scheduling patients with different priorities to
a diagnostic facility as a Markov decision process. These two contributions deal with
outpatient procedures and consider consequently a single resource contrary to Hulshof
et al. (2013) who integrate prioritization in a tactical planning problem with multiple
resources. Persson and Persson (2009) suggest an approach combining simulation and
optimisation to model surgery decisions for patients with different priorities and using
several resources.

The present paper considers the elective surgery planning problem under multi-
ple constrained resources in a two-stage approach based on Adan et al. (2011). At
the tactical level (first stage), we use the mixed integer programming formulation that
Adan et al. (2009) developed to solve the case mix planning problem for elective
cardiac surgery. The resulting tactical plan which is based on a fixed number of pa-
tients derived from historical data of arrivals can be adjusted to patients in the queue
at the operational level (second stage), using the flexibility rule proposed by Adan et
al. (2011). The authors also suggest a slack planning rule that, like the flexibility rule,
allows for substantial decrease in waiting time.

In addition to the two-above mentioned rules, we propose in this paper to update
the tactical plan according to the waiting list. This research is thus one of the few
to deal with more than one decision level, multiple constrained resources and to of-
fer strategies specifically dedicated to shorten waiting times. Combining the three
rules (flexibility, slack planning and updating) leads to different operational plans for
which several performance indicators can be computed. Unlike most papers that only
consider OR utilization and costs as measures of the hospital performance at the op-
erational level (see Guerriero and Guido (2011)) we propose a compound indicator,
namely the global deviation indicator, to reflect the hospital performance. This indi-
cator is a weighted sum of several criteria such as additional or cancelled operations,
plan changes and deviations of resources consumptions compared to their target lev-
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els. In practice it is very hard for hospital managers to provide an objective assessment
of weights to the various criteria. Based upon interviews we define reasonable inter-
vals for each weight. We test the efficiency of our strategies for a large number of
randomly selected weights. Thus we can determine the relative dominancy of each
strategy. For this test we use a simulation model based on a case study from a Dutch
thoracic surgery centre.

Therefore, the contribution of this paper is twofold. First we provide an additional
strategy to reduce waiting time, the updating strategy. Second, analyzing thoroughly
this strategy as well as those of Adan et al. (2011), we show that some of them are
always dominant, whatever the weights assigned to the components of the hospital per-
formance indicator. Thus, for any speciality requiring multiple constrained resources,
we offer several valuable strategies to get efficient operational plans in terms of patient
satisfaction and hospital performance, with a trade-off between these two dimensions.
Hence, the final choice of a particular strategy will depend on the strategic positioning
of the hospital.

The next section provides the mathematical model for the tactical planning prob-
lem and the parameters values are displayed in Annex A. Section 3 describes the rules
to get improved operational plans from tactical plans and summarizes the approach.
Section 4 presents the performance criteria from the patient and the hospital perspec-
tives that we used to assess the strategies. Section 5 is dedicated to the experimental
framework. Simulation results are commented in Section 6. Section 7 draws the main
conclusions of the paper.

2. The tactical planning problem

In the medium run, the problem is to determine a tactical plan for elective patients
with the aim of allocating at best limited resources while operating on all patients that
are expected during a typical horizon. Adan et al. (2009) formulate this problem as a
Mixed Integer Program (MIP) where the objective is to minimize the sum of deviations
between expected resources consumption and their target levels of utilization. Four
resources are considered: the operating theatre hours (OT), the number of beds in
the ICU (IC), the number of beds in the Medium Care Unit (MC) and the nursing
hours in the ICU (NH). The formulation of the tactical planning problem is based
on the functioning of the Thorax Centre Rotterdam, where patients were grouped in
N = 8 categories, each of these categories being relatively homogenous in terms
of consumption of ICU and operating room resources. Table 1 provides for each
patient category examples of surgical procedures performed and the expected number
of hours to operate on one patient in each group (sc). We then give the number of
pre-operative days for each category (lc), the average number of patients ( λc) over
a 4-week horizon and the target throughput of patients (Vc) to be operated on within
this horizon. For any category c, the average number of patients is based on historical
data for arrivals and the target throughput of patients Vc is obtained by rounding up the
average number of patients. For instance, patients in category 3 undergo a coronary
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bypass, with an operation duration s3 = 4 hours, and are admitted in the MCU l3 = 1
day before surgery. There is an average of λ3 = 66.02 patients in this category that
are operated on over a 28-day horizon, thus the target throughput of patients in this
category is set to V3 = 67 patients.

