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 The proportional-resonant (PR) controller is a traditional tool for current control. Due to 

the phase jump at the resonance point, the PR controller cannot compensate for the current 

in the inductor-capacitor-inductor (LCL)-based active power filter (APF) in a precise 

manner. To solve the problem, this paper puts forward a vector-proportional-integral (VPI) 

current control strategy, which relies on the VPI controller to compensate for the harmonic 

current of the n-th order under the alpha-beta (α-β) stationary coordinate system. Through 

theoretical analysis and contrastive experiment, it is learned that the closed-loop transfer 

function of the VPI controller satisfies 0dB of amplitude-frequency at the resonance point, 

and controls the phase response at the resonance frequency at 0°. Hence, the VPI strategy 

can track the harmonic current with no error, and thus fully compensate for the harmonic 

current. The proposed control strategy improves the current compensation precision of 

APFs, and provides a reference for enhancing the power quality of the grid. 
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1. INTRODUCTION 

 

Nonlinear loads like the power electronic equipment inject 

lots of harmonics and reactive power into the power system, 

reducing the power quality of the grid [1-4]. The injected 

harmonics can be compensated for with active power filters 

(APFs) in a precise, rapid and stable manner [5, 6]. As a result, 

these filters have been widely adopted in various industrial 

sites [7-10]. Before injecting the harmonic compensation 

current to the load side, the AFPs must be connected to the grid 

[11]. Among the various AFPs, the inductor-capacitor-inductor 

(LCL) filter stands out in that it can achieve the same filtering 

effect with lower inductance, size and cost. Hence, the LCL-

AFP is more popular than any other type of AFPs [12, 13]. 

Current control, as the key to the APF design, directly bears 

on the precision of current compensation [14]. Traditionally, 

the APFs adopt the proportional-resonant (PR) strategy for 

current control. Under this strategy, phase jump may occur at 

the resonance point, making the compensation imprecise. To 

solve the problem, Kouadria et al. [15] put forward a hybrid 

fuzzy sliding-mode control strategy. Krama et al. [16] tuned 

APF offline through particle swarm optimization (PSO). Fang 

et al. [17] and Ullah et al. [18] tracked the ideal current with 

an adaptive fuzzy-neural fractional-order controller. Despite 

their theoretical significance, the above methods are difficult 

to implement in engineering, due to the complexity of 

parameter design. Mahela and Shaik [19] and Benaissa et al. 

[20] determined harmonic components directly by identifying 

harmonic current. This direct method is not highly applicable, 

owing to its heavy computing load. To overcome these defects, 

this paper puts forward a vector-proportional-integral (VPI) 

current control strategy to compensate the n-th order harmonic 

current under the alpha-beta (α-β) stationary coordinate 

system. The α-β stationary coordinate system was selected to 

simplify the coordinate transform in the control system and 

ease the computing load. Compared with those under the a-b-

c stationary coordinate system and the rotating coordinate 

system, the three phases of the current under the α-β stationary 

coordinate system are not coupled [21]. Thus, the disturbance 

of the grid voltage on the control system can be neglected. The 

proposed control strategy enhances the precision of the LCL-

APF in harmonic current compensation.  

This paper firstly constructs a mathematical model of the 

LCL-APF under the α-β stationary coordinate system, and 

then explains the principle of VPI current control under that 

system. Next, the VPI strategy was compared with the PR 

strategy under the α-β stationary coordinate system. Based on 

the digital signal processor (DSP), the hardware and software 

of the proposed control strategy were designed, creating an 

experimental platform for LCL-APFs. Finally, the superiority 

of our strategy over the PR strategy under the α-β stationary 

coordinate system was verified through experiments. 

 

 

2. MATHEMATICAL MODELLING 

 

The main circuit of the LCL-APF is shown in Figure 1 [22-

23], where usa, usb and usc are grid voltage, i1x(x=a, b, c) is the 

converter-side current, L1 is the converter-side inductance, R1 

is the parasitic resistance of converter-side inductor, i2x(x=a, b, 

c) is the grid-side current; L2 is the grid-side inductance; is the 

parasitic resistance of grid-side inductor, and Cg is the parallel 

capacitor. The voltage of the parallel capacitor and that of the 

direct current (DC)-side are denoted as Ugx(x=a, b, c) and Udc, 

respectively. As shown in Figure 1, the bridge arm of each 

phase consists of four power electronic switches, and each 

phase is connected in reverse parallel with two clamping 

diodes to clamp the bridge arm at the midpoint. 
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Figure 1. The main circuit of the LCL-APF 

 

It is assumed that the power electronic switches on the main 

circuit of the LCL-APF take a negligible amount of time in 

phase change; the inductors are selected correctly to prevent 

saturation under normal working conditions; the three phases 

are balanced in the grid-side system. Under these assumptions, 

the mathematical model of the LCL-APF was established 

based on the switching function. 

