
Fuzzy Decision Adjustment of Train Operation Plan for High-Speed Rail Network 

Based on Multi-Objective Optimization 

Fengqin Zhang 

Shandong Polytechnic, Jinan 250104, China 

Corresponding Author Email: zhangfengqin@sdp.edu.cn

https://doi.org/10.18280/jesa.530116 ABSTRACT 

Received: 10 August 2019 

Accepted: 29 October 2019 

The intelligent adjustment of train operation plan (TOP) is helpful to the efficiency of 

high-speed rail (HSR) network. This paper attempts to adjust the TOP quickly and 

intelligently after operation faults, thereby minimize the delay, contain the scope of 

influence and improve passenger satisfaction. Firstly, the features of a single scheduling 

section were analyzed based on train flow, highlighting the necessity to design section-

specific TOP adjustment strategy and optimization objectives. Next, multiple optimization 

objectives were designed based on the identified features and passenger satisfaction, and 

weighted through stochastic intuitionistic fuzzy decision. Finally, the firefly algorithm was 

improved into chaotic firefly algorithm (CFA) to solve our model. The effectiveness of 

our algorithm was confirmed through simulation. The research results shed important new 

light on the TOP adjustment in the HSR network. 
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1. INTRODUCTION

High-speed rail (HSR) is an important transport mode that 

carries a large number of passengers at a fast speed and high 

frequency. However, operation faults also spread rapidly 

across the large and complex HSR network. If one train is 

delayed, the subsequent trains will also operate behind 

schedule. To restore the normal operations, the train operation 

plan (TOP) must be adjusted promptly at the centralized traffic 

control system (CTCS), the brain of the HSR network. 

In the event of operation faults, the TOP is generally 

adjusted in manual mode. During the adjustment, the 

schedulers need to coordinate between various parties and deal 

with numerous issues. As a result, the adjusted plan is often 

inefficient and unreliable, which hinders the automation and 

intelligence of the HSR network. Against this backdrop, it is 

an urgent task to adjust the TOP quickly and intelligently at 

the CTCS in the case of operation faults, thereby minimize the 

delay, contain the scope of influence and improve passenger 

satisfaction. 

Based on the CTCS, this paper explores the requirements on 

TOP adjustment in the complex HSR network, and develops a 

practical TOP adjustment model for a single scheduling 

section (hereinafter referred to as section) of the HSR network. 

2. LITERATURE REVIEW

The TOP adjustment has long been treated as an 

optimization problem. For example, Gustavsson [1] 

constructed a 0-1 mixed integer programming (MIP) model to 

adjust the TOP in a single section of railway that handles both 

passenger and cargo traffic. For TOP adjustment, Wen and Li 

[2] determined the train sequence through tabu search (TS).

Chen et al. [3] adjusted the TOP under the full failure of

railway section capacity: Considering the uncertainty of

failure duration, a two-stage stochastic expectation model with 

compensation and an incomplete continuous multi-stage 

decision-making model were established, and solved by 

branch and bound (BB) algorithm.  

Zhang et al. [4] adjusted the TOP under the full failure of 

HSR section capacity: From the macro level, the train 

operations in the HSR network were regarded as an event-

activity network, a mixed integer route planning model was 

constructed for TOP adjustment, and the two-stage solution 

algorithm was adopted to solve the model. Zhang et al. [5] 

summarized the features of interferences in railway operation, 

and designed a TOP adjustment strategy through sequence 

optimization. Focusing on the TOP adjustment of HSR, 

Wakisaka and Masuyama [6] refined the arrival and departure 

time of train at the station, and built a HSR TOP adjustment 

model that simultaneously optimizes arrival time and route; 

the model aims to minimize the time of train spent in the 

delayed section under the constraint of the minimum train 

interval. Cacchiani et al. [7] developed an optimization 

strategy and plan for the adjustment of the periodic TOP. 