Table 1. Patient groups, OT hours, pre-operative days, average number of patients
and target throughputs

Formally, the objective is to determine the values of variables {xc,t}, representing
the number of patients in category c planned for surgery on day t, ∀c = 1, . . . , N
and ∀t = 1, . . . , T , for which the daily expected utilization of each resource deviates
as little as possible from the daily target utilization level which is set by the hospital
management usually between seventy and eighty percent of the maximum capacity.
To formulate the problem we adopt the notation and definitions in Table 2.

The objective function to be minimized can be written as

∑
r∈{OT,IC,NH,MC}

αr

T∑
t=1

(or,t + ur,t) . (1)

The relative weight αr for resource r used in the objective function is defined as

αr =
gr/

∑T
j=1Ar,j∑

r={OT,IC,MC,NH}

(
gr/

∑T
j=1Ar,j

) , (2)

with values of target utilization levels {Ar,j} that are displayed in Annex A (Table
5) and gr denotes the importance of resource r as assessed by the stakeholders in the
hospital. We have gOT = 8, gIC = 10, gMC = 3, gNH = 5. These weights reflect the
degree of flexibility of each resource. Thus, gIC was set to a greater value than that
of gOT because finding an extra bed in the ICU was considered as more difficult than
calling for an additional surgeon (for a detailed discussion, see Adan et al. (2011)).
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Table 2. Notation

Parameters
N Number of patient categories.
c Category index, c = 1, . . . , N .
T Length of the cyclic planning horizon, in days.
t Day index, t = 1, . . . , T .
Vc Target number of elective patients in category c to be operated on

during the horizon.
sc Surgery duration in hours for a patient in category c.
lc Number of pre-operative days in the MCU for a patient in cat. c.
r Resource index, r ∈ {OT,IC,NH,MC}.
Lmax

ICU Maximum length of stay recorded in the ICU over all patient
categories.

Lmax
MCU Maximum length of stay recorded in the MCU over all patient

categories.
pICU,c,j Probability that a patient in category c is in the ICU, j days

after surgery, j = 0, 1, 2, . . . , Lmax
ICU.

pMCU,c,j Probability that a patient in category c is in the MCU, j days
after surgery, j = 0, 1, 2, . . . , Lmax

MCU.
wc,j Intensive care nursing workload (in hours) required for a patient

in category c, j days after surgery.
Kr,t Maximum capacity for resource r on day t

(expressed in number of hours for OT and NH and in number of
beds for IC and MC).

Ar,t Target level of utilization of resource r on day t.
αr Relative importance of resource r as assessed by the stakeholders

of the hospital.

Variables
xc,t Number of patients in category c planned for surgery on day t,

with c = 1, . . . , N and t = 1, . . . , T .
or,t Over utilization of resource r on day t, relative to its target level

of utilisation, with r ∈ {OT,IC,NH,MC} and t = 1, . . . , T.
ur,t Under utilisation of resource r on day t, relative to its target level

of utilisation, with r ∈ {OT,IC,NH,MC} and t = 1, . . . , T.

The total number of patients in group c to be operated on over the T -day cycle
must be equal to the target patient throughput Vc. Hence

T∑
t=1

xc,t = Vc, c = 1, . . . , N. (3)
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The expected utilization of the OT by the patients must satisfy

N∑
c=1

sc · xc,t ≤ KOT,t, t = 1, . . . , T. (4)

and

−uOT,t ≤
N∑
c=1

sc · xc,t −AOT,t ≤ oOT,t, t = 1, . . . , T. (5)

The expected number of utilized beds in the ICU must satisfy the following in-
equalities

N∑
c=1

Lmax
ICU∑

j=0

pICU,c,j · xc,t−j ≤ KIC,t, t = 1, . . . , T. (6)

and

−uIC,t ≤
N∑
c=1

Lmax
ICU∑

j=0

pICU,c,j · xc,t−j −AIC,t ≤ oIC,t, t = 1, . . . , T. (7)

In the above constraints we used the convention that the subscript t − j in xc,t−j
should be treated modulo T : day 0 is the same as day T , day -1 is the same as day
T − 1 and so on.

For the expected number of utilized nursing hours in the ICU, we must have

N∑
c=1

Lmax
ICU∑

j=0

wc,j · pICU,c,j · xc,t−j ≤ KNH,t, t = 1, . . . , T. (8)

and

−uIC,t ≤
N∑
c=1

Lmax
ICU∑

j=0

wc,j · pICU,c,j · xc,t−j −AIC,t ≤ oIC,t, t = 1, . . . , T. (9)

Similarly, the expected number of utilized beds in the MCU must satisfy

N∑
c=1

lc∑
j=1

xc,t+j +

N∑
c=1

Lmax
MCU∑

j=0

pMCU,c,j · xc,t−j ≤ KMC,t, t = 1, . . . , T. (10)
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and

−uMC,t ≤
N∑
c=1

lc∑
j=1

xc,t+j+

N∑
c=1

Lmax
MCU∑

j=0

pMCU,c,j ·xc,t−j−AMC,t ≤ oMC,t, t = 1, . . . , T.

