
Spatial-Temporal Correlation-Based LSTM Algorithm and Its Application in PM2.5 

Prediction 

Yanming Zhao 

Department of Mathematics and Computer Science, Hebei Normal University for Nationalities, Chengde 067000, China 

Corresponding Author Email: zhaoyanming008@163.com

https://doi.org/10.18280/ria.340104 ABSTRACT 

Received: 10 September 2019 

Accepted: 1 December 2019 

In existing researches, the algorithms for simulating and predicting the evolution process 

of air pollutant particle concentration have neither explored the spatial correlation of 

particle concentration in depth, nor achieved the fusion of the time dependence and the 

spatial correlation of the particle concentration. To this end, this paper proposes the long-

short term memory network (LSTM) algorithm based on spatiotemporal fusion. First, the 

spatial correlation, the relevant factors and the calculation methods are proposed; then, the 

local spatial correlation factors are combined with the forget gate and the remember gate of 

the LSTM algorithm to construct a LSTM algorithm based on local spatial information and 

spatial-temporal correlation, namely the LTS-LSTM; after that, the learning result of LTS-

LSTM is combined with the global spatial correlation factors to construct a LSTM 

algorithm based on global spatial information and spatial-temporal correlation, namely the 

GTS-LSTM; at last, the proposed algorithm is adopted to simulate the global and local air 

pollution particle concentration evolution process, and predict the particle concentration. 

On the global and local observation dataset, the proposed algorithm is compared with the 

regression algorithm, support vector machine (SVM), fuzzy neural network (FNN), LSTM 

neural network, GC-LSTM neural network, and DL-LSTM neural network. The 

comparison results show that: in terms of air particle concentration prediction, the 

performance of the proposed algorithm outperforms other traditional prediction algorithms, 

and its performance is close to the deep LSTM algorithms. 
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1. INTRODUCTION

Air pollution is closely related to human health. In 2013, the 

research of Zheng et al. [1] showed that real-time prediction of 

the concentration of air pollutant particles is of great 

significance for controlling air pollution and reducing health 

problems caused by air pollution. The research of Di et al. [2] 

in 2017 and the research of Hung et al. [3] in 2018 respectively 

pointed out that: for the particles, the smaller the volume, the 

stronger the water solubility, the stronger the penetrability into 

the respiratory system, the higher the adsorption rate, and the 

greater the impact on human health. Therefore, the evolution 

process of PM2.5 particle concentration and the prediction 

algorithms have become hot topics in current studies. 

At present, the prediction algorithms for the evolution 

process of the concentration of air pollutant particles mainly 

include two categories: the process model algorithms and the 

statistical algorithms. Wherein the process model algorithms 

[4-7] construct models based on the prior knowledge of 

meteorological theories and the atmospheric physicochemical 

reaction processes to achieve modeling, simulation and 

concentration prediction of the evolution process of the 

concentration of air pollutant particles. In terms of research 

areas and research methods, such algorithms studied the 

spatial-temporal distribution characteristics and evolution 

process of the concentration of air pollutant particles and 

achieved good research results. However, the algorithms 

proposed based on prior knowledge and atmospheric 

physicochemical process is a non-linear air quality prediction 

method constrained by multi-dimensional conditions, and 

these algorithms are not universal.  

The statistical algorithms can overcome the shortcomings of 

the process model algorithms, such algorithms can be divided 

into non-neural network algorithms and neural network 

algorithms. Wherein the non-neural network algorithms 

include: multiple linear regression (MLR) [8], support vector 

regression (SVR) [4], wavelet-ARMA/ARIMA algorithm [9], 

etc. The statistical algorithms can overcome the shortcomings 

of the process model algorithms via regression, and achieved 

good simulation and prediction results in research and 

application fields. 