Krasemann [8] rescheduled the train sequence for TOP 

adjustment, created a MIP model to minimize the total delay, 

and verified the reliability of the model using four heuristic 

algorithms. Huo and Wu [9] adjusted the TOP for single-track 

railway with both passenger and cargo traffic, with the aim to 

minimize the weighted delay of trains. Considering the 

uncertain conflicts between trains, Zhang et al. [10] adjusted 

the TOP to minimize the delay of all trains at the terminal 

station. Nie et al. [11] minimized the deviation of the adjusted 

TOP from the original TOP in HSR network. Sun et al. [12] 

optimized punctuality, interval operation time, and freight 

train operation rate through TOP adjustment. Zhang et al. [13] 

attempted to minimize the weighted total delay and total 

number of delayed trains through TOP adjustment.  

Xu et al. [14] plotted the discrete event topology of single-

track railway, developed a discrete-event TOP adjustment 
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model with maximal overall satisfaction, and proposed the 

iterative repair algorithm to solve the model. Based on graph 

theory, Choi et al. [15] constructed a train state diagram for 

TOP adjustment, expressed train sate in station as a quintuple, 

and put forward two heuristic search algorithms: node priority 

search and differential-operator initial time selection based on 

maximum delay. Zhuang et al. [16] improved the difference 

algorithm to solve the HSR TOP adjustment model, and 

proved that the improved algorithm can prevent the premature 

convergence of the original algorithm. Drawing on adaptive 

dynamic planning, Chen and Zhou [17] solved the TOP 

adjustment problem by replacing the cost function with 

backpropagation neural network (BPNN), and calling the 

double heuristic dynamic planning algorithm. 

The above studies on TOP adjustment have improved the 

efficiency of railway transport to varied degrees, but most of 

them focus on a single optimization objective. This paper 

mainly designs a multi-objective optimization model to adjust 

the TOP in a single section. In addition to train flow, the 

optimization objectives also cover multiple indices related to 

passenger satisfaction. 
 

 

3. ANALYSIS OF SECTION FEATURES BASED ON 

TRAIN FLOW 
 

3.1 Influencing factors of delay 
 

The influencing factors of the delay of a train fall into three 

categories: human factors, equipment factors and 

environmental factors. Train delays could be caused by one or 

several of these factors.  

From the perspective of the TOP, a train may fall behind the 

schedule if there is any change to the interval operation time 

or stop time. If the delay is small, it could be absorbed by the 

buffer time on the TOP. Otherwise, the delay will propagate 

along the railway. The propagation pattern can be divided into 

attenuated propagation, equivalent propagation and enhanced 

propagation [18]. The three patterns are respectively 

illustrated in Figures 1-3, where ∆𝑡1 and  ∆𝑡2 are the delays of 

train 1 and its subsequent train 2, respectively. 
 

 
 

Figure 1. Attenuated propagation 
 

 
 

Figure 2. Equivalent propagation 

 
 

Figure 3. Enhanced propagation 

 

3.2 Section features 

 

In the HSR network, each railway is divided into several 

sections. The trains in the same section are scheduled as one 

unit. However, it is impossible to make all the trains run on 

time, if the TOP is interfered by any event. Once a delay occurs, 

the TOP must be adjusted effectively to curb the delay 

propagation across the network, protect the safety and 

efficiency of trains, and ensure the satisfaction of passengers. 

The sections differ in location and train flow. Therefore, it 

is improper to implement the same strategy for TOP 

adjustment in all sections. For each section, the strategy and 

optimization objectives of TOP adjustment must be designed 

in the light of the local features (e.g. train flow). This paper 

analyzes the features of a single section based on the train 

flows measured in previous tests. 

(1) Train types 

 

Table 1. The statistics on train types in a single section 

 
Category Type Number  Proportion 

Single 

types 

Start-end 6 

17.5% Arrival-departure 8 

Start-departure 11 

Two types 

Start-end, start-departure 22 

55.9% Arrival-departure, start-

departure 
58 

Three 

types 

Start-end, arrival-

departure, start-departure 
38 26.6% 

 

Table 2. The statistics on start-end trains 

 
Proportion of 

trains 

Number of 

sections 

Proportion of 

sections 

x=1 6 9.37% 

0.75x<1 8 12.5% 

0.5x<0.75 5 7.81% 

0.25x<0.5 4 6.25% 

0x<0.25 6 9.37% 

x=0 35 54.7% 

 