(11)

As operating rooms on weekends are dedicated only to emergency patients, we
have to require that

xc,t = 0 and xc,t+1 = 0, t = 6 + 7(j − 1); j = 1, . . . , (T/7); c = 1, . . . , N.
(12)

Our tactical planning problem therefore consists in minimizing the objective func-
tion in (1) subject to constraints (3) to (12) with the following integrality constraints

xc,t ∈ {0, 1, 2, . . . } , c = 1, . . . , N ; t = 1, . . . , T. (13)

The decision variables consist of the number of patients in each category planned
for surgery on each day, the over and under utilization of each resource compared to
its target level of utilization on each day. All parameters values are given in Annex A.
This MIP can be solved using branch-and-bound approaches with CPLEX.

3. From tactical plans to improved operational plans

Our aim is to translate the tactical plan resulting from the optimization program
described in Section 2 into an operational plan. At the operational level, the number
of patients in the queue of each group may deviate too much from the average which
is used to compute the tactical plan. Therefore, the tactical plan must be adjusted to
get a feasible operational plan. This adjustment can be performed with different levels
of flexibility, depending on the hospital managers’ preference for an operational plan
that sticks more or less closely to the tactical plan. The adjustment strategy presented
here is called flexibility strategy. Section 3.1 describes this strategy and the way it is
used to obtain an operational plan. Section 3.2 presents two strategies to get improved
operational plans. First, the slack planning strategy consists in increasing the target
throughput of patients on the basis of which the tactical plan is calculated. More
capacity is thus reserved at the tactical level leading to additional slots that can be
used at the operational level for a better management of the waiting list. Second, a
new strategy is proposed in this paper, the updating strategy that amounts to compute
a new tactical plan regularly on the basis of updated target throughput values according
to the waiting list of patients.
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3.1. Flexibility strategy to get an operational plan

Let us recall that xc,t designates the number of patients in category c planned for
surgery on day t at the tactical level. Values of xc,t are solutions to the MIP described
in Section 2. We let yc,t be its equivalent definition in the operational plan. The
number of elective patients in category c actually arriving on day t is denoted by Dc,t.
Patient arrival is assumed to follow a Poisson process, with Dc,t  P (λc/T ), where
λc is the average number of patients over a T−day horizon. Furthermore, we let Qc,t

be the number of patients in category c in the queue on day t, with

Qc,1 = Qc,0 +Dc,1,
Qc,t = Qc,t−1 − yc,t−1 +Dc,t, ∀t > 1,

(14)

where Qc,0 is the initial waiting list which is usually already populated. On each
day and for each category, the flexibility strategy is used to compare Qc,t to xc,t so as
to determine yc,t. Once all categories have been considered, we obtain an operational
plan for day t. On the next day, new elective patients arrive and the waiting list is
updated following Eq. (14). The flexibility strategy is applied again and so on. After
T days, we get an operational plan for one cycle. The flexibility strategy involves
three options: no flexibility, medium and full flexibility that we also used in Adan et
al. (2011).

No flexibility. We follow the tactical plan unless the number of patients in the
waiting list is less than the planned number, in which case some planned operations
are cancelled. Formally, we have yc,t = min(xc,t, Qc,t).

Full flexibility. When we apply the full flexibility option, the only information
we use from the tactical plan is the total number of operation slots for that day (i.e.∑

c=1..N xc,t), and we fill these slots with patients having the longest waiting times.
This means that some planned categories are finally not scheduled in the operational
plan and replaced with unplanned ones.

Medium flexibility. In the operational plan, the slots are first filled with planned
patients at the tactical level. If the number of planned patients is greater than the num-
ber of patients in the waiting list, there are unfilled slots that we fill with the longest
waiting time patients from other planned categories. Unplanned categories are not
considered, so ultimately some slots could be empty. Note that with this alternative,
a group that is not in the tactical plan but in the waiting list is never scheduled for
surgery in the operational plan.

3.2. Improvement strategies

The two improvement strategies we consider both lead to alternative tactical plans
and therefore to different operational plans.
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3.2.1. Slack planning

The slack planning rule which we already used in Adan et al. (2011) creates
additional slots at the tactical level by increasing the target throughput of patients.
This allows for a better management of the waiting list, with no impact on the capacity
utilisation at the operational level because patient arrivals remain unchanged. Two
options are included: no slack and large slack.

No slack. In the Thorax Centre problem, the no slack planning option amounts to
calculate the tactical plan on the basis of unmodified target throughput
V = {8, 10, 67, 13, 3, 2, 1, 7} (see Table 1, last column).