On the main circuit of the LCL-APF, the on-off states of the 

three bridge arms in the three-phase converter can be denoted 

as switching variables Sa, Sb and Sc, respectively. Take the 

phase a bridge arm for example. This bridge arm has four 

power electronic switches, and thus three on-off states. The 

switching function Sa of the bridge arm can be expressed as: 
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( )

( )
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As shown in formula (1), under state 1, switches T1 and T2 

are on, while switches T3 and T4 are off; under state 0, switches 

T2 and T3 are on, while switches T1 and T4 are off; under state 

-1, switches T3 and T4 are on, while switches T1 and T2 are off. 

For convenience, the switching function was further 

decomposed as follows [24]: if Sa=1, then S1a=1, S2a=0 and 

S3a=0; if Sa=0, then S1a=1, S2a=0 and S3a=1; if Sa=-1, then S1a=1, 

S2a=1 and S3a=0. The switching functions of phase b and phase 

c were defined and decomposed as that of phase a. 

 

 
 

Figure 2. The equivalent circuit of the LCL-APF 

 

If the frequency band is effectively controlled, the LCL 

filter is equivalent to an inductor (L) filter [25]. Hence, the 

parallel capacitance was neglected, and the parasitic 

resistances of grid-side and converter-side inductors in the 

LCL-APF were converted into an equivalent resistance Rs, and 

the grid-side and converter-side inductances were converted 

into an equivalent inductance Ls. In this way, the equivalent 

circuit of the LCL-APF can be obtained as Figure 2 above. 

According to the equivalent circuit and Kirchhoff’s voltage 

law (KVL), the three-phase voltage loop can be described as: 
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where, usx(x=a, b, c) is the three-phase grid voltage (V); icx(x=a, 

b, c) is the three-phase compensation current of the LCL-APF 

(A); uxn(x=a, b, c)is the output voltage of the converter (V); Ls 

is the equivalent inductance of the LCL-APF (mH); Rs is the 

equivalent resistance of the LCL-APF (Ω); uno is the neutral-

point potential difference between the converter-side and the 

grid-side (V);  

 

1 dc1 3 dc2 ( a,b, )jn j j cu S u S u j= + =  (3) 

 

( ) / 3no an bn cnu uu u= − + +  (4) 

 

Next, the three-phase current loop can be described by the 

Kirchhoff’s current law (KCL) as: 
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,
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Then, the mathematical model of the LCL-APF under the 

abc stationary coordinate system can be derived from formula 

(2) and formula (5): 

 

= +Z X AX Be  (6) 

 

 1 2     C   Cs s sdiag L L L=Z  (7) 

 

 a dc1 dc2        
T

c cb cci i i u u=X  (8) 
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 1  1  1  0  0diag=B  (10) 

 

 sa sb sc      0  0
T

u u u=e  (11) 

 

The abc stationary coordinate system was converted into the 

α-β stationary coordinate system by the equal power transform 

matrix 
3 /2s sC : 
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(12) 

 

Through the transform, the grid voltage us, LCL-APF output 

current ic and LCL-APF switching function S can be described 

as follows under the α-β stationary coordinate system: 
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To sum up, the mathematical model of the LCL-APF under 

the α-β stationary coordinate system can be established as: 
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It can be seen that the mathematical model of the LCL-APF 

has no coupling between variables on the two axes under the 

α-β stationary coordinate system. The two phases are 

independent of each other. Thus, each axis can be studied as a 

single phase system. 

 

 

3. PRINCIPLE OF OUR CURRENT CONTROL 

STRATEGY UNDER Α-Β STATIONARY COORDINATE 

SYSTEM 

 

The framework of VPI current control under the α-β 

stationary coordinate system was analyzed in details to verify 

the feasibility of the strategy. Figure 3 illustrates the principle 

of the VPI current control under the said system. 

