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 In this paper, we had investigated MHD nanofluid flow over a linearly stretching sheet in 

three dimensions by considering Brownian motion and thermophoresis effect for the non-

Newtonian power-law model. A nonlinear system of partial differential equations with 

convective boundary conditions in the governing equation is converted into the system of 

ordinary differential equations using deductive two-parameter group-theoretic similarity 

technique. System of ordinary differential equation with boundary conditions are solved 

numerically using MATLAB BVP4C coding. The influence of different physical 

parameters like power-law index, magnetic parameter, Biot number, thermophoresis 

parameter, stretching ratio parameter, Brownian motion parameter, Lewis number, Prandtl 

number on concentration, temperature and velocity are investigated with graphical 

presentation. It is observed that as stretching parameter ratio (𝑏/𝑎)  increases, the 

concentration and temperature of the fluid decrease. Two different behaviours observed 

for velocity profiles for different power-law indexes. 
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1. INTRODUCTION 

 

The nanofluid with the property of augmented heat transfer 

is introduced by Choi in 1995. Nanometer-sized nanoparticles 

like metals Cu, Ag, Au, Metallic oxides like aluminum oxide, 

copper oxide , Nitrides like aluminium nitride, silicon nitride, 

Carbides like silicon carbide, titanium carbide, 

semiconductors like TiO2, SiC, and different types of carbon 

nanotubes like SWCNT, DWCNT, MWCNT suspended in  

base fluid like water, ethylene glycol, oil to make nanofluid 

[1]. The nanofluid is useful in different areas such as in 

automobiles as coolants, brake fluid and as gear lubrication, 

also in industrial cooling, in solar devices, in medical science 

as a cancer drug, as coolants in electronic devices, etc. [2]. 

Many researchers recently worked on nanofluid because of its 

wide applications in the real world. 

The impact of thermophoresis and Brownian motion on 

Powell-Eyring nanofluid model over a linearly stretching sheet 

is investigated by Hayat et al. using the series solution method 

[3]. Hayat et al. [4] analyzed second-grade nanofluid over the 

exponentially stretching surface using similarity method and 

transformed similarity equations are solved by applying the 

homotopy analysis technique. Nadeem et al. [5] investigated 

the flow of nanofluid over an exponentially stretching surface 

using different types of nanoparticles. Zhao et al. [6] studied 

the effect of nanoparticle volume fraction on various 

parameters for three-dimensional nanofluid flow over a 

stretching sheet. 

Effects of Brownian motion and thermophoresis on two- 

dimensional non-Newtonian power-law model of MHD 

nanofluid flow over a non-linear stretching sheet with zero 

nanoparticle mass flux boundary condition are examined by 

Khan M. and Khan W.A. They first applied similarity 

transformation and then used the shooting method to solve the 

converted system of ordinary differential equation numerically 

[7]. Two-dimensional non-Newtonian Sisko fluid model is 

studied by Khan et al. They examined the influence of 

different physical parameter on nanofluid flow with 

convective boundary conditions using the homotopy analysis 

technique [8]. Shateyi [9] had analyzed three dimensional 

Newtonian nanofluid flow over linearly stretching sheet under 

the magnetic field in porous media in the presence of 

Brownian motion and thermophoresis with convective 

boundary conditions and applied spectral relaxation method to 

solve transformed governing equation numerically [9]. Khan 

et al. analyzed heterogeneous-homogeneous chemical 

reactions for Sisko fluid flow in three dimensions past a 

bidirectional stretching sheet. Heat transfer analysis is done for 

Cattaneo-Christov heat flux model. They presented results for 

the impact of different physical parameters on fluid flow for 

non-integer value of flow consistancy index [10]. MHD two-

dimensional Sisko nanofluid flow over a nonlinearly 

stretching sheet under radiation effect and chemical reactions 

is examined by Prasannakumara et al. They observed more 

effectiveness of nonlinear radiation then linear thermal 

radiation [11]. 

Most of the similarity analysis is done on a nanofluid flow 

by assuming similarity variables. In this paper, we deduced 

similarity variables systematically. Two independent variables 

from the governing equation are reduced by using deductive 

two parameter group theoretical method. Moran et al. had 

developed deductive group formalism for similarity analysis 

and also included auxiliary conditions for boundary layer 

problems [12, 13]. 
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Many researchers solved different types of fluid flow 

problem using deductive group-theoretic similarity method to 

reduce independent variables [14-18]. 

Recently, Shukla et al. [19] analysed nanofluid flow in three 

dimensions over linearly stretching sheet for Newtonian fluid 

model using two parameter deductive group-theoretic 

similarity technique. Hussain et al. [20] analyzed the influence 

of thermal radiation for three different types of nanofluid on 

viscous dissipative boundary layer flow over a permeable 

exponentially stretching sheet under the magnetic field for 

two-dimensional Newtonian fluid flow using similarity 

method.  

From the literature review, we observed that most of the 

work done on the Newtonian fluid model is in three 

dimensions and little work on two-dimensional non-

Newtonian nanofluid. So, here we analyzed three- dimensional 

non-Newtonian nanofluid flow over a linearly stretching sheet 

under magnetic effect for the power-law model with 

convective boundary conditions. 

In this paper, we applied deductive two parameter group-

theoretic method and derived a complete set of similarity 

variables and then using these similarity variables we had 

converted set of partial differential equations given in 

governing equations into ordinary differential equations. The 

system consists of ordinary differential equations with given 

boundary conditions are solved using MATLAB BVP4C 

coding. The influence of different physical parameters like 

flow consistency index, magnetic parameter, Biot number, 

thermophoresis parameter, stretching ratio parameter, 

Brownian motion parameter, Lewis number, Prandtl number 

on concentration, temperature and velocity are investigated 

with graphical presentation. 