The experiment conducted by Yoon et al. [10] in 2011 

showed that artificial neural networks (ANN) have good 

application value in the simulation and prediction of the 

evolution process of the concentration of atmospheric 

pollutant particles. In the past ten years, various ANN 

algorithms have been designed at home and abroad to predict 

air pollutant concentration. ANN algorithms include common 

neural network algorithms and special neural network 

algorithms. Common neural network algorithms include: air 

quality prediction algorithm based on radial basis function 

neural network (RBFNN) [11], air quality prediction 

algorithm based on multi-layer perceptron (MLP) [12], time 

delay neural network (TDNN) [13], Elman neural network 

[14], and air prediction algorithm based on fuzzy neural 

network (FNN) [15]. Algorithms of this type generally apply 
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different neural network algorithms to the simulation of the 

evolution of atmospheric pollutant particles and the prediction 

of particle concentration, and can achieve good results. 

However, these algorithms have ignored that the research 

object is the feature of time series, and they ought to start from 

the perspective of time series to learn the time-dependent 

feature of the process. 

Therefore, in 2011, Feng et al. [16] applied the recurrent 

neural network (RNN) based on time-dependent feature 

learning to air quality prediction and achieved good results. In 

2015, Ma et al. [17] pointed out that RNN can effectively 

extract the time-dependent feature of time series, and ensure 

the ability to learn time series. However, the problems of 

gradient vanishing or gradient exploding have restricted the 

long-term time-dependent feature of RNN in learning time 

series. Therefore, in 1997, Hochreiter and Schmidhube 

developed a LSTM neural network (LSTM NN) to solve the 

gradient problems of traditional RNNs and realize the long-

term time dependence learning of time series. 

In recent years, LSTM algorithms have achieved good 

research results in the field of simulation and prediction of the 

evolution process of air pollutant particle concentration, and 

the representative algorithms include: LSTM method and 

evaluation algorithm [18], ensemble-LSTM algorithm [19], 

CNN-LSTM algorithm [20], LSTM-FC algorithm [21]; 

LSTM algorithms based on air pollutant particle concentration 

characteristics: GC-LSTM algorithm [22], spatiotemporal 

convolutional LSTM algorithm [23]; LSTM algorithm based 

on deep learning: DL-LSTM algorithm [24], Multi-output DL-

LSTM algorithm [25]; Deep DL-LSTM algorithm [26]. 

Algorithms of this type took the LSTM algorithm as the core, 

starting from the structural characteristics of the research 

object, they improved the LSTM algorithm to effectively 

simulate the evolution process of the concentration of 

atmospheric pollutant particles and improve the prediction 

performance of the algorithm, moreover, based on data 

analysis, they introduced CNN, FC, GC, DL, and other 

algorithms to optimize the input data and preliminarily 

explored the spatial correlation of the evolution process of 

particle concentration. 

In summary, the LSTM-based atmospheric particle 

concentration evolution process simulation and concentration 

prediction algorithms have achieved good results, but still, 

they have the following shortcomings: 1) These algorithms 

have ignored the spatial correlations of the observation space, 

including global and local spatial correlations; 2) These 

algorithms have not explored the spatial correlation of the 

evolution process of the concentration of atmospheric particles; 

3) These algorithms have not effectively integrated spatial 

correlation into the logic gate of the LSTM algorithms to 

achieve LSTM improvement in time dependence and spatial 

correlation or applied them to simulate and predict the 

evolution process of the concentration of atmospheric 

pollutant particles. 

To solve these problems, this paper proposes a LSTM 

algorithm based on spatial-temporal correlations and applies it 

to PM2.5 concentration prediction. The main innovations in 

this paper include: 1) It proposes the global and local spatial 

correlations and their calculation methods to achieve the 

universality of the algorithm. 2) It proposes to combine the 

local spatial information correlation factors with the forget 

gate and remember gate of LSTM algorithm to construct the 

LTS-LSTM algorithm based on local spatial information, so 

that the LSTM algorithm has the ability to learn local spatial 

information features. 3) With the learning result of LTS-

LSTM algorithm as the input, this study combines with the 

global spatial correlation to construct the GTS-LSTM 

algorithm based on global spatial information, then from the 

global perspective of geographic information, it stimulates the 

evolution process of the concentration of air pollutant particles 

and predicts the particle concentration. 

 

 

2. THE LSTM ALGORITHM BASED ON SPATIAL-

TEMPORAL CORRELATIONS 

 

The evolution process of the particle concentration of 

atmospheric pollutant PM2.5 has high time dependence and 

spatial correlation. Therefore, constructing a LSTM NN with 

temporal and spatial memory functions enables us to better 

simulate the evolution process of PM2.5 and accurately predict 

the PM2.5 particle concentration. 