In Figure 3, the harmonic current is detected in the 

following steps: first, the three-phase currents of the nonlinear 

load and the grid are sampled; the harmonic compensation 

command is computed and converted through Clarke 

transform into the APF current command under the α-β 

stationary coordinate system; then, the current command is 

imported to the VPI current controller; after that, the output of 

the controller is taken as the sinusoidal pulse width modulation 

(SPWM) voltage command, and inputted to the SPWM device; 

finally, the pulse width modulation (PWM) signal is sent to the 

APF converter to complete the closed-loop control of current. 

grid

Harmonic current 

detection

VPI controller

SPWM

Proportional-

integral (PI) 

controller

Nonlinear load

Converter
C

1L2L
1R2R
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sbi
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βi αi βi

C
cai cbi cci

cai cbi cci
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Figure 3. The principle of VPI current control under the α-β stationary coordinate system 
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The transfer function of the VPI controller can be described 

as: 

 

( ) ( )

2

2 22 2
( )

ph ih

VPI

e e

K s K s
G s

s h s h 
= +

+ +
 (21) 

 

The next step is to examine the time-domain response of the 

VPI controller. Let M sin(het+) be the alternative current 

(AC) input signal with the frequency of he. The time-domain 

response of the AC signal after passing through the first-order 

term of the VPI controller can be expressed as: 
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The above time-domain response can be converted into (24) 

through the Laplace transform (23): 
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Hence, the time-domain response of the AC signal M 

sin(het+) after passing through the VPI controller can be 

obtained by adding up f1 and f2: 
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(25) 

 

With the elapse of time t, any t-containing parts in the 

product term become much larger than those without t. Hence, 

the first and third terms in (25) are negligible. Then, formula 

(25) can be rewritten as: 

 

1 2 cos( )
2

              sin( )
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e e

i

e

K
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According to formula (26), after the AC signal passes 

through the VPI controller, the integral of the amplitude of the 

original signal and that of the signal that leads the phase of the 

original signal by 90° can be obtained relative to time t. If the 

VPI controller is applied to the APF, the angular frequency 

he of harmonic current will increase with the order of the 

harmonic current to be compensated for. In this case, the first 

term in formula (26) is the dominant term. Then, the domain 

response can be described as: 

 

cos( +90 )
2

p

e e

K
f Mth h t   +   (27) 

 

It can be seen that the VPI controller can complete the 

amplitude integration of the signal that leads the phase of the 

original signal by 90° under the α-β stationary coordinate 

system. Hence, the VPI controller can regulate the harmonic 

current of any order under the α-β stationary coordinate system 

with no static error. 

To enhance the precision of VPI current control, the 

proportional term Kp was added to create a proportional-VPI 

controller. The transfer function of the new controller can be 

expressed as: 

 

( )

2

22
( )

ph ih

VPI p

e

K s K s
G s K

s h

+
= +

+
 (28) 

 

As shown in formula (28), the VPI current control 

compensates for the harmonic current of each order by 

implementing α-β transform with angular frequency ωe  of the 

fundamental wave, and superimposing the transfer functions 

of the harmonic current controllers. Figure 4 presents the block 

diagram of the proposed VPI current control under the α-β 

stationary coordinate system. 
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Figure 4. The block diagram of the proposed VPI current 

control under the α-β stationary coordinate system 

 

 

4. FEATURES OF VPI CONTROLLER UNDER Α-Β 

STATIONARY COORDINATE SYSTEM 

 

The above analysis shows that, under the α-β stationary 

coordinate system, the VPI strategy has a second-order term in 

the numerator, which is not included in the PR strategy. Due 

to the second-order term, the time-domain response of the VPI 

controller is the integral of the signal that leads the phase of 

the original signal by 90°. The phase advance offsets the 90° 

phase lag in closed-loop frequency response in the current loop 

of the LCL filter, and maintains the amplitude-frequency at 

0dB at the resonance point, providing a guarantee of the 

precision of current control. 

First, the authors compared the open-loop amplitude-

frequencies in the current loop of the VPI controller and the 

PR controller under the α-β stationary coordinate system, 

when the transfer functions of the VPI controller and the PR 

controller are GVPI(s)=1+(s2+100s)/(s2+(he)2) and 
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GPR(s)=1+100s/(s2+(he)2), respectively.  

As shown in Figure 5, under the α-β stationary coordinate 

system, the response of the VPI controller had a phase advance, 

without any -90° jump at the resonance point. If the VPI 

controller is added to the LCL-APF, there will not be any -180° 

phase jump at the resonance point in terms of open-loop 

amplitude-frequency, which ensures the stability of the control 

system. The phase advance of the VPI controller under the α-

β stationary coordinate system pushes up the phase of the 

open-loop transfer function in current loop of the APF, making 

up for the 90° phase lag caused by the LCL filter. The phase 

margin at the resonance frequency will be 90° greater than that 

of the PR controller under the α-β stationary coordinate system, 

expanding the stability margin of the APF open-loop control 

of current. 