 

 

2. MATHEMATICAL FORMULATION 

 

Here we had considered Non-Newtonian Power-law fluid 

model for steady, laminar, incompressible 3-D nanofluid flow 

over a linearly stretching sheet with the velocities 𝑢𝑤 = 𝑎𝑥 

and 𝑣𝑤 = 𝑏𝑦 , in two perpendicular directions x and y 

respectively (Figure 1). 

𝑇∞  and 𝐶∞ are assumed to be uniformly distributed 

temperature and concentration at an infinitive distance from 

the surface of the sheet. A hot fluid with temperature 𝑇𝑓  is 

utilized to heat up or cool down the surface of the sheet by 

convective heat transfer mode, which provides the heat 

transfer coefficient ℎ𝑓  and convective mass transfer 

coefficient ℎ𝑠. Convective concentration of fluid is 𝐶𝑓. 

Here flow is laminar. So, uniform magnetic field 𝐵  is 

applied to the stretched sheet in the normal direction of the 

surface. Here we assumed the value of Prandtl number as very 

small. So, the induced magnetic field can be ignored. 

The equations governing by boundary layer flow are as 

follows [21, 22]: 

 
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0 (1) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= −

𝜆

𝜌

𝜕

𝜕𝑧
(−

𝜕𝑢

𝜕𝑧
)
𝑛

− 
𝜎𝐵2

𝜌
𝑢  (2) 

 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
=
𝜆

𝜌

𝜕

𝜕𝑧
[(−

𝜕𝑢

𝜕𝑧
)
𝑛−1 𝜕𝑣

𝜕𝑧
] − 

𝜎𝐵2

𝜌
𝑣 (3) 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
= 𝛼

𝜕2𝑇

𝜕𝑧2
+ 𝜏[𝐷𝐵 (

𝜕𝑇

𝜕𝑧

𝜕𝐶

𝜕𝑧
) +

𝐷𝑇
𝑇∞
(
𝜕𝑇

𝜕𝑧
)
2

] (4) 

 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
+ 𝑤

𝜕𝐶

𝜕𝑧
= 𝐷𝐵 (

𝜕2𝐶

𝜕𝑧2
) +

𝐷𝑇
𝑇∞

𝜕2𝑇

𝜕𝑧2
 (5) 

 

Values at boundary are given by: 

 

𝑧 = 0 ⇒ 𝑢 = 𝑢𝑤 = 𝑎𝑥, 𝑣 = 𝑣𝑤 = 𝑏𝑦,𝑤 = 0 

−𝑘
𝜕𝑇

𝜕𝑧
= ℎ𝑓(𝑇𝑓 − 𝑇),−𝐷𝐵

𝜕𝐶

𝜕𝑧
= ℎ𝑠(𝐶𝑓 − 𝐶) 

𝑧 = ∞ ⇒ 𝑢 = 0, 𝑣 = 0,𝑤 = 0, 𝑇 = 𝑇∞, 𝐶 = 𝐶∞ 

(6) 

 

Here 𝑢, 𝑣, 𝑤 are velocity in the directions with respect to 

𝑥, 𝑦 and 𝑧. Symbol 𝑇 for the fluid temperature and 𝐶 for fluid 

concentration, 𝜌  is the fluid density,  𝜏  indicates the heat 

capacitance ratio, Thermophoresis diffusion coefficient is 𝐷𝑇  

and the Brownian diffusion coefficient is  𝐷𝐵 , 𝜆  (>0) the 

rheological constant, flow index is 𝑛 , electrical conductivity 

of the fluid is σ, thermal diffusivity is 𝛼. 

 

 
 

Figure 1. Diagram of flow system 

 

 

3. GENERALIZED GROUP THEORETIC METHOD 

 

The method used in this paper is deductive two parameter 

group-theoretic method. Using this method, the boundary 

value problem with governing Eq. (1)-(5) which has three 

independent variables 𝑥, 𝑦 and 𝑧  transformed into boundary 

value problem in only one independent variable, which is 

called similarity equation. Following is the group of 

transformation with two parameters (𝑏1, 𝑏2) in the form of 

 

G:s̅ = 𝑟s(𝑏1, 𝑏2)s + 𝑒
s(𝑏1, 𝑏2) (7) 

 

where, s is for variable 𝑥, 𝑦, 𝑧 and 𝑢, 𝑣, 𝑤, 𝑇, 𝐶. 

𝑟S  and eS  are differentiable functions in their real 

arguments (𝑏1, 𝑏2) and real-valued. 

 

3.1 Derivation of absolute invariants 

 

Chain rule is used to derive derivatives of the transformation 

defined in group G. 

 

s̅𝑖̅ =
𝑟s

𝑟i
𝑠𝑖, s̅𝑖�̅� =

𝑟s

𝑟i𝑟j
𝑠𝑖𝑗  (8) 

 

where, 𝑖 and 𝑗 stands for 𝑥, 𝑦, 𝑧 and s stands for 𝑢, 𝑣, 𝑤, 𝑇, 𝐶. 

Eq. (1) to (5) remain invariant under group of 

transformations defined by G in Eq. (7) and derivatives in Eq. 