 

2.1 PM2.5 particle concentration has spatial correlation 

 

Feng et al. [27] preliminary studied the geographical 

correlation of the evolution process of the concentration of 

atmospheric pollutant particles, and pointed out that the 

geographical correlation factors include wind strength, wind 

direction and geographical location. However, these literatures 

have ignored the relationship between geographic correlation 

and the scope of the research area. Therefore, according to the 

scope of the research area, this paper divides the research area 

into two types: global spatial area and local spatial area. In 

local area, geographical correlation factors include wind 

strength, wind direction, and geographic location; in global 

area, the geographical correlation is also affected by key 

spatial factors such as mountains and vegetation, etc. For 

different areas, the key factors that determine the geographical 

correlation are different as well. Therefore, the spatial 

correlation information diagram is drawn as follows: 

 

 
 

Figure 1. Spatial correlation information 
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In Figure 1, pi and pj represent two adjacent air quality 

monitoring stations; 𝑀𝑜𝑢𝑛𝑡𝑎𝑖𝑛_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  represents the 

mountain influence coefficient of the PM2.5 particle 

concentration between the two adjacent points pi and pj, and 

this coefficient is related to the span, height of the mountain, 

and the angle between the mountain and the connection line 

between pi and pj, it’s defined as 𝑀𝑜𝑢𝑛𝑡𝑎𝑖𝑛_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
𝑀_𝑙𝑒𝑛𝑔𝑡ℎ × 𝑀_𝑤𝑖𝑑𝑡ℎ × 𝑀_ℎ𝑖𝑔ℎ × 𝑐𝑜𝑠 𝜃 ; this coefficient 

has good slow-varying feature and wind power instantaneity, 

it is a long-term and dynamic changing process, the larger the 

area, the stronger the stability. 𝑊𝑖𝑛𝑑_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 represents 

the wind influence coefficient of the PM2.5 particle 

concentration between the two adjacent points pi and pj, this 

coefficient is related to the wind strength, wind direction, and 

the angle between the wind direction and the connection line 

between pi and pj, it’s defined as 𝑊𝑖𝑛𝑑_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
𝑝𝑜𝑤𝑒𝑟_𝑤𝑖𝑛𝑑 × 𝑐𝑜𝑠 𝜑 . 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  represents 

the vegetation influence coefficient of the PM2.5 particle 

concentration between the two adjacent points pi and pj, this 

coefficient is related to the luxuriant degree of the vegetation 

between pi and pj, here we use the NDVI coefficient to 

represent 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ; this coefficient can 

reflect the flourishing degree of  vegetation in this area, and it 

is less affected by other conditions. D(j,i) represents the 

distance between pj and pi, here we use the Euclidean distance 

of the latitude and longitude between the two points to 

represent it.  

Formula (1) represents the geospatial information 𝜏(𝑖, 𝑗) of 

the PM2.5 particle concentration, this information indicates 

the correlation between the particle concentration at the 

neighbor observation point and the particle concentration at 

the current observation point. 

 

𝜏(𝑖, 𝑗) =  

𝑊𝑖𝑛𝑑_𝑐𝑜𝑓𝑓𝑖𝑐𝑒𝑛𝑡 × 𝑀𝑜𝑢𝑛𝑡𝑎𝑖𝑛_𝑐𝑜𝑓𝑓𝑖𝑐𝑒𝑛𝑡 

× 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑓𝑓𝑖𝑐𝑒𝑛𝑡/𝐷(𝑖, 𝑗) 

(1) 

 

In global space, the real-time attributes of wind (strength 

and direction), geographical location, regional mountains, and 

regional vegetation are all key influencing factors and are all 

affected by time lag. In local area, the distance between 

observation points is relatively close. The key factors that 

determine the geospatial information correlation include the 

real-time attributes of the wind (strength and direction), and 

the geographical location. Therefore, Formula (1) is converted 

into. 