Table 3. The statistics on arrival-departure trains 

 
Proportion of 

trains 

Number of 

sections 

Proportion of 

sections 

x=1 8 5.93% 

0.75x<1 28 20.74% 

0.5x<0.75 22 16.30% 

0.25x<0.5 20 14.81% 

0x<0.25 21 15.56% 

x=0 36 26.66% 
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Table 4. The statistics on start-departure trains 

 
Proportion of 

trains 

Number of 

sections 

Proportion of 

sections 

x=1 10 6.62% 

0.75x<1 20 13.24% 

0.5x<0.75 27 17.88% 

0.25x<0.5 25 16.56% 

0x<0.25 36 23.85% 

x=0 33 21.85% 

 

As shown in Table 1, more than 82% of the sections have 

two or more types of trains. Only a few sections contain a 

single type of trains. The statistics on different types of trains 

are given in Tables 2-4. 

(2) Trains speeds 

Based on operating speed, the trains can be categorized as 

high-speed electric multiple unit (EMU) train (train code: G), 

EMU train (train code: D), and intercity EMU train (train code: 

C). 

 

Table 5. The statistics on train speeds in a single section 

 
Category Type Number  Proportion 

One type G 2 23.67% 

D 32 

C 6 

Two types G and D 82 53.84% 

G and C 4 

D and C 5 

Three types G, D and C 38 22.49% 

 

As shown in Table 5, a section may contain EMU trains 

operating at the same or different speeds. Some sections have 

a single type of EMU trains, while some have multiple types 

of EMU trains. 

(3) Operation areas 

In terms of operation area, the trains could operate within 

the current section, across sections of the same railway bureau, 

and across those of different railway bureaus. 

 

Table 6. The statistics on operation areas of trains in a single 

section 

 
Category Type Number  Proportion 

One type 

Operation in the current 

section 
4 

18.98% Cross-section operation of 

the same bureau 
10 

Cross-bureau operation 12 

Two 

types 

Operation in the current 

section + cross- section 

operation of the same 

bureau 

8 

54.01% 

Operation in the current 

section + cross-bureau 

operation 

10 

Cross-section operation of 

the same bureau + cross-

bureau operation 

56  

Three 

types 

Operation in the current 

section + cross-section 

operation of the same 

bureau + cross-bureau 

operation 

37 27.01% 

 

As shown in Table 6, a section may contain trains with 

various operation areas. Some sections have a single type of 

trains, while some have multiple types of trains. 

(4) The number of adjacent sections in the train direction 

 

Table 7. The number of adjacent sections in the train 

direction 

 
Number of adjacent 

sections 

Number of 

sections 

Proportion of 

sections 

0 6 4.44% 

1 30 22.22% 

2 32 23.7% 

3 33 24.44% 

4 20 14.82% 

5 12 8.89% 

6 2 1.49% 

 

As shown in Table 7, the trains running in one of the first 

six sections only operate in the current section, because there 

is zero adjacent section in the train direction. 

The above analysis shows that the TOP of each section 

should be adjusted differently according to the its location in 

the HSR network, the features of train flow, the type of 

interference event and the features of passenger flow. 

 

 

4. SINGLE-SECTION TOP ADJUSTMENT THROUGH 

MULTI-OBJECTIVE OPTIMIZATION 

 

4.1 Constraints 

 

For single-section TOP adjustment, the multi-objective 

optimization is subjected to the following constraints: 

(1) The stop time of the train at the station should not be 

shorter than the minimum stop time of the train: 𝑇𝑟𝑖,𝑢𝑗
𝑑 −

𝑇𝑟𝑖,𝑢𝑗
𝑎 ≥ 𝑡𝑟𝑖,𝑢𝑗

𝑚𝑖𝑛 . 

where, 𝑇𝑟𝑖,𝑢𝑗
𝑑  and 𝑇𝑟𝑖,𝑢𝑗

𝑎  are the departure time and arrival time 

of train line 𝑟𝑖 at station 𝑢𝑗, respectively; 𝑡𝑟𝑖,𝑢𝑗
𝑚𝑖𝑛  is the minimum 

stop time of the train. 