(8). 
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𝜕𝑢

𝜕�̅�
+

𝜕�̅�

𝜕�̅�
+

𝜕�̅�

𝜕�̅�
= 𝐻(𝑏1, 𝑏2) (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) (9) 

 

�̅�
𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕𝑧̅
+
𝜆

𝜌

𝜕

𝜕𝑧̅
(−

𝜕�̅�

𝜕𝑧̅
)
𝑛

+ 
𝜎𝐵2

𝜌
�̅�

=  𝐼(𝑏1, 𝑏2)(𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧

+
𝜆

𝜌

𝜕

𝜕𝑧
(−

𝜕𝑢

𝜕𝑧
)
𝑛

+ 
𝜎𝐵2

𝜌
𝑢) 

+ 𝐽(𝑏1, 𝑏2) 

(10) 

 

�̅�
𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
−

𝜆

𝜌

𝜕

𝜕�̅�
[(−

𝜕𝑢

𝜕�̅�
)
𝑛−1 𝜕�̅�

𝜕�̅�
] +  

𝜎𝐵2

𝜌
�̅� =

𝐿(𝑏1, 𝑏2)(𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+𝑤

𝜕𝑣

𝜕𝑧
−

𝜆

𝜌

𝜕

𝜕𝑧
[(−

𝜕𝑢

𝜕𝑧
)
𝑛−1 𝜕𝑣

𝜕𝑧
] +

 
𝜎𝐵2

𝜌
𝑣) +𝑀(𝑏1, 𝑏2) 

(11) 

 

�̅�
𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕𝑧̅
− 𝛼𝑛𝑓

𝜕2�̅�

𝜕𝑧̅2
− 𝜏[𝐷𝐵 (

𝜕�̅�

𝜕𝑧̅

𝜕𝐶̅

𝜕𝑧̅
)

+
𝐷𝑇
𝑇∞
(
𝜕�̅�

𝜕𝑧̅
)

2

]

= 𝑁(𝑏1, 𝑏2)(𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧

− 𝛼𝑛𝑓
𝜕2𝑇

𝜕𝑧2
− 𝜏[𝐷𝐵 (

𝜕𝑇

𝜕𝑧

𝜕𝐶

𝜕𝑧
)

+
𝐷𝑇
𝑇∞
(
𝜕𝑇

𝜕𝑧
)
2

]) + 𝑃(𝑏1, 𝑏2) 

(12) 

 

�̅�
𝜕𝐶̅

𝜕�̅�
+ �̅�

𝜕𝐶̅

𝜕�̅�
+ �̅�

𝜕𝐶̅

𝜕𝑧̅
− 𝐷𝐵 (

𝜕2𝐶̅

𝜕𝑧̅2
) −

𝐷𝑇
𝑇∞

𝜕2�̅�

𝜕𝑧̅2

= 𝐴(𝑏1, 𝑏2)(𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
+ 𝑤

𝜕𝐶

𝜕𝑧

− 𝐷𝐵 (
𝜕2𝐶

𝜕𝑧2
) −

𝐷𝑇
𝑇∞

𝜕2𝑇

𝜕𝑧2
)

+ 𝐸(𝑏1, 𝑏2) 

(13) 

 

The invariance of above equations implies that 𝐽(𝑏1, 𝑏2) =
𝑀(𝑏1, 𝑏2) = 𝑃(𝑏1, 𝑏2) = 𝐸(𝑏1, 𝑏2) = 0. 

This is satisfied if we take 𝑒𝑢 = 𝑒𝑣 = 𝑒𝑤 = 0 and  

 

𝐻(𝑏1, 𝑏2) =
𝑟𝑢

𝑟𝑥
=
𝑟𝑣

𝑟𝑦
=
𝑟𝑤

𝑟𝑧
 (14) 

 

𝐼(𝑏1, 𝑏2) =
(𝑟𝑢)2

𝑟𝑥
=
𝑟𝑢𝑟𝑣

𝑟𝑦
=
𝑟𝑢𝑟𝑤

𝑟𝑧
=

(𝑟𝑢)𝑛

(𝑟𝑧)𝑛+1
= 𝑟𝑢 (15) 

 

𝐿(𝑏1, 𝑏2) =
(𝑟𝑣)2

𝑟𝑦
=
𝑟𝑢𝑟𝑣

𝑟𝑥
=
𝑟𝑣𝑟𝑤

𝑟𝑧
=
(𝑟𝑢)𝑛−1𝑟𝑣

(𝑟𝑧)𝑛+1

= 𝑟𝑣  

(16) 

 

𝑁(𝑏1, 𝑏2) =
𝑟𝑢𝑟𝑇

𝑟𝑥
=
𝑟𝑣𝑟𝑇

𝑟𝑦
=
𝑟𝑤𝑟𝑇

𝑟𝑧
=

𝑟𝑇

(𝑟𝑧)2
=
𝑟𝑇𝑟𝐶

(𝑟𝑧)2

= (
𝑟𝑇

𝑟𝑧
)2 

(17) 

 

𝐴(𝑏1, 𝑏2) =
𝑟𝑢𝑟𝐶

𝑟𝑥
=
𝑟𝑣𝑟𝐶

𝑟𝑦
=
𝑟𝑤𝑟𝐶

𝑟𝑧
=

𝑟𝐶

(𝑟𝑧)2
= (

𝑟𝑇

𝑟𝑧
)2 (18) 

 

So, from Eq. (14) to (18) with boundary condition (6) we 

get following relations. 