Next, the authors compared the closed-loop amplitude-

frequencies in the current loop of the VPI controller and the 

PR controller under the α-β stationary coordinate system, 

when the transfer functions of the VPI controller and the PR 

controller are still GVPI(s)=1+(s2+100s)/(s2+(he)2) and 

GPR(s)=1+100s/(s2+(he)2), respectively. As shown in Figure 

6, under the α-β stationary coordinate system, the VPI 

controller had no amplitude response peak near the resonance 

frequency, and maintained the amplitude gain of 0dB at the 

harmonic current frequency for the n-th order of the harmonic 

current to be compensated for by the APF. Under the said 

system, the VPI achieved a phase response of 0° at the 

resonance point, such as the current command obtains the 

passband characteristic for harmonic current at each specified 

order. By contrast, the PR controller was unstable at the 

resonance frequency under the same system, owing to phase 

change, and faced abnormal amplitude response peak near the 

resonance frequency. The comparison shows the VPI 

controllers overcame the defects of the PR controller under the 

α-β stationary coordinate system, enhancing the control 

precision of harmonic current. 

 

 
 

Figure 5. The Bode diagrams of PR and VPI controllers for open-loop current control 

 

 
 

Figure 6. The Bode diagrams of PR and VPI controllers for closed-loop current control 
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In summary, the proposed VPI current control strategy 

under the α-β stationary coordinate system is suitable for the 

LCL-APF, and outperforms the PR controller under the same 

system. While both controllers can realize error-free control of 

AC signals, the VPI controller, with a phase advance under the 

said system, can make up for the phase lag of the LCL filter, 

and control the closed-loop frequency response at the ideal 

level of 0°, thereby improving the precision of current control. 

 

 

5. EXPERIMENTAL VERIFICATION 

 

The effectiveness of the proposed VPI current control 

strategy under the α-β stationary coordinate system was 

verified through experiments on a self-designed platform for 

LCL-APFs. The parameters of the platform, elements and 

filter are listed in Tables 1 and 2. 

With the typical LCL filter at the interface of the porotype, 

the PR strategy and VPI strategy were separately adopted to 

control the current, under the α-β stationary coordinate system. 

The order of the harmonic current to be compensated for was 

set to 5, 7, 11, 13, 17 and 19 in turn. 

Figures 7-9 show the waveforms and spectra of the original 

grid-side three-phase current, those of the grid-side three-

phase current compensated for by the LCL-APF with PR 

strategy, and those of the grid-side three-phase current 

compensated for by the LCL-APF with the VPI strategy, 

respectively. Table 3 provides the total harmonic distortions 

(THDs) of the original and compensated grid-side three-phase 

currents.  

As shown in Figure 8, Figure 9 and Table 3, the VPI strategy 

compensated the current of the LCL-APF more precisely than 

the PR strategy under the α-β stationary coordinate system. 

 

Table 1. The parameters of the LCL-APF experimental 

platform 

 

Name Value 

System line voltage 380V 

DC-side voltage 740V 

Control strategy VPI 

AC-side voltage 2,000  

Switching frequency 10kHz 

Modulation strategy SPWM 

Converter Neutral point-clamped (NPC) converter 

Filter LCL 

 

Table 2. The parameters of the LCL filter 

 

Parameter sign [unit] Value 

𝐿1[mH] 0.3 

𝐿2[mH] 0.086 

𝐶𝑓[uF] 20 

𝑅𝑑[𝛺] 1 

 
 

Figure 7. The original three-phase current 

 

 
 

Figure 8. The three-phase current compensated by the PR strategy 

 

 
 

Figure 9. The three-phase current compensated by the VPI strategy

μF
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Table 3. The THDs of the original and compensated grid-side three-phase currents 

 

Order of harmonic current Original current/% 

A     B     C 

PR-compensated current/% 

A   B   C 

VPI-compensated current/% 

A    B   C 

THD 24.7 25.3 24.4 3.4 3.2 2.9 1.9 2.1 2.2 

5 21.5 21.8 21.2 1.5 1.4 1.3 0.8 0.8 0.9 

7 9.3  9.7  8.9 1.1 1.0 0.9 0.5 0.6 0.6 

11 6.1  6.4  5.8 0.7 0.7 0.6 0.3 0.4 0.4 

13 3.8  4.1  3.6 0.5 0.4 0.4 0.2 0.3 0.3 

17 2.9  3.1  2.7 0.3 0.3 0.2 0.2 0.2 0.2 

19 1.8  2.1  1.7 0.2 0.2 0.1 0.1 0.1 0.1 

 

 

 

6. CONCLUSIONS 

 

The traditional PR current control strategy cannot offset the 

decline of compensation precision induced by the phase lag of 

the LCL-APF. To solve the problem, this paper puts forward 

the VPI current control strategy under the α-β stationary 

coordinate system. The proposed strategy was found to 

outperform the PR strategy in compensation precision under 

the said system, through theoretical analysis and contrastive 

experiments. 
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