 

𝜏(𝑖, 𝑗) = 

{

𝑊_𝑤𝑖𝑛𝑑 × 𝑐𝑜𝑠𝜃 × 𝑀_𝑚𝑜𝑢𝑛𝑡𝑎𝑖𝑛  
× 𝑐𝑜𝑠𝜑 × 𝑁𝐷𝑉𝐼/𝐷(𝑖, 𝑗)

𝐺𝑙𝑜𝑏𝑎𝑙𝑎𝑟𝑒𝑎

𝑊_𝑤𝑖𝑛𝑑 × 𝑐𝑜𝑠𝜃/𝐷( 𝑖, 𝑗)           𝑙𝑜𝑐𝑎𝑙𝑎𝑟𝑒𝑎
 

(2) 

 

Formula (2) is taken as the calculation criterion of local 

spatial correlation to complete the local area spatial 

information correlation calculation and generate local 

geographic correlation vectors with real-time features. 

Therefore, the local spatial correlation coefficient matrix and 

the global spatial correlation coefficient matrix are: 

 

𝜋 =

[
 
 
 
 
𝜋11 𝜋12 𝜋13 𝜋1𝑛
𝜋21 𝜋22 𝜋23 𝜋2𝑛
𝜋31 𝜋32 𝜋33 𝜋3𝑛

𝜋𝑛1 𝜋𝑛2 𝜋𝑛3 𝜋𝑛𝑛]
 
 
 
 

 

𝜏 =

[
 
 
 
 
𝜏11 𝜏12 𝜏13 𝜏1𝑛
𝜏21 𝜏22 𝜏23 𝜏2𝑛
𝜏31 𝜏32 𝜏33 𝜏3𝑛

𝜏𝑛1 𝜏𝑛2 𝜏𝑛3 𝜏𝑛𝑛]
 
 
 
 

 

 

2.2 LSTM algorithm 

 

LSTM network is a special type RNN which consists of an 

input layer, an output layer, and a series of repeatedly 

connected hidden layers. It implements time-dependence 

learning in the form of threshold and has many variants. This 

paper adopts the LSTM algorithm with the following structure 

(Figure 2).  

 

 
 

Figure 2. LSTM neural network structure 

 

Here, the input vector of the LSTM algorithm is denoted 

as ℵ = (𝑥1, 𝑥2, 𝑥3, . . . 𝑥𝑛) , 𝑥𝑖 ∈ 𝑅𝑇 , 𝑖 = 1,2,3, . . . , 𝑛; , and n 

represents the number of dimensions of the input vector. T 

represents the time lag of the time series. 𝑌 =
(𝑦1, 𝑦2, 𝑦3 , . . . 𝑦𝑛)  represents the output series; then the 

learning process of the LSTM algorithm is described as: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1,x𝑡] + 𝑏𝑓) (3) 

 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡 , 𝑥𝑡] + 𝑏𝑖) (4) 

 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡 (5) 
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𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (6) 

 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (7) 

 

where, it, ot and ft respectively represent the input gate, output 

gate, and forget gate of the LSTM network; ct and ht 

respectively represent the activation vector of each neuron cell 

and memory module; w and b respectively represent the 

weight matrix and the bias vector; in addition, σ() represents 

the activation function, which is defined as the Formula (8); 

𝑡𝑎𝑛ℎ( ⋅) represents hyperbolic tangent function 𝑡𝑎𝑛ℎ(), and it 

is defined as Formula (9). 

 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (8) 

 

𝑡𝑎𝑛ℎ( 𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (9) 

 

This paper adopts the BPTT algorithm to train the LSTM 

network. 

 

2.3 LSTM algorithm that fuses geospatial information 

 

The PM2.5 particle concentration observation series is a 

long-term time-dependent time series. The LSTM algorithm 

can well learn the time-dependent features of the time series 

but it cannot learn the spatial correlation of PM2.5 particle 

concentration. Based on this, this paper proposes a spatial-

temporal correlation-based LSTM algorithm that combines the 

time-dependence and spatial correlation of PM2.5 particle 

concentration from the micro-units of the LSTM, enabling 

LSTM to fuse the learning of the time-dependence and the 

spatial correlation. Combining with the spatial classification 

of the particle concentration, here we propose the two-step 

simulation and prediction algorithm.  