𝑟𝑢 = 𝑟𝑥 , 𝑟𝑣 = 𝑟𝑦 , 𝑟𝑤 = 𝑟𝑧 = (𝑟𝑥)
𝑛−1
𝑛+1, 𝑟𝐶 = 1, 

𝑒𝑢 = 𝑒𝑥 = 𝑒𝑣 = 𝑒𝑦 = 𝑒𝑤 = 𝑒𝑧 = 𝑒𝑇 = 𝑒𝐶 = 0 
(19) 

 

Thus, we obtained a two-parameter group transformation of 

the form 

 

G: 

{
 
 
 

 
 
 

�̅� = 𝑟𝑥𝑥
�̅� = 𝑟𝑦𝑦

𝑧̅ = (𝑟𝑥)
𝑛−1

𝑛+1𝑧

�̅� = 𝑟𝑥𝑢
�̅� = 𝑟𝑦𝑣

�̅� = (𝑟𝑥)
𝑛−1

𝑛+1𝑤

�̅� = 𝑇, 𝐶̅ = 𝐶

 (20) 

 

3.2 The complete set of absolute invariants 

 

Our aim is to derive proper absolute invariants such that the 

set of partial differential equations get transformed into a set 

of an ordinary differential equation. For this deduction, we 

applied the deductive group-theoretic method of Moran and 

Gaggioli. It is to be noted that the theorem due to Moran and 

Gaggioli states that a function 𝑔𝑗 yields the absolute invariant 

for two-parameter group transformations if it satisfies the 

following first-order linear differential equation: 

 

(𝛼1𝑥 + 𝛼2)
𝜕𝑔

𝜕𝑥
+ (𝛼3𝑦 + 𝛼4)

𝜕𝑔

𝜕𝑦
+ (𝛼5𝑧 + 𝛼6)

𝜕𝑔

𝜕𝑧

+ (𝛼7𝑢 + 𝛼8)
𝜕𝑔

𝜕𝑢

+ (𝛼9𝑣 + 𝛼10)
𝜕𝑔

𝜕𝑣

+ (𝛼11𝑤 + 𝛼12)
𝜕𝑔

𝜕𝑤

+ (𝛼13𝑇 + 𝛼14)
𝜕𝑔

𝜕𝑇

+ (𝛼15𝐶 + 𝛼16)
𝜕𝑔

𝜕𝐶
= 0 

(21a) 

 

(𝛽1𝑥 + 𝛽2)
𝜕𝑔

𝜕𝑥
+ (𝛽3𝑦 + 𝛽4)

𝜕𝑔

𝜕𝑦
+ (𝛽5𝑧 + 𝛽6)

𝜕𝑔

𝜕𝑧

+ (𝛽7𝑢 + 𝛽8)
𝜕𝑔

𝜕𝑢

+ (𝛽9𝑣 + 𝛽10)
𝜕𝑔

𝜕𝑣

+ (𝛽11𝑤 + 𝛽12)
𝜕𝑔

𝜕𝑤

+ (𝛽13𝑇 + 𝛽14)
𝜕𝑔

𝜕𝑇

+ (𝛽15𝐶 + 𝛽16)
𝜕𝑔

𝜕𝐶
= 0 

(21b) 

 

where, 

 

𝛼𝑖 =
𝜕𝑟𝑠𝑖

𝜕𝑏1
|(𝑏1

0, 𝑏2
0) , 𝛼𝑖+1 =

𝜕𝑒𝑠𝑖

𝜕𝑏1
| (𝑏1

0, 𝑏2
0) 

𝛽𝑖 =
𝜕𝑟𝑠𝑖

𝜕𝑏2
|(𝑏1

0, 𝑏2
0) , 𝛽𝑖+1 =

𝜕𝑒𝑠𝑖

𝜕𝑏2
| (𝑏1

0, 𝑏2
0) 

(𝑖 = 1,3,5,7,9,11,13,15) 

(22) 

 

The identity element is (𝑏1
0, 𝑏2

0) of the group G. 
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3.2.1 Independent absolute invariant 

Now we obtained independent absolute invariants. From 

first order differential equations in (21) and (22) we get  

 

(𝛼1𝑥)
𝜕η

𝜕𝑥
+ (𝛼3𝑦)

𝜕η

𝜕𝑦
+ (𝛼5𝑧)

𝜕η

𝜕𝑧
= 0 

(β1𝑥)
𝜕η

𝜕𝑥
+ (β3𝑦)

𝜕η

𝜕𝑦
+ (β5𝑧)

𝜕η

𝜕𝑧
= 0 

(23) 

 

Here 𝛼2 = 𝛼4 = 𝛼6 = 0 since 𝑒𝑥 = 𝑒𝑦 = 𝑒𝑧 = 0. 

By eliminating 
𝜕η

𝜕𝑦
, 
𝜕η

𝜕𝑥
 from Eq. (23) we get 

 

𝜆13𝑥
𝜕η

𝜕𝑥
+ 𝜆53𝑧

𝜕η

𝜕𝑧
= 0 

−𝜆13𝑦
𝜕η

𝜕𝑦
+ 𝜆51𝑧

𝜕η

𝜕𝑧
= 0 

(24) 

 

where, 𝜆ij = 𝛼iβj − 𝛼jβi. 

The basic theorem of Morgan says that there exists a unique 

solution of the above system of equations provided the 

coefficient matrix is of rank two. This leads to the following 

cases. 

Case (i): 𝜆53 ≠ 0, 𝜆13 ≠ 0, 𝜆51 = 0 

Using the definitions of 𝛼𝑖’s and 𝛽𝑖′𝑠 from (22), (23) and 

(24) 𝜆51 = 𝛼5β1 − 𝛼1β5 = 0  (because 𝛼5 =
𝑛−1

𝑛+1
𝛼1, β5 =

𝑛−1

𝑛+1
β1) 

 
𝜕η

𝜕𝑦
= 0 (25) 

 

η can be expressed in variable 𝑥 and 𝑧 only. 

η = 𝑐1𝑧(𝑥)
1−𝑛

1+𝑛, where 𝑐1 is an arbitrary constant. 

Case (ii): 𝜆53 = 0, 𝜆51 ≠ 0, 𝜆13 ≠ 0 

But we have 𝜆51 = 0 (𝛼5 =
𝑛−1

𝑛+1
𝛼1, β5 =

𝑛−1

𝑛+1
β1) 

Here the rank of the coefficient matrix is one so this case is 

not possible. 