(2) The time interval of train arrival at station should satisfy 

the following constraint: 

If 𝐵𝑟𝑖,𝑢𝑗
𝐴 ∩ 𝐵𝑟

𝑖′
,𝑢𝑗

𝐴 ≠ ∅, then |𝑇𝑟𝑖,𝑢𝑗
𝐴 − 𝑇𝑟

𝑖′
,𝑢𝑗

𝐴 | ≥ 𝑡𝑢𝑗
𝐴𝐴. 

where, 𝐵𝑟𝑖,𝑢𝑗
𝐴  and 𝑇𝑟𝑖,𝑢𝑗

𝐴  are the arriving route and arriving time 

of train line 𝑟𝑖 at station 𝑢𝑗, respectively. 

(3) The time interval of train departure at station should 

satisfy the following constraint: 

If 𝐵𝑟𝑖,𝑢𝑗
𝐷 ∩ 𝐵𝑟

𝑖′
,𝑢𝑗

𝐷 ≠ ∅, then |𝑇𝑟𝑖,𝑢𝑗
𝐷 − 𝑇𝑟

𝑖′
,𝑢𝑗

𝐷 | ≥ 𝑡𝑢𝑗
𝐷𝐷. 

where, 𝐵𝑟𝑖,𝑢𝑗
𝐷  and 𝑇𝑟𝑖,𝑢𝑗

𝐷  are the departure route and departure 

time of train line 𝑟𝑖 at station 𝑢𝑗, respectively. 

(4) The time intervals of train arrival and departure at station 

should satisfy the following constraints: 

If 𝐵𝑟𝑖,𝑢𝑗
𝐷 ∩ 𝐵𝑟

𝑖′
,𝑢𝑗

𝐴 ≠ ∅ , then 𝑇𝑟𝑖,𝑢𝑗
𝐷 − 𝑇𝑟

𝑖′
,𝑢𝑗

𝐴 ≥ 𝑡𝑢𝑗
𝐴𝐷  or 

𝑇𝑟
𝑖′

,𝑢𝑗
𝐴 − 𝑇𝑟𝑖,𝑢𝑗

𝐷 ≥ 𝑡𝑢𝑗
𝐷𝐴. 

If 𝐵𝑟𝑖,𝑢𝑗
𝐴 ∩ 𝐵𝑟

𝑖′
,𝑢𝑗

𝐷 ≠ ∅ , then 𝑇𝑟
𝑖′

,𝑢𝑗
𝐷 − 𝑇𝑟𝑖,𝑢𝑗

𝐴 ≥ 𝑡𝑢𝑗
𝐴𝐷  or 

𝑇𝑟𝑖,𝑢𝑗
𝐴 − 𝑇𝑟

𝑖′
,𝑢𝑗

𝐷 ≥ 𝑡𝑢𝑗
𝐷𝐴. 

(5) If the train line 𝑟𝑖 has a train connection at station 𝑢𝑗, the 

minimum connection time should satisfy the following 

constraint: 
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If 𝑟𝑖 ∈ 𝑐𝑘, 𝑐𝑘 = {𝑟𝑖 , 𝑟
𝑖′

, 𝑢𝑗} , then 𝑇𝑟
𝑖′

,𝑢𝑗
𝐷 − 𝑇𝑟𝑖,𝑢𝑗

𝐴 ≥ 𝑡𝑐𝑘
𝑚𝑖𝑛. 

If 𝑟𝑖 ∈ 𝑐𝑘, 𝑐𝑘 = {𝑟
𝑖′

, 𝑟𝑖 , 𝑢𝑗} , then 𝑇𝑟𝑖,𝑢𝑗
𝐷 − 𝑇𝑟

𝑖′
,𝑢𝑗

𝐴 ≥ 𝑡𝑐𝑘
𝑚𝑖𝑛. 

(6) The arrival time of train at departure station should 

satisfy the following constraint: 

If 𝑢𝑗 = 𝑢𝑟𝑖
0 , then 𝑇𝑟𝑖,𝑢𝑗

𝐴 = 𝑇𝑟𝑖,𝑢𝑗
𝐷 . 

(7) The departure time of train at terminal station should 

satisfy the following constraint: 

If 𝑢𝑗 = 𝑢𝑟𝑖
𝑒 , then 𝑇𝑟𝑖,𝑢𝑗

𝐷 = 𝑇𝑟𝑖,𝑢𝑗
𝐴 . 