Large slack. The number of patients per group is calculated in such a way that
less than 5% of patients have to wait more than one cycle. In the Thorax Centre
problem, the large slack planning option leads to the stream of target throughputs
V = {9, 11, 70, 15, 4, 3, 2, 9} .

3.2.2. Updating

In this paper we propose an additional improvement rule, the updating rule, that
consists in computing a new tactical plan regularly on the basis of updated values of
target throughput of patients according to the waiting list. It is reasonable to assume
that the planning horizon actually involves several T -day cycles for which an oper-
ational plan is computed, starting off with an initial tactical plan using either the no
slack planning option or the large slack planning one. To update the tactical plan,
we compute for each category new values of target throughput by replacing part of
the mean, λc, with a fraction of the initial waiting list, Qinit

c which corresponds to
the list at the end of the previous cycle. Actually one week of patients (1/4)λc is
replaced with half of the waiting list (1/2)Qc. Thus, if the initial waiting list contains
two weeks of patients, target throughput values remain unchanged; they are however
increased if the waiting list involves more than two weeks of patients and decreased
should the opposite occur. Commonly to the approaches in control theory, to avoid
oscillation, this difference is only partly implemented with factor 1/3. Letting [x] de-
note the nearest integer to x, updated values of target throughput for each category,
V u
c , are therefore computed according to

V u
c =

[
Vc + (1/3)

(
(1/2)Qinit

c − (1/4)λc
)]
, ∀c = 1, . . . , N, (15)

where Vc denotes the initial value of the target throughput of patients in category
c. The values we chose for the parameters in Eq. (15) lead to reasonable updated
target throughput values, with a moderate sensitivity to the variations of the waiting
list. Other values could have been explored but with the chosen ones, we already
obtained a good performance of the updating rule (see Section 6). Simulation results
also show that most often, the differences between yearly and quarterly updates are
tenuous, meaning that updating or not matters more than the updated values of target



18 JESA. Volume 49 – no 1/2016

throughputs themselves. We consider three options for updating the tactical plan: no
update, yearly and quarterly updates.

3.3. Summary of the approach

Figure 1 summarizes the approach where the rules are represented by red circles.
At the tactical level (left hand side of the figure), the slack planning rule is applied
so as to get two different sets of values for the target throughput of patients in each
category Vc. The data of the hospital (values for parameters defined in Table 2 and
provided in Annex A) are used to formulate the MIP problem which is solved using the
commercial optimization software package CPLEX. The tactical plan is the solution
to the problem. At the operational level (right hand side), the waiting list is updated
daily with actual arrivals of patients following Eq. (14). Based on the waiting list, the
updating rule can be applied to get a new tactical plan, if the current day corresponds
to an updating period (for instance day 365 or 730 for a yearly update). The flexibility
rule is then used to adjust the tactical plan to the waiting list. An operational plan is
obtained in this way.

In the following, we use the term ‘strategy’ to designate a combination of the three
rules’ options. Combining the two options for the slack planning, the three options for
flexibility and the three updating periodicities results into eighteen strategies to get an
operational plan or equivalently to eighteen different operational plans.

Figure 1. Methodology to get tactical and operational plans

4. Performance criteria

Every operational plan is assessed in terms of patient satisfaction and hospital
performance. It should be noted that evaluating the quality of an operational plan
amounts to assessing the strategy which was used to get the plan.
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4.1. Patient satisfaction

The average waiting time is chosen as a measure of patient satisfaction. The wait-
ing time of any patient is defined as the period between her/his arrival day in the
waiting list and the day on which the surgery is scheduled in the operational plan. The
average waiting time per cycle is defined as the ratio of the sum of all patient waiting
times to the total number of arrivals during the cycle.

4.2. Hospital performance

The hospital performance is measured through a compound index of the following
deviation indicators.

Total number of cancelled operations (TC). This indicator counts the total num-
ber of planned slots at the tactical level that are unused at the operational level. Unused
slots can be seen as cancelled operations since some reserved capacities are finally un-
consumed. We let I{a} be a binary variable that takes the value of one if condition a
is met and zero otherwise. Indicator TC is given by

TC =

N∑
c=1

T∑
t=1

(xc,t − yc,t) · I{xc,t>yc,t}. (16)

Additional operations from planned categories (AO). For patient categories
planned for surgery on each day of the tactical plan, we count the number of extra slots
that are used in the operational plan compared to those in the tactical plan. Extra slots,
namely additional operations, imply that surgeons and equipment are still mobilised
but for more work. We let I{a;b} be a binary variable that takes the value of one
if conditions a and b are met simultaneously and zero otherwise. Indicator AO is
written as

AO =

N∑
c=1

T∑
t=1

(yc,t − xc,t) · I{xc,t>0;yc,t>xc,t}. (17)

Additional operations from unplanned categories (AC). This indicator pro-
vides the number of operations in the operational plan from categories that were not
initially planned at the tactical level. We have

AC =

N∑
c=1

T∑
t=1

yc,t · I{xc,t=0}. (18)
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Thus, if in the tactical plan no operation of category c was planned on day t and if
some patients of that category are finally scheduled on that day, we must mobilise the
corresponding specialised surgeons and associated resources.