Case (iii): 𝜆53 ≠ 0, 𝜆13 = 0, 𝜆51 ≠ 0 

Here also, rank is one so this case is not possible.  

So, from all cases 

 

η = 𝑐1𝑧(𝑥)
1−𝑛
1+𝑛 (26) 

 

Using same procedure we can find the absolute invariants 

of the dependent variables 𝑢, 𝑣, 𝑤, 𝑇 and 𝐶.  

 

3.2.2 Derivation of absolute invariants for the dependent 

variable 𝑢 

 

(𝛼1𝑥)
𝜕F1
𝜕𝑥

+ (𝛼3𝑦)
𝜕F1
𝜕𝑦

+ (𝛼7𝑢)
𝜕F1
𝜕𝑢

= 0 

(𝛽1𝑥)
𝜕F1
𝜕𝑥

+ (𝛽3𝑦)
𝜕F1
𝜕𝑦

+ (𝛽7𝑢)
𝜕F1
𝜕𝑢

= 0 

(27) 

 

 

 

Eliminating 
𝜕F1

𝜕𝑥
,
𝜕F1

𝜕𝑦
 

 

(𝜆31𝑦)
𝜕F1
𝜕𝑦

+ (𝜆71𝑢)
𝜕F1
𝜕𝑢

= 0 

(−𝜆31𝑥)
𝜕F1
𝜕𝑥

+ (𝜆73𝑢)
𝜕F1
𝜕𝑢

= 0 

(28) 

 

 

Case (i):  𝜆31 ≠ 0 ,  𝜆71 = 0 ,  𝜆73 ≠ 0  (Because 𝛼1 =
𝛼7, 𝛽1 = 𝛽7) 

Using the definitions of 𝛼𝑖’s and 𝛽𝑖′𝑠 from (22) we have  

 

𝜆71 = 0 
𝜕F1
𝜕𝑦

= 0 

F1(η) = F1(𝑥, 𝑢) 

(29) 

 

𝑐2F1(η) =
𝑢

𝑥
 (30) 

 

𝑢 = 𝑐2𝑥F1(η) (31) 

 

Case (ii): 𝜆31 = 0, 𝜆71 ≠ 0, 𝜆73 ≠ 0 

But we have 𝜆71 = 0 (Because 𝛼1 = 𝛼7, 𝛽1 = 𝛽7) 
Here rank of the coefficient matrix is one so this case is not 

possible. 

Case (iii): 𝜆31 ≠ 0, 𝜆71 ≠ 0, 𝜆73 = 0 

But we have 𝜆71 = 0 (Because 𝛼1 = 𝛼7, 𝛽1 = 𝛽7) 
Here also, rank is one so this case is not possible. 

Thus, we get 

 

𝑢 = 𝑐2𝑥F1(η) (32) 

 

Similarly, we get, 

 

𝑣 = 𝑐3𝑦F2(η) (33) 

 

𝑤 = 𝑐4𝐹3(𝜂)(𝑥)
1−𝑛
1+𝑛 (34) 

 

Similarly, we get  

 

π4(η) = 𝑐5𝜃 we choose 𝑐5=1 and 𝜃 =
𝑇−𝑇∞

𝑇𝑓−𝑇∞
 

π4(η) = 𝜃 
(35) 

 

π5(η) = 𝑐6∅ we choose 𝑐6=1 and ∅ = 
𝐶−𝐶∞

𝐶𝑓−𝐶∞
 

π5(η) = ∅ 
(36) 

 

Thus, we got following absolute invariants: 

 

η = c1𝑧(𝑥)
1−𝑛

1+𝑛, F1(η) =
𝑢

𝑐2𝑥
, F2(η) =

𝑣

𝑐3𝑦
 

F3(η) =
w

c4(𝑥)
n−1
1+n

, π4(η) = 𝜃 =
𝑇−𝑇∞

𝑇𝑓−𝑇∞
, 

π5(η) = ∅ =
𝐶 − 𝐶∞
𝐶𝑓 − 𝐶∞

 

(37) 

 

 

4. SIMILARITY SOLUTION USING ABSOLUTE 

INVARIANTS 

 

Choose  

 

𝑐1 = (
𝑎2−𝑛

𝜆
𝜌

)

1
𝑛+1

, 𝑐2 = 𝑎, 𝑐3 = 𝑏, 𝑐4 = −𝑎(
𝑎𝑛−2

𝜌
𝜆

)

1
𝑛+1

 

𝑝𝑟 =
𝜌𝑐𝑝𝑢𝑤𝑥

𝑘
(𝑅𝑒)

−2

𝑛+1, 𝑅𝑒 =
(𝑢𝑤)

2−𝑛𝑥𝑛𝜌

𝜆
,
𝜎𝐵2

𝜌
= 𝑀, 

𝐵𝑖1 =
ℎ𝑓

𝑘
𝑥(𝑅𝑒)

−1

𝑛+1,𝑁𝑏 =  𝜏𝐷𝐵
(𝐶𝑓−𝐶∞)

𝛼
, 

(38) 
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𝑁𝑡 =  𝜏𝐷𝑇
(𝑇𝑓−𝑇∞)

𝛼𝑇∞
,𝐿𝑒 =

𝛼

𝐷𝐵
,𝐵𝑖2 =

𝑘

𝐷𝐵
𝑥(𝑅𝑒𝑏)

−1

𝑛+1 

 

where, 𝑅𝑒  the local Reynolds number, 𝑝𝑟  denotes for the 

generalized Prandtl number and the generalized Biot number 

are denoted as 𝐵𝑖1 and 𝐵𝑖2 , 𝐿𝑒 represent the Lewis number, 

𝑁𝑏  indicates the Brownian motion parameter, 𝑁𝑡  represent 

thermophoresis parameter. 