 

4.2 Objective functions 

 

Two sets of objective functions were established for single-

section TOP adjustment: those based on train flow features and 

those based on passenger satisfaction. 

There are four objective functions based on train flow 

features: 

(1) Minimum delay at station 

 

𝑜𝑏1
𝑇 = 𝑚𝑖𝑛 ∑ ∑(𝑤𝑟𝑖,𝑢𝑗

𝑑−𝐴 ∙ 𝑡𝑟𝑖,𝑢𝑗
𝑑−𝐴 + 𝑤𝑟𝑖,𝑢𝑗

𝑑−𝐷 ∙ 𝑡𝑟𝑖,𝑢𝑗
𝑑−𝐷)

𝑡

𝑗=1

𝑠

𝑖=1

 

 

where, 𝑤𝑟𝑖,𝑢𝑗
𝑑−𝐴  is the weight of train line 𝑟𝑖  arriving delay at 

station 𝑢𝑗; 𝑤𝑟𝑖,𝑢𝑗
𝑑−𝐷 is the weight of train line 𝑟𝑖 departure delay 

at station 𝑢𝑗. 

(2) Minimum departure delay of the departure train in the 

current section at the departure station: 

 

𝑜𝑏2
𝑇 = 𝑚𝑖𝑛 ∑ 𝑤𝑟𝑖,𝑢𝑟𝑖

𝑜
𝑑−𝐴 ∙ 𝑡𝑟𝑖,𝑢𝑟𝑖

𝑜
𝑑−𝐴

𝑠

𝑖=1

 

 

(3) Minimum arrival time of the terminal train in the current 

section at the terminal station: 

 

𝑜𝑏3
𝑇 = 𝑚𝑖𝑛 ∑ 𝑤𝑟𝑖,𝑢𝑟𝑖

𝑒
𝑑−𝐴 ∙ 𝑡𝑟𝑖,𝑢𝑟𝑖

𝑒
𝑑−𝐴

𝑠

𝑖=1

 

 

(4) Minimum number of delayed trains 

 

𝑜𝑏4
𝑇 = 𝑚𝑖𝑛 ∑ 𝑇𝑟𝑖

𝑑𝑒𝑙𝑎𝑦

𝑠

𝑖=1

 

 

There are two objective functions based on passenger 

satisfaction: 

(1) Minimum delay at station for passenger satisfaction 

 

𝑜𝑏1
𝑃 = ∑ ∑(𝑤𝑟𝑖,𝑢𝑗

𝑆1 ∙ (𝑡𝑟𝑖,𝑢𝑗
𝑑−𝐴 + 𝑡𝑟𝑖,𝑢𝑗

𝑑−𝐷)

𝑡

𝑗=1

𝑠

𝑖=1

 

 

(2) Minimum delay at station for transfer passengers’ 

satisfaction 

 

𝑜𝑏2
𝑃 = ∑ ∑ 𝑤𝑟𝑖,𝑢𝑗

𝑆2 ∙ 𝑡𝑟𝑖,𝑢𝑗
𝑑−𝐴

𝑡

𝑗=1

𝑠

𝑖=1

 

 

The robustness of the overall objective function depends on 

the weight of each objective function. The weighting of 

objective functions is a multi-attribute decision-making 

problem with high fuzziness and uncertainty. The fuzzy, 

uncertain problem can be solved satisfactorily with 

intuitionistic fuzzy sets [19]. Therefore, the stochastic 

intuitionistic fuzzy decision-making algorithm was adopted to 

determine the weight of each index in the overall objective 

function. 

The two sets of weighted objective function were integrated 

into an overall objective function for the multi-objective 

optimization: 

 

𝑜𝑏 = 𝜌1
𝑇𝑜𝑏1

𝑇 + 𝜌2
𝑇𝑜𝑏2

𝑇 + 𝜌3
𝑇𝑜𝑏3

𝑇 + 𝜌4
𝑇𝑜𝑏4

𝑇 + 𝜌5
𝑇𝑜𝑏1

𝑃

+ 𝜌6
𝑇𝑜𝑏2

𝑃 

 

4.3 Model solving with the CFA 

 

To solve our TOP adjustment model, the basic firefly 

algorithm is improved into the CFA through the logical self-

mapping below: 

 

𝑦𝑛+1 = 𝑓(𝜇, 𝑦𝑛) = 1 − 𝜇𝑦𝑛
2 (1) 

 

where, 𝑛 = 0,1,2, … , ∞ , −1 < 𝑦𝑛 < 1 ; 𝜇  is the control 

parameter. 