Plan changes (PC). This indicator measures the differences between two tactical
plans if we use the updating rule, by summing the number of new categories that
are planned over a cycle. Plan changes are to be penalised because doctors allocate
surgery days to their agenda and these days then need to be modified. As we are in the
medium run, we do not know precisely what will finally be the number of operations
in the operational plan, so it is better to reason in terms of working days in surgeons’
agendas, rather than in terms of number of patients to be operated on during these
working days. Formally, the indicator of plan changes is given by

PC =
N∑
c=1

T∑
t=1

xuc,t · I{xc,t=0}, (19)

where superscript u refers to the use of the updating rule.

Target deviations. We consider the target deviations, TDr, for all resources
r ∈ {OT,IC,NH,MC} at the operational level, with TDr =

∑T
t=1(ur,t + or,t),

where under utilisation ur,t and over utilisation or,t on day t express the differences
between resources consumptions and target utilisation levels determined at the op-
erational level. These targets are no longer defined as a percentage of the available
capacities as they were at the tactical level but on the basis of average actual con-
sumption of each resource over the week.Average consumptions were computed from
pilot simulation runs where operational plans were obtained with no slack planning,
no flexibility and no updating. The consumption of resources associated with an oper-
ational plan is calculated in a similar fashion to expected consumptions at the tactical
level variables xc,t are replaced with yc,t, for all resources and all periods. To com-
pute the consumption of beds in the ICU and in the Medium Care Unit (MCU) and
the nursing hours in the ICU, we used the actual lengths of stay of each patient, rather
than the expected lengths of stay we considered in the tactical plan.

The hospital performance is measured through a global deviation indicator, GD,
which is a weighted sum of the five previous deviation indicators:

GD = ωTCTC+ωAOAO+ωACAC+ωPCPC+ωTD

∑
r∈{OT,IC,NH,MC}

αrTDr. (20)

To each manager corresponds a combination (ωTC , ωAO, ωAC , ωPC , ωTD) of wei-
ghts and thus a particular assessment of the hospital performance, for given values of
the five deviation indicators. As these indicators values are different for each strat-
egy, we thus have a global deviation indicator value for each manager and for each
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strategy. For a manager, a strategy is dominant (or efficient) if there is no other strat-
egy allowing for a better waiting time with a no worse hospital performance (and
conversely). Values assigned to the weights ω will be discussed in Subsection 5.2.
Weights {αr}r∈{OT,IC,NH,MC} in Eq. (20) reflect the flexibility level of each resource
as assessed by the stakeholders in the hospital relative to their average consumption at
the operational level. These weights should therefore be distinguished from the other
weights in Eq. (20) because they are fairly less judgemental.

Table 3 provides an illustration of the way the four deviation indicators are cal-
culated, based on a simple example with 2 categories of patients over a 3-day cycle.
Indicators AO, AC and TC result from a comparison between xc,t and yc,t. For in-
stance, each time the number of patients in the tactical plan is greater than this number
in the operational plan, TC cumulates the differences. Indicator PC compares the ini-
tial tactical plan to the updated one. In the example, there is only one new category
planned over the cycle (category 1 on day 3).

Table 3. A simple example of deviation indicators

c = 1 c = 2 Sum
Day t 1 2 3 1 2 3
Tactical xc,t 5 3 0 1 2 2
Operational yc,t 3 2 1 1 0 4
TC 2 1 0 0 2 0 5
AO 0 0 0 0 0 2 2
AC 0 0 1 0 0 0 1
Updated tact. xuc,t 4 3 2 0 2 3
PC 0 0 1 0 0 0 1

5. Experimental framework

The rationale for using simulations to assess the performance of our strategies
relies on the very limited possibilities to analyse them exactly.

5.1. Simulation model

Using CPLEX 12.1, we first computed an initial tactical plan under each slack
planning option (no slack or large slack). At the beginning of every cycle, depend-
ing upon the chosen updating periodicity (no update, yearly or quarterly update) if
the tactical plan had to be revised, updated values of target throughputs for each cat-
egory were computed using Eq. (15) and CPLEX was called to obtain a new tactical
plan. Then on each day of the cycle, patient arrivals were simulated according to a
Poisson process. The waiting list was updated by adding the arrivals (see Eq. (14)).
For each category, patients in the waiting list were compared to the planned slots at
the tactical level using one of the three flexibility rule options (no flexibility, full or
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medium). Some patients were thus removed from the waiting list to be assigned to
the operational plan. Next, the consumption of the resources was computed based on
actual lengths of stay in the ICU and in the MCU that were drawn according to the
empirical distributions obtained from the hospital. At the end of every cycle and after
the warm-up period, the waiting time and the deviation indicators described in Section
4.2 were computed and recorded for each of the eighteen strategies.