Differentiating equations in (37) with respect to η  and 

applying on Eq. (1) to (6), we get following 

 

𝑎F1 + 𝑏F2 − 𝑎F3
′ +

1 − 𝑛

1 + 𝑛
𝑎 η F1

′ = 0 (39) 

 

𝑎(F1)
2 − 𝑎F1

′F3 +
1 − 𝑛

1 + 𝑛
𝑎 η F1

′  F1

− 𝑛 𝑎 (−F1
′ )𝑛−1 F1

′′ +MF1 = 0 

(40) 

 

𝑏(F2)
2 − 𝑎 F2

′  F3 +
1 − 𝑛

1 + 𝑛
 𝑎 η F2

′  F1

+ 𝑎(𝑛 − 1)(−F1
′ )𝑛−2F2

′  F1
′′

− 𝑎(−F1
′ )𝑛−1F2

′′ +𝑀F2 = 0 

(41) 

 

𝑝𝑟 π4
′  F3 − 𝑝𝑟

1 − 𝑛

1 + 𝑛
 η F1 π4

′ + π4
′′ + 𝑁𝑏 π4

′  π5
′

+ 𝑁𝑡  (π4
′ )2 = 0 

(42) 

 

π5
′′ +

𝑁𝑡
𝑁𝑏
 π4
′′ + 𝑝𝑟 𝐿𝑒 π5

′  F3
′ − 𝑝𝑟 𝐿𝑒

1 − 𝑛

1 + 𝑛
η F1 π5

′

= 0 

(43) 

 

with boundary conditions: 

 

F1(0) = 1, F2(0) = 1, F3(0) = 0, 

π4
′ (0) = −𝐵𝑖1(1 − π4(0)), 

π5
′ (0) = −𝐵𝑖2(1 − π5(0)), 

F1(∞) = 0, F2(∞) = 0, F3(∞) = 0, 
π4(∞) = 0, π5 (∞) = 0 

 

(44) 

To reduce one equation choose  

 

F1 = g′1, F2 = g′2,F3 =
2𝑛

1+𝑛
g1 +

𝑏

𝑎 
g2 +

1−𝑛

1+𝑛
ηg′1 (45) 

 

Eqns. (39)-(44) are transformed as follows. 

 

𝑎(g′1)
2 − 𝑏g1

′′ g2 −
2𝑛

1 + 𝑛
𝑎 g1

′′ g1

− 𝑛 𝑎 (−g1
′′)𝑛−1g1

′′ +Mg′1 = 0 

(46) 

 

𝑏(g′2)
2 − 𝑏g2

′′ g2 −
2𝑛

1 + 𝑛
𝑎g2

′′ g1

− 𝑎(𝑛 − 1)(−g1
′′)𝑛−2g2

′′g1
′′′

− 𝑎 (−g1
′′)𝑛−1g2

′′′ +𝑀g2 = 0 

(47) 

 

π4
′′ + 𝑁𝑏 π4

′  π5
′ + 𝑁𝑡  (π4

′ )2 +
𝑏

𝑎 
𝑝𝑟 π4

′  g2

+
2𝑛

1 + 𝑛
𝑝𝑟 g1(η) π4

′ = 0 

(48) 

 

π5
′′ +

𝑁𝑡
𝑁𝑏
π4
′′ +

𝑏

𝑎
𝐿𝑒 𝑝𝑟 π5

′  g2 +
2𝑛

1 + 𝑛
𝑝𝑟𝐿𝑒 g1 π5

′

= 0 

(49) 

 

5. NUMERICAL SOLUTION 

 

The bvp4c is a MATLAB solver which uses the collocation 

formula and a mesh of points to divide the interval of 

integration into subintervals. If the solution does not meet the 

tolerance, the solver adjusts the mesh and repeat the cycle. The 

BVP solver is bvp4c, which solves 2-point BVP’s using a 3-

stage finite-difference Lobatto-IIIa formula which is 4th order 

uniformly accurate. 

Kierzenka and Shampine (Kierzenka & Shampine, 2001) 

developed the core BVP Ordinary Differential Equation (ODE) 

software bvp4c to solve a large class of two-point boundary 

value problems of the form; 

𝑦′(𝑥) = 𝑓(𝑥, 𝑦(𝑥), 𝑃)  and a set of boundary conditions 

𝑔(𝑦(𝑎), 𝑦(𝑏), 𝑝) = 0 . Here p is a vector of unknown 

parameters that may, or may not, be present where f is a 

continuous function in y. 

For Bvp4c coding we have to convert above system of 

equations in system of first order differential equations as 

follows: 

Substitute y𝑖,for 𝑖 = 1,2, … ,10 for functions  

g1, g
′
1
, g1
′′, g2, g

′
2
, g2
′′, π4,  π4

′ , π5,  π5
′  respectively 

 
y′1 = y2 (50) 

 
y′2 = y3 (51) 

 

y′3 =
(𝑎(y2)

2 − 𝑏y3y4 −
2𝑛
1 + 𝑛

𝑎 y1y3 +My2)

𝑛 𝑎 (−y3)
𝑛−1

 (52) 

 

y′4 = y5 (53) 

 

y′5 = y6  (54) 

 

y′6 =
𝑏(y5)

2−𝑏y4y6−
2𝑛

1+𝑛
𝑎y1y6− 𝑎(𝑛−1)(−y3)

𝑛−2y′3y6+𝑀y5

𝑎(−y3)
𝑛−1   (55) 

 

y′7 = y8 (56) 