Based on logical self-mapping, the CFA optimization 

process is as follows: 

(1) The solution of firefly algorithm is mapped to [-1, 1]: 

 

𝐿𝑑 = 2 ∗
𝑥𝑑 − 𝑎𝑑

𝑏𝑑 − 𝑎𝑑

− 1 (2) 

 

where, 𝑥𝑑 is the position of firefly i in the d-dimensional space; 

𝑎𝑑  and 𝑏𝑑  are the lower and upper search bounds of each 

variable, respectively. 

(2) The generated chaotic variable is introduced into the 

optimization model, and the new chaotic variable is obtained 

using the chaos operator: 

 

𝐿𝑛+1,𝑑 = 1 − 2𝐿𝑛,𝑑
2  (3) 

 

where, 𝑑 = 1,2, … , 𝐷; 𝑛 = 0,1,2, … ,∞; −1 < 𝐿𝑛,𝑑 < 1. 

(3) The obtained chaotic variable sequence is converted to 

the original solution space: 

 

𝑦𝑑
′ =

(𝑏𝑑 − 𝑎𝑑) ∗ 𝐿𝑑 + (𝑏𝑑 + 𝑎𝑑)

2
 (4) 

 

where, 𝑑 = 1,2, … , 𝐷 ; 𝑎𝑑  and 𝑏𝑑  are the lower and upper 

search bounds of each variable, respectively. 

If the current position of a firefly is better than the original 

position, then the original position of that firefly should be 

replaced by the current position. Otherwise, the algorithm 

continues until meeting the termination condition. 

In each round, if all fireflies are optimized by the chaos 

operator, the algorithm will become more accurate. However, 

the improved accuracy comes at the cost of a longer runtime. 

To improve the algorithm efficiency, a few fireflies should be 

selected for chaotic optimization. Here, the search space is 

adjusted dynamically to change the upper and lower search 

bounds in each dimension. The upper and lower search bounds 

can be defined respectively as: 

 

𝑦𝑚𝑖𝑛,𝑑 = max {𝑦𝑚𝑖𝑛,𝑑 , 𝑦𝑔,𝑑 − 𝜌 ∗ (𝑦𝑚𝑎𝑥,𝑑 − 𝑦𝑚𝑖𝑛,𝑑)} (5) 
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𝑦𝑚𝑎𝑥,𝑑 = min {𝑦𝑚𝑎𝑥,𝑑 , 𝑦𝑔,𝑑 + 𝜌

∗ (𝑦𝑚𝑎𝑥,𝑑 − 𝑦𝑚𝑖𝑛,𝑑)} 
(6) 

 

where, 𝑦𝑔,𝑑 is the value of the current optimal solution in the 

d-dimensional space; 𝜌 is the transform factor. 

The workflow of the CFA based on logical self-mapping is 

explained as follows: 

Step 1. Initialize the number and positions of fireflies based 

on the arrival time and departure time of the target train at the 

station. 

Step 2. Derive the maximum brightness from the initial 

positions of fireflies. 

Step 3. Calculate the relative brightness and attractiveness 

of each firefly. 

Step 4. Update the position of each firefly. 

Step 5. Select the best s% of fireflies for chaotic 

optimization with logical self-mapping and dynamic transform 

of the search space, and replace the worst s% fireflies with the 

s% newly generated fireflies. 

Step 6. Recalculate the brightness of each firefly after the 

position update. 

Step 7. Output the optimal solution if the maximum number 

of iterations is reached or the search accuracy is as required; 

otherwise, jump to Step 3 for iterative search. 