5.2. Parameters setting

The number of new elective patients on each day was assumed to follow a Poisson
process with parameter λc/T , with T = 28 and values λc displayed in Table 1. A
warm-up period of 80 cycles was required to reach the steady state. For each of the
18 strategies, we performed 5 replications of patient arrivals and lengths of stay over
180 cycles (including the warm-up period) that led to a total number of 2340 calls
to CPLEX 12.1 to get the tactical plans. We thus decided to run CPLEX for a fixed
CPU time of 5 minutes. Furthermore, running CPLEX twice as long did not bring any
significant improvement of gaps to optimality. We recorded 500 values (5 replications
of 100 cycles) of the waiting time and deviation indicators that we averaged to obtain
mean values for each strategy.

As explained in Section 4.2, on the operational level, target levels of utilisation
for the resources are based on their average consumption associated with operational
plans. From pilot runs consisting of several draws of patients’ arrivals that are con-
fronted with the tactical plan (under no slack planning) to get operational plans with
no flexibility, we computed the resulting average consumptions of resources and, us-
ing definition in Eq. (2), we obtained in this way αOT = 0.152, αIC = 0.773,
αMC = 0.044, αNH = 0.031. Values of the other weights in Eq. (20) represent man-
agers’ assessment of the degree of disruption in the organisation caused by each source
of deviation. For instance, total cancellations and additional operations can be con-
sidered either equally or unequally troublesome. Based on interviews with managers
from several hospitals, we formulate the following assumptions.

– Additional operations (AO) are at least as troublesome as cancelled operations
(TC) as it is harder to mobilise more surgeons and equipment than using less resources
than planned. We have ωAO ≥ ωTC and ωAO is at most equal to 10 times ωTC .

– Additional operations for unplanned categories (AC) are at least as disordering
than additional operations from planned categories (AO) because AC require the or-
ganisation of a new surgery session, which implies for instance surgeons to come to
the hospital although not initially planned. We thus have ωAC ≥ ωAO and we assume
that ωAC should not exceed twice the value of ωAO.

– Adding a new session in the tactical plan is at least as disrupting as adding new
operations from unplanned categories in the operational plan: ωPC ≥ ωAC . The
larger the updating periodicity is, the higher the number of plan changes is, so we
assume that ωPC is at most equal to η times ωAC where η, the updating periodicity,
takes the value of 3 and 10 for the quarterly and the yearly update, respectively.
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– As target deviations TD represent the kernel of the tactical plan, they are as-
signed the highest weights.

Weights in Eq. (21) reflect these assumptions. We set ωTC = 1 throughout and
we consider uniformly discrete distributed values for the other weights over large but
relevant plausible intervals:


ωAO  U [1, 10] ,
ωAC  U [ωAO, 20] ,
ωPC  U [ωAC , ηωAC ] ,
ωTD  U [ωAC , 40] .

(21)

Preliminary runs showed that a number of 5’000 draws of weights values was large
enough since the moments for ωAO were very close to their expected values. We thus
obtained 5’000 evaluations of the hospital performance for each strategy.

To summarize the simulation approach, we first recorded 500 values (5 replications
of 100 cycles) of the waiting time and deviation indicators that we averaged for each
of the 18 strategies. Thus, to each strategy corresponds a single average value of the
waiting time, and a single average value for each indicator TC,AO,AC,PC, TD.
Then for each manager assessment or equivalently for each of the 5’000 combinations
of weights ω, and for each strategy, we compute the global deviation indicator accord-
ing to (20). Thus, each strategy has a 2 dimensional evaluation for each manager.

6. Simulation results

Table 4 displays for each strategy the average waiting time and the average increase
of the global deviation indicator compared to minimum over the weights for which the
examined strategy is dominant. The minimum value of the global deviation indicator
is always provided by the no slack, no flexibility and no update strategy (strategy #16
in Table 4) over the 5’000 combinations of weights, each of them representing an as-
sessment profile of the hospital performance. The last column provides the frequency
at which the strategy is dominant, or alternatively the percentage of managers who
consider the strategy as a dominant one.