 

y′8 = −𝑁𝑏y8y10 −𝑁𝑡(y8)
2 −

𝑏

𝑎 
𝑝𝑟 y4 y8

−
2𝑛

1 + 𝑛
𝑝𝑟 y1 y8 

(57) 

 

y′9 = y10 (58) 

 

y′10 = −
𝑁𝑡
𝑁𝑏
y′
8
−
𝑏

𝑎
𝐿𝑒 𝑝𝑟y4y10 −

2𝑛

1 + 𝑛
𝑝𝑟𝐿𝑒 y1y10  (59) 

 

with boundary conditions  

 

η = 0 ⇒ y1 = y4 = 0, y2 = y5 = 1, 
y8 = −𝐵𝑖1(1 − y7(0)), y10 = −𝐵𝑖2(1 − y9(0)) 

η = ∞ ⇒ y1 = 0, y4 = 0, y7 = 0, y9 = 0 

(60) 

 

 

6. RESULTS AND DISCUSSION    

 

We obtained highly nonlinear ordinary differential 

equations using similarity transformations for three-

dimensional non-Newtonian MHD nanofluid flow for a 

power-law fluid model over a linearly stretching sheet. 

To solve these differential equations analytically is a very 
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difficult task. So, here, we used bvp4c Matlab coding to get a 

numerical solution to the given problem. Influence on velocity, 

temperature, and concentration are investigated under 

different physical parameters. 

Figure 2 shows the effect of stretching parameter ratio (𝑏/𝑎) 

on concentration profile. As increasing stretching parameter 

ratio the concentration profile decreases.  

Figure 3 shows the effect of stretching parameter ratio (𝑏/𝑎) 

on temperature profile. As increasing stretching parameter 

ratio the temperature profile decreases.  

Influence of thermal Biot number and concentration Biot 

number on concentration and temperature profile are shown in 

Figure 4, 5, 6, 7. We observed an enhancement in the 

temperature and concentration profile for the increase in Biot 

numbers. Concentration Biot number is not so much affect 

temperature profile. 

 

 
 

Figure 2. Effect of stretching parameter ratio (b/a) on 

concentration profiles for a=5, n=1, M=1, pr=2, 𝑁𝑏=𝑁𝑡=0.2, 

Le=Bi1=Bi2=1 

 

 
 

Figure 3. Effect of stretching parameter (b/a) on temperature 

profile for a=5, n=1, M=1, pr=2, 𝑁𝑏 = 𝑁𝑡=0.2, Le=Bi1=Bi2=1 

 

 
 

Figure 4. Effect of Biot number Bi1 on concentration profile 

for a=1, b=2, n=1, M=1, pr=2, 𝑁𝑏=𝑁𝑡=0.2, Le=1, Bi2=1 

 
 

Figure 5. Impact of Biot number Bi1 on temperature profile 

for a=1, b=2, n=1, M=1, pr=2, 𝑁𝑏=0.2, 𝑁𝑡=0.2, Le=1, Bi2=1 

 

 
 

Figure 6. Effect of Biot number Bi2 on concentration profile 

for a=1, b=2, n=1, M=1, pr=2, 𝑁𝑏=0.2, 𝑁𝑡=0.2, Le=1, Bi1=1 

 

 
 

Figure 7. Impact of Biot number Bi2 on temperature for a=1, 

b=2, n=1, M=1, pr=2, 𝑁𝑏=0.2, 𝑁𝑡=0.2, Le=1, Bi1=1 

 

 
 

Figure 8. Influence of Lewis number Le on concentration 

profile for a=1, b=2, n=1, M=1, pr=2, 𝑁𝑏=𝑁𝑡=0.2, 

Bi1=Bi2=1 
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Lewis number is inversely proportional to Brownian 

diffusion coefficients. So, as increasing Lewis number, 

Brownian diffusion decreases which decrease nanoparticle 

concentration. So, by increasing the value of Lewis number 

concentration boundary layer thickness decreases. The effect 

of Lewis number on concentration profile is shown in Figure 

8. 

Figure 9 and 10 illustrate the behavior of concentration and 

temperature profile for the impact of Brownian motion 

parameter. 

Increase in Brownian motion parameter increase 

temperature profile whereas decrease concentration profile. 

For very small nanoparticles Brownian motion is high in fluid 

and so the Brownian motion parameter is large. So, for large 

Nb nanofluid temperature enhances because of Brownian 

motion the kinetic energy of the particles enhances. 

 

 
 

Figure 9. Impact of Brownian motion parameter 𝑁𝑏 on 

concentration profile for a=1, b=2, n=1, M=1, pr=2, Nt=0.2, 

Le= Bi1=Bi2=1 

 

 
 

Figure 10. Impact of Brownian motion parameter 𝑁𝑏 on 

temperature profile for a=1, b=2, n=1, M=1, pr=2, 𝑁𝑡=0.2, 

Le=Bi1=Bi2=1 

 

Figure 11 and 12 illustrate the behavior of concentration and 

temperature profile for the impact of thermophoresis 

parameter. Both the profile increases as increasing the 

thermophoresis parameter. For large values of thermophoresis 

parameter Nt, thermophoresis forces are produced which 

increase temperature and concentration. 

Influence of Prandtl number on temperature and 

concentration profile shown in Figure 13 and 14. We know 

that large Prandtl number has lower thermal diffusivity. So, by 

increasing the value of the Prandtl number, the thermal 

boundary layer thickness decreases. In figure temperature and 

concentration profile both decreases as increasing Prandtl 

number. 