The first step: the LTS-LSTM algorithm that fuses local 

spatial correlation information. According to the spatial 

information logic switch (K=1), achieve the learning of the 

spatial correlation information of the local area. The functional 

structure of the LTS-LSTM algorithm is Figure 3: 

 

 
 

Figure 3. Functional structure of the LTS-LSTM algorithm (PGMGI is the parameter generation module of the geographic 

information; SGI is the sequence of the geographic information) 

 

Spatial correlation can accelerate or decelerate the evolution 

process of the concentration of PM2.5 particles,  𝜏(𝑖, 𝑗) >
0indicates that the neighbor observation point j promotes the 

positive increase of PM2.5 particle concentration at 

observation point i, which is reflected in the increase in 

remembering and the decrease in forgetting,  𝑃1𝑡 =
1-𝜏(𝑖, 𝑗) ,  𝑃2𝑡 = 𝜏(𝑖, 𝑗) ; conversely, it indicates that the 

neighbor observation point j promotes the positive decrease of 

PM2.5 particle concentration at observation point i, which is 

reflected in the decrease in remembering and the increase in 

forgetting,  𝑃1𝑡 = 1-|𝜏(𝑖, 𝑗)|, 𝑃2𝑡 = |𝜏(𝑖, 𝑗)|. 
Therefore, improve the Formulas (3) and (4) that 

respectively represent remembering and forgetting, and the 

improvement results are: 𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1,x𝑡，𝑝1t] + 𝑏𝑓) 

and 𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡 , 𝑥𝑡 , 𝑝2𝑡] + 𝑏𝑖) . Introduce the spatial 

correlation information p1t and p2t into the calculation of 

remember gate and forget gate, combining the calculations of 

the spatial information correlation and time-dependence, and 

achieve the fused learning of local spatial correlation 

information and time-dependence information, wherein 

 𝑃𝑘𝑡 = 𝜏(𝑖, 𝑗). 

The second step: GTS-LSTM algorithm that fuses global 

spatial correlation information. According to the geographic 

information logic switch (K=2), the global geographic 

information is integrated with the micro-output of the LSTM 

network to achieve the learning of the geographic information 

correlation of the global area (Figure).  

 

 
 

Figure 4. GTS-LSTM algorithm function diagram (GI is the 

global geographic information; GGICM is the calculation 

module of global geographic information) 
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In global space, the distance between observation stations is 

relatively long, there might be mountains between the stations, 

and the influence of the mountains and vegetation on the 

evolution process of the concentration of PM2.5 particles is 

quite obvious, so it must be taken into account in the 

calculation; in the global area, according to the global spatial 

correlation coefficient matrix, the spatial correlation between 

each station is calculated. Therefore, the product of the LTS-

LSTM output and the global spatial correlation coefficient 

matrix is calculated to realize the fused learning of global 

spatial correlation and time dependence. The result is: Hπ(i). 

After the two steps of the learning of spatial correlation and 

time-dependence, the algorithm has realized the fused learning 

of global spatial correlation and time dependence, and solved 

the problem that the LSTM network can only realize time-

dependence learning, not spatial correlation learning. The 

proposed algorithm achieved the fused learning of global and 

local geographic information correlation and time-dependence, 

and explored the problem of how to solve spatial information 

in time series. 

 

2.4 Evaluation methods for the prediction algorithms 

 

This paper adopts three evaluation indicators to achieve the 

evaluation of the performance of the algorithms, namely the 

root means square error (RMSE), the mean absolute error 

(MAE), and the mean absolute percentage error (MAPE). The 

indicators can be expressed as follows: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖

∗)2

𝑁

𝑖=1

 (10) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖

∗|

𝑛

𝑖=1

 (11) 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦𝑖 − 𝑦𝑖
∗|2

𝑦𝑖
∗

𝑛

𝑖=1

 (12) 

 

where, 𝑦𝑖
∗ is the observed air pollutant concentration, 𝑦𝑖 is the 

predicted air pollutant concentration, and n is the number of 

test samples. 