Some strategies are (nearly) always dominant whereas others never are. These
strategies are such that the assessment profile has no influence on their dominance.
Strategies that are always dominated (strategies 9 to 12) combine opposite options for
slack planning and flexibility: it is never efficient to use full flexibility with no slack
planning or large slack planning with no flexibility and yearly update. All other combi-
nations of these two rules are (nearly) always dominant if updating is not implemented
(strategies 1, 4, 7, 13 and 16). Conversely, all strategies with a dominance frequency
much lower than 100% make use of the updating rule. Although all weights play a
part, we noticed that updating is dominant only for specially low values of weights
associated with plan changes (ωPCY and ωPCQ).
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Table 4. Performance of the strategies

Strategy Av. waiting Av. deviation Dominance
# Slack Flex. Update time (days) increase (%) freq. (%)
1 Large Full No (N) 1.13 118.91 100.00
2 Quart. (Q) 1.82 102.91 77.72
3 Year (Y) 1.91 103.27 50.42
4 Med. N 2.47 68.55 98.68
5 Q 3.56 54.67 52.66
6 Y 3.53 56.14 83.12
7 No N 5.84 27.46 100.00
8 Q 7.66 25.98 5.50
9 Y 8.70 – 0.00

10 No Full N 4.21 – 0.00
11 Q 7.16 – 0.00
12 Y 9.02 – 0.00
13 Med. N 8.15 16.89 99.66
14 Q 9.46 13.21 14.58
15 Y 9.61 15.42 4.26
16 No N 26.81 0.00 100.00
17 Q 13.89 12.38 44.42
18 Y 14.70 11.59 34.24

Figure 2 plots each strategy as a circle with a diameter proportional to its domi-
nance frequency. Whatever the assessment profiles, there exists a trade-off between
patient satisfaction and hospital performance as the best waiting times are obtained
at the price of high global deviation indicator values, and conversely. It appears that
slack planning leads to a clear reduction in the average waiting time because the num-
ber of slots is increased whereas patient arrivals remain the same. This allows for a
better management of the waiting list. However, slack planning is detrimental to the
target deviations for all resources because increasing the number of slots offers more
opportunities to over utilise resources in some periods whereas target utilisation lev-
els remain unchanged: values of over utilisation for each resource increase a lot from
the no slack situation to the slack one. The deviation indicators are roughly higher
under the large slack planning option, since additional slots potentially generate more
possibilities of cancelling and adding unplanned patients.

The average waiting time clearly improves with more flexibility. It reaches its
minimum value under the full flexibility option since priority is given to the categories
with the highest waiting times. Introducing more flexibility has however a negative
impact on target deviations. The lowest target deviation values are obtained under the
no flexibility option as we stick as closely as possible to the tactical plan that seeks to
minimise the deviations. An increasing flexibility is obviously associated with higher
values of indicators: TC, AO, AC.
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When used solely, the updating strategy contributes to a significant decrease of the
average waiting time while improving target deviations for all resources and two of
the schedule instability indicators, namely TC and AO but indicator PC obviously
degrades.

Figure 2. Strategies with non-zero dominance frequencies

For a hospital manager, choosing amongst his/her dominant strategies depends on
the hospital strategic positioning.

Focusing essentially on hospital performance. In a competitive environment
where hospitals seek for cost control and profit increase that can be invested in new
activities or technologies, profit maximisers would be willing to choose strategies that
bring the minimum global deviation indicator values. Of these, the no slack, no flexi-
bility and no update strategy (strategy 16) maximises the hospital performance, but the
corresponding waiting time is the largest one and hospitals may fear a loss of patients
who would go to hospitals or clinics with a shorter waiting time. Thus, if hospital
managers are not reluctant to plan changes (low values of weights ωPCY and ωPCQ),
the single use of the updating strategy offers a tremendous waiting time reduction of
about 50% at the expense of a slight increase (of about 12%) in the global deviation
indicator value (strategies 17 and 18).

Seeking for low waiting times. Low waiting time values, from about 1 day to
less than 4 days, are reached using the large slack planning option combined with
either full flexibility (lowest waiting times) or medium flexibility and these strategies
are always Pareto dominant as long as updating is not performed (strategies 1 and
4). If managers assign low weights to plan changes, updating can be Pareto dominant
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and leads to an improvement of the hospital performance because target deviations
are decreased. Hospital managers may choose one of these strategies if their concern
is to reach a high patient satisfaction at the expense of a low hospital performance,
and if the medical staff is willing to accept short-term modifications of their agendas
(indicators TC,AO,AC are increased).

Reaching a compromise between hospital performance and waiting times. We
consider intermediate waiting time values to be in the range 5-10 days. Such values
can be obtained by using either large slack planning or medium flexibility. Updating
in this case rarely leads to Pareto dominance. For these intermediate waiting times,
if hospital managers are more concerned with patients’ satisfaction, they can choose
to use solely the large slack planning option (strategy 7). If they want to increase the
hospital performance at the expense of a waiting time increase, they can select the
medium flexibility strategy (strategy 13), provided that the medical staff is relatively
flexible about short-term timetable changes.