 
 

Figure 11. Influence of thermophoresis parameter 𝑁𝑡 on 

concentration profile for a=1, b=2, n=1, M=1, pr=2, 𝑁𝑏=0.1, 

Le=Bi1=Bi2=1 
 

 
 

Figure 12. Effect of thermophoresis parameter 𝑁𝑡 on 

temperature profile for a=1, b=2, n=0.5, Le=2, M=1, 𝑁𝑏=0.1, 

pr=0.7, Bi1=Bi2=0.2 
 

 
 

Figure 13. Impact of Prandtl number on temperature profile 

for a=1, b=2, n=0.5, Le=2, M=1, 𝑁𝑏=0.2, 𝑁𝑡=0.2, 

Bi1=Bi2=0.2 
 

 
 

Figure 14. Effect of Prandtl number on concentration profile 

for a=1, b=2, n=0.5, M=1, 𝑁𝑏 =0.2, 𝑁𝑡=0.2, 

Le=2, Bi1=Bi2=0.2 
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Figure 15. Influence on temperature of magnetic parameter 

M for a=2, b=1, n=0.5, M=5, pr=1, 𝑁𝑏=𝑁𝑡=0.2, Le=2, 

Bi1=Bi2=1 

 

 
 

Figure 16. Influence on velocity g’1 of magnetic parameter M 

for a=2, b=1, n=0.5, pr=1, 𝑁𝑏=𝑁𝑡=0.2, Le=2, Bi1=Bi2=1 

 

 
 

Figure 17. Effect of magnetic parameter M on velocity g’2 

for a=1, b=1, n=0.5, pr=1, 𝑁𝑏=𝑁𝑡=0.2, Le=1, Bi1=Bi2=0.2 

 

Influence on temperature and velocity profile of magnetic 

parameter M is shown in Figure 15, 16 and 17. By increasing 

value of magnetic parameter M thermal boundary layer 

thickness enhances and opposite behavior shown on velocity 

profiles. This happens because of magnetic field Lorentz force 

produces, which slow down the motion of fluid and increase 

temperature and concentration.  

 
 

Figure 18. Effect of power law index on velocity g’1 for a=2, 

b=1, M=1, pr=1, 𝑁𝑏=0.2, 𝑁𝑡=0.2, Le=2, Bi1=1, Bi2=1 

 
 

Figure 19. Effect of power law index on velocity g’1 for a=2, 

b=1, M=1, pr=1, 𝑁𝑏=𝑁𝑡=0.2, Le=2, Bi1=Bi2=1 

 

 
 

Figure 20. Influence on velocity g’2 of flow index n less than 

one for a=2, b=1, M=1, pr=1, 𝑁𝑏=𝑁𝑡=0.2, Bi1=Bi2=1 

 

 
 

Figure 21. Influence on velocity g’2 of flow index n greater 

than or equal to one for a=2, b=1, M=1, pr=1, 𝑁𝑏=0.2, 

𝑁𝑡=0.2, Le=2, Bi1=1, Bi2=1 

 

Impact of flow index on two velocity profile g′1 and g′2 are 

shown in Figure 18 to 21. For velocity g′1  we have two 

different behaviors for power law index n, near to sheet 

velocity profile enhances as n increases while it decreases far 

from the sheet and reverses the trend for velocity g′2. 

 

 

7. CONCLUSIONS 

 

1. Nanofluid concentration and temperature both decrease 

as increasing stretching ratio parameter. 

2. For an increase in thermal Biot number and concentration 

Biot number, Nano fluid concentration and temperature both 

increases. Concentration Biot number has not so much 

influence on the temperature of nanofluid. 

3. Nanofluid concentration decreases for large Lewis 

number. 

4. Nanofluid concentration and temperature both increases 

as increasing thermophoresis parameter 𝑁𝑡. 
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5. Nanofluid temperature increases as the increasing value 

of the Brownian motion parameter whereas fluid concentration 

decreases as increasing value of the Brownian motion 

parameter. 

6. A large value of Magnetic parameter enhances the fluid 

temperature whereas diminishing the velocity. 

7. The velocity g′1 and the velocity g′2 have two different 

behavior for power-law index 𝑛. 
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NOMENCLATURE 

 

a,b Positive constants 

B Applied magnetic field 
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𝐶  Nanoparticle volume fraction 

G Group 

𝐻, 𝐼, 𝐽, 𝐿,𝑀,𝑁, 
𝑃, 𝐴, 𝐸  

Functions of parameters 𝑏1, 𝑏2 

 

K Thermal conductivity 

Le Lewis number 

𝑇  Fluid temperature 

𝑢, 𝑣, 𝑤  Velocity components in  
𝑥, 𝑦, 𝑧 directions respectvily 

𝑥, 𝑦, 𝑧  Cartesian co-ordinates 

pr Prandtl number 

Re Reynolds number 

𝐵𝑖1, 𝐵𝑖2 The generalized Biot number 

𝐷𝐵  Brownian diffusion coefficient  

𝐷𝑇   Coefficient of Thermophoresis diffusion  

𝑇∞  The ambient temperature far away from the 

surface of the sheet 

𝐶∞  Concentration far away from the surface of 

the sheet 

𝑇𝑓  Convective temperature of the fluid  

ℎ𝑓  Convective heat transfer coefficient 

ℎ𝑠  Convective mass transfer coefficient 

𝐶𝑓  Convective concentration of fluid 

𝑏1, 𝑏2  Group parameter 

𝑢𝑤, 𝑣𝑤   Flat surface velocity in X and Y directions 

𝜂  Independent similarity variable 

𝛼  Thermal diffusivity 

𝜆  Positive rheological constant 

σ The electrical conductivity of the fluid 

𝜏  The ratio of the heat capacitance 

𝛼𝑖, 𝛽𝑖, 𝜆𝑖𝑗  constants 
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