 

 

3. VALIDATION DATASET AND EXPERIMENTAL 

RESULTS 

 

3.1 Algorithm research area and corresponding validation 

dataset 

 

This paper chooses global dataset and local dataset to study 

the performance of the proposed algorithm. The global dataset: 

the Beijing-Tianjin-Hebei region, China, this region contains 

the main factors affecting the formation of PM2.5 in 

developing countries, so it has good representativeness. The 

data in the dataset was the 24-hour average PM2.5 particle 

concentration data collected by the National Meteorological 

Administration in the past seven years. The local area dataset: 

12 air quality monitoring stations in Beijing, China, the dataset 

includes 24-hour PM2.5 particle concentration data. The 

global area and the local area datasets were divided into a test 

set and a training set with a ratio of 20:80 (Figure 5). 

 

 
a) Distribution map of local air quality monitoring stations in Beijing b) Distribution map of global air quality monitoring stations 

in Beijing-Tianjin-Hebei region 

 

Figure 5. Global and local research areas  

 
Note: Global area includes: north new district, Fengtai Yungang, National Agricultural Exhibition Center, Chengde, Langfang, Baoding, Shijiazhuang, Handan, 

Dongli, Jinnan, Development Zone and Wuqing District; Tianjin Economic-Technological Development Area; Local area includes: north new district, Botanical 
Garden, Wanliu, Olympic Sports Center, National Agricultural Exhibition Center, Dongsi, Guanyuan, Gucheng, Temple of Heaven, Wanshou West Palace, Fengtai 

Garden and Fengtai Yungang 

 

3.2 Spatial correlation of PM2.5 particle concentration 

 

Pearson correlation coefficient can accurately describe the 

correlation of the data. In this paper, this coefficient is used to 

research the spatial correlation of PM2.5 pollutant particle 

concentration, calculate the spatial correlation coefficient of 

particle concentration at different observation stations in the 

global area (Beijing-Tianjin-Hebei) and local area (Beijing), 
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and plot the distribution maps of spatial correlation (Figure 6). 

The experimental results show that, in the 1-hour time-lag 

area, the Pearson correlation coefficient of PM2.5 

concentration at 12 air monitoring stations in Beijing was 

higher than 0.8, and the correlation coefficient of adjacent 

stations was higher than 0.91. Therefore, the PM2.5 

concentration of the 12 observation stations had a strong 

spatial correlation, and the correlation of the adjacent stations 

was higher than that of the distant stations. In the 36-hour 

time-lag area, the Pearson correlation coefficient of PM2.5 

concentration at 12 air monitoring stations in Beijing was 

higher than 7.7, and the correlation coefficient of the adjacent 

stations was higher than 0.89. Therefore, the PM2.5 

concentration of the 12 observation stations had a strong 

spatial correlation, and the correlation of the adjacent stations 

was higher than that of the distant stations. In summary, in the 

appropriate time-lag areas, there’s strong correlation between 

adjacent global and local spaces, and the local spatial 

correlation was higher than the global spatial correlation.  

 

 
a) Local area Pearson coefficient distribution map with 1-hour time-lag coefficient 

 
b) Global area Pearson coefficient distribution map with 36-hour time-lag coefficient 

 

Figure 6. Pearson correlation coefficient distribution of PM2.5 particle concentration 

 

3.3 Long-term time-dependence of PM2.5 particle 

concentration 

 

This paper uses the autocorrelation coefficient method to 

analyze the time dependence of the time series, and calculates 

the autocorrelation coefficients of the PM2.5 concentration 

samples from 12 air quality monitoring stations in the global 

area, these samples covered all four seasons in a year, for each 

season, 75 samples were collected; the autocorrelation 

coefficient of the PM2.5 concentration of the samples within 

36 hours in the local area was calculated and a diagram of the 

correlation coefficient was plotted as follows (Figure 7). 

 

    
a) Local spatial time dependence          b) Global spatial time dependence 

 

Figure 7. Relationship between time-lag and PM2.5 particle concentration autocorrelation coefficient in local and global spaces 

 

The experimental results show that, in local and global 

spaces, there’s a long-term time dependence in the particle 

concentration between observation stations, and the time-lag 

relationship was quite clear. Compared with the long-term 

34



 

time dependence of local area, the time-lag of the long-term 

time dependence of global area is much longer. 