7. Conclusion and future research

Applying the method developed by Adan et al. (2009), we obtained a tactical plan
that we adjusted to the number of patients in the queue using a flexibility rule with
different priority levels based upon the waiting time (Adan et al. (2011)). In this
way we obtained feasible operational plans. To get improvements in terms of waiting
time, we also used the slack planning rule and proposed here a new rule: updating the
tactical plan. Combining the options of the three rules: flexibility, slack planning and
updating led to eighteen strategies that were assessed through two main indicators:
the waiting time reflecting patient satisfaction and a global deviation indicator as a
measure of the hospital management performance. The global deviation indicator is a
weighted sum of several indicators with weights drawn at random in selected intervals
to portray a wide spread of managers’ assessments. Based upon data from a Dutch
thoracic surgery centre, simulations showed that some strategies are (nearly) always
dominant whereas others never are. Low waiting time values (about 1 to 4 days) are
reached when both slack planning and flexibility (either full or medium) are used.
Intermediate waiting times (5 to 10 days) are obtained by using either slack planning
or medium flexibility. If the focus is on the hospital performance, the single use of
updating offers good solutions with the lowest average global deviation increases of
about 12% compared to the minimum and a waiting time which is almost reduced by
50 %. This shows how important is the impact of the tactical plan on the waiting time.
Our results show that long waiting lists go along with hospital performance and in
many countries waiting lists are kept long to have efficient resources use in hospitals.
However the current policy in the Netherlands is to keep waiting lists really short.

The advantage of our strategies is that they can be applied to many specialities
requiring multiple constrained resources. They are currently implemented in a large
French hospital, in an orthopaedic department dealing with numerous elective surg-
eries (e.g. musculoskeletal cancers) for which care pathways imply time and space
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constraints related not only to the availability of operating rooms, staff and beds in-
side the department but also to radiation and chemotherapy sessions outside of the
department at later stages in the treatment process. Future work is to provide refine-
ments of the strategies to get additional waiting time values to choose from. Another
research plan is to develop heuristic solution approaches to the Mixed Integer Program
for the tactical planning problem.
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Annex A. Data of the hospital

The data are based on the Thorax Centre Rotterdam, used in Adan et al. (2011).
Patients have been grouped in N = 8 categories, each of these being relatively ho-
mogeneous in terms of the resources consumption. For each of the resources, r, there
exists a maximum available capacity per day t, Kr,t and a target utilization level Ar,t

usually set between 70% and 80% of the capacity. These values are displayed in Ta-
ble 5 and apply to every week in the 4-week planning cycle (T = 28). With these
values of Ar,t and g = {8, 10, 3, 5} we are able to compute the relative weights α in
the objective function, using Eq. (2).

Four operating theaters are available nine hours a day during the week days. The
Intensive Care Unit (ICU) has 10 available beds throughout the working week and 8
beds during the week end. The Medium Care Unit (MCU) has 36 beds available every
day. The available ICU nursing staff is matched with the number of beds in the ICU,
except on the week ends on which the staff is reduced.

The nursing hours in the ICU {wc,t} required per day for patients in categories 1
to 7 are estimated to 12 hours throughout their stay in the ICU unless for the second
day spent in the ICU for categories 5, 6 and for the second and third day for category
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Table 5. Capacity and target utilization levels for the resources

7 for which the needs are 24 hours. Patients in category 8 require only 3 hours of ICU
nursing per day whatever their length of stay in the ICU. The longest stay in the ICU
equals 10 days (Lmax

ICU = 9).

We use a stochastic length of stay in the ICU and in the MCU, based on empirical
data. Table 6 provides the probability pICU,c,j that a patient in category c is in the ICU
j days after surgery, j = 0, . . . , Lmax

ICU, with Lmax
ICU = 9. For instance, any patient in

category 8 has 21% of chance to be in the ICU zero days after surgery, that is the day
of surgery ( pICU,8,0 = 0.21) . In such a case, the patient will only stay overnight in
the ICU.

Table 6. Probabilities pICU,c,j , for all c = 1, . . . , 8 and for all j = 0, . . . , Lmax
ICU

Table 7 provides the same information type for the MCU. For instance, pMCU,6,23 =
0.29 means that any patient in category 6 has 29% chance to be in the MCU 23 days
after surgery. We have Lmax

MCU = 27.

The target number of patients Vc in each category to be operated on during the
4-week horizon is based on historical data of arrivals, their values are displayed in
Table 1.
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Table 7. Probabilities pMCU,c,j , for all c = 1, . . . , 8 and for all j = 0, . . . , Lmax
MCU
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