 

3.4 Time-lag of PM2.5 particle concentration and 

algorithm performance 

 

Time-lag can restrict the learning performance of time 

series algorithms. The evolution process of the concentration 

of PM2.5 particles is affected by time lag. Therefore, this 

paper took RMSE, MAE and MAPE as the three indicators to 

evaluate the time lag of the algorithms for the local and global 

areas. The evaluation results are (Table 1). 

The experimental results show that the performance of the 

proposed algorithms is related to the time lag; as the time lag 

increased, the three error evaluation indicators of the 

algorithms were reduced, and the prediction performance of 

the algorithms was enhanced. We took both the performance 

of the algorithms and the time-space complexity into 

consideration, when the global area time lag is 12 hours and 

the local area time lag is 6 hours, the LTS-LSTM and GLS-

LSTM algorithms performed best. Compared with the local 

area, in the global area, the key factors affecting the PM2.5 

particle concentration are more complicated. The measuring 

point distance, the scale of the mountain and the vegetation 

between the measuring points all have a significant influence 

on the prediction algorithms, and these factors directly cause 

the global time lag to be longer than the local time lag. 

 

Table 1. Performance of time-lag algorithms 

 
Types Local Area Global Area 

Evaluation index RMSE MAE MAPE Evaluation index RMSE MAE MAPE 

Lag 

Time 

 

2 14.325 6.37 12.20 Lag 

Time 

 

4 18.75 8.83 15.53 

4 13.014 5.32 11.17 8 16.43 7.85 14.41 

6 11.22 5.05 9.82 12 15.44 7.51 10.54 

8 11.13 4.97 8.94 24 15.31 7.43 10.21 

12 10.92 4.82 8.67 36 15.27 7.68 9.97 

 

3.5 LSTM network structure and algorithm performance 

 

The structure of the LSTM network, especially the number 

of nodes, has an important impact on the learning of long-term 

time dependence and geographic information correlation 

features. Therefore, for the 1-hour lag-time local space and the 

36-hour lag-time global space, this study set three criteria to 

evaluate the influence of different network node numbers on 

the performance of the algorithms, the evaluation results are 

(Table 2): 

 

Table 2. Influence of TS-LSTM neural network structure on algorithm performance 

 
Local Area Global Area 

Evaluation index RMSE MAE MAPE Evaluation index RMSE MAE MAPE 

Number of nodes 400 12.01 5.21 8.62 Number of nodes 400 15.01 98.38 10.25 

800 11.05 4.74 8.51 800 13.46 8.65 10.14 

1200 10.22 4.31 8.30 1200 12.51 7.38 9.32 

1600 9.86 5.54 8.87 1600 9.32 6.82 8.21 

2000 9.33 5.01 7.98 2000 9.15 6.33 7.78 

 

The experimental results show that, under the condition of 

same time-lag and dataset, as the number of neural network 

nodes of the TS-LSTM algorithm increased from 400 to 2000, 

the proposed algorithms’ time-dependence and spatial 

correlation learning ability were enhanced gradually, they can 

accurately simulate and predict evolution process of PM2.5 

particle concentration; but when the node number was 2000, 

the time-space complexity of the algorithms was too high, so, 

this paper chose the node number to be 1600. 

3.6 Distribution of predicted value and observed value of 

PM2.5 particle concentration 

 

1600 and 800 samples were sampled from the global and 

local prediction and observation data sets, respectively. The 

global and local distribution maps of predicted and observed 

PM2.5 particle concentration were plotted as follows (Figure 

8). 

                            

a) Global distribution of predicted and                          b) Local distribution of predicted and 

observed PM2.5 particle concentration                       observed PM2.5 particle concentration 

 

Figure 8. Global and local distribution maps of predicted and observed PM2.5 particle concentration 
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The experimental results show that, between the predicted 

value and the observed value generated by the proposed 

algorithm, there’s a fitting distribution feature that is close to 

y=X+ε, wherein ε is an arbitrary small integer, representing 

the similarity between the predicted value and the observed 

value. The smaller the value of ε, the closer the predicted value 

to the observed value, then, according to the actual application 

field of the algorithm, the accuracy requirement and the 

experimental conclusion, the value of ε was estimated and set. 

This indicates that the algorithm’s predicted value and 

observed value were come from the same dataset, therefore, 

the proposed algorithm has a good prediction effect. 

 

3.7 A comparative study of the prediction performance of 

the algorithms 

 

Based on the same training and test dataset, different input 

parameters, and different network structures, the performances 

of the TS-LSTM algorithm proposed in this paper, the MLR 

algorithm [8], the SVR algorithm [9], the wavelet-

ARMA/ARIMA algorithm [10], the FNN algorithm [16], the 

LSTM NN algorithm [19], the GC-LSTM NN algorithm [24], 

and the DL-LSTM NN algorithm [26] are compared. 

The experimental results show that (Table 3), under the 

condition of same training and test dataset, different input 

parameters and different network structures, compared with 

the non-neural network algorithms, the artificial neural 

network algorithms can extract non-linear features of the 

evolution process of particle concentration through non-linear 

mapping methods, and better represent these features, 

therefore, these algorithms have very good non-linear 

prediction ability. The deep neural network can effectively 

extract the deep abstract features of particle concentration and 

express the essential properties of particle concentration; 

therefore, the prediction ability of the deep neural network is 

better than that of the shallow neural network, and it is slightly 

better than that of the proposed algorithm. The algorithm 

proposed in this paper combined the LSTM algorithm’s time 

prediction ability and space prediction ability; it integrated the 

learning time and the spatial features, its prediction ability 

outperformed other LSTM networks, and the performance of 

the algorithm in local area was better than that in the global 

area. In summary, compared with other time series analysis 

algorithms, the ST-LSTM algorithm proposed in this paper has 

better prediction ability. 

 

Table 3. Algorithm performance comparison 

 
Evaluation 

Algorithm 

Global Area Local Area 

RMSE MAE MAPE RMSE MAE MAPE 

MLR 17.26 15.01 24.43 15.36 12.09 22.32 

SVR 15.28 11.64 17.34 14.22 8.54 14.96 

Wavelet-ARMA 16.86 11.07 13.33 15.32 8.21 11.23 

Fusing NN 15.59 8.56 12.54 13.09 7.53 10.04 

LSTM NN 13.24 7.92 11.54 13.21 7.58 9.96 

GC-LSTM 14.81 7.87 10.35 13.28 9.34 10.32 

DL-LSTM 6.03 4.56 7.02 6.30 3.89 5.10 

The proposed 9.16 5.21 7.12 7.87 5.32 8.81 

 

 

4. CONCLUSIONS 

 

This paper proposed a novel LSTM algorithm based on 

spatial-temporal correlations and applied it to the simulation 

and prediction of the evolution process of the concentration of 

air pollutant particles. The paper aimed to solve the problem 

that traditional LSTM algorithm hasn’t fused the temporal and 

spatial correlations of the particle concentration, and it 

achieved the fusion of the time dependence and spatial 

correlation of the air pollutant particle concentration based on 

the LSTM algorithm. In the global (the daily PM2.5 

concentration data collected from 30 air quality monitoring 

stations in Beijing-Tianjin-Hebei region from Jan. 2103 to Dec. 

2018) and local (the every hour PM2.5 concentration data 

collected from 12 air quality monitoring stations in Beijing 

from Jan. 1st , 2015 to Dec. 30th, 2018) dataset, the proposed 

algorithm had achieved good simulation and prediction results 

of the evolution process of the concentration of air pollutant 

particles. Under the condition of same dataset, different 

network structures and different experimental parameters, the 

proposed algorithm was compared with various classic 

algorithms, and the results showed that the algorithm proposed 

in this paper had good prediction ability and simulation effects. 

The research found that, in terms of PM2.5 particle 

concentration evolution simulation and numerical prediction: 

1) The performance of deep neural networks is better than 

that of shallow neural networks; and the performance of 

shallow neural networks is better than that of non-neural 

networks. 

2) LSTM neural networks perform well in learning long-

term time dependence of air concentration; therefore, this type 

of algorithm outperforms similar shallow neural networks in 

simulation and prediction performance. 

3) The multi-layer deep LSTM neural network with spatial-

temporal correlation learning ability has better performance 

than traditional time series algorithms and neural network 

algorithms. 

4) The algorithm proposed in this paper has good prediction 

performance and simulation effects on both global and local 

air quality prediction. 
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