 

 

5. SIMULATION AND RESULTS ANALYSIS 

 

To verify the effectiveness of the CFA in solving our multi-

objective optimization problem, four performance metrics 

were selected: generation distance (𝐺𝐷 ), convergence (𝛾 ), 

space ( 𝑆𝑃 ) and dispersion ( ∆ ). The four metrics can be 

respectively defined as follows: 

 

𝐺𝐷 =
√∑ 𝑝𝑖

2𝑛
𝑖=1

𝑛
  

 

where, 𝑛 is the number of Pareto solutions obtained by the 

algorithm; 𝑝𝑖  is the shortest distance between the i-th solution 

and the real Pareto solution. 

 

𝛾 =
1

|𝑃|
∑ min

𝑖≤𝑗≤|𝑝∗|
(|𝑎𝑖 − 𝑝𝑗|)

|𝑃|

𝑖=1

 

 

where, 𝑝∗ is the real Pareto solution; 𝑃 is the Pareto solutions 

obtained by the algorithm.  

 

𝑆𝑃 = √
1

𝑛 − 1
∑(𝑝̅ − 𝑝𝑖)2

𝑛

𝑖=1

 

 

where, 𝑝𝑖  is the shortest distance between the i-th solution and 

the real Pareto solution; 𝑝̅ is the mean of all 𝑝𝑖  values; 𝑛 is the 

number of Pareto solutions. 

 

∆=
𝑝𝑓 + 𝑝𝑑 + ∑ |𝑝𝑖 − 𝑝̅|𝑛−1

𝑖

𝑝𝑓 + 𝑝𝑑 + (𝑛 − 1)𝑝̅
 

 

where, 𝑝𝑓  and 𝑝𝑑  are the distances between the boundary 

solution and the corresponding extreme solutions of the Pareto 

solution set. 

The population size is an important factor to algorithm 

performance. An excessively small population will affect the 

convergence and diversity of the algorithm. Table 8 lists the 

mean values of the four metrics at different population sizes. 

Obviously, most of the metrics were optimized when the 

population had ten fireflies.  

Hence, the proposed CFA was compared with the multiple 

objective particle swarm optimization (MOPSO) algorithm 

[20] in solving our TOP adjustment model at the population 

size of 10. The metrics of the two algorithms are recorded in 

Tables 9 and 10, respectively. 

 

Table 8. The mean values of the four metrics at different population sizes 

 
Population size GD γ  SP ∆ Number of Pareto optimal solutions 

2 0.0172 0.082 0.021 0.789 43.2 

5 0.0171 0.097 0.015 0.772 38.6 

10 0.0147 0.069 0.013 0.739 46.8 

20 0.0155 0.073 0.028 0.863 35.8 

 

Table 9. The metrics of the MOPSO algorithm 

 
 GD γ  SP ∆ Number of Pareto optimal solutions 

Mean 0.025 0.109 0.037 0.787 26.6 

Mean-square deviation 0.0026 0.0038 0.0019 0.0178 - 

Maximum 0.065 0.247 0.236 1.271 51 

Minimum 0.005 0.028 0.008 0.543 10 

 

Table 10. The metrics of the CFA 

 
 GD γ  SP ∆ Number of Pareto optimal solutions 

Mean 0.014 0.086 0.018 0.749 47.9 

Mean-square deviation 0.0000 0.0012 0.0000 0.0008 - 

Maximum 0.032 0.163 0.447 0.912 87 

Minimum 0.003 0.026 0.005 0.493 15 

From Tables 9 and 10, it can be seen that the CFA 

outperformed the MOPSO algorithm in most of the metrics. 

Compared with the MOPSO algorithm, our algorithm 

converges quickly to a large set of diverse Pareto optimal 

solutions. 
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6. CONCLUSIONS 

 

This paper probes deep into the TOP adjustment in the 

complex HSR network, aiming to restore the normal 

operations of trains quickly and intelligently after the 

occurrence of faults (e.g. delay). The features of a single 

section were analyzed in details based on train flow. Based on 

these features and passenger satisfaction, a TOP adjustment 

model was established with multiple optimization objectives, 

each of which has a unique weight. Next, the weighting of the 

objectives was taken as a multi-attribute decision-making 

problem, and completed through stochastic intuitionistic fuzzy 

decision-making. After that, the firefly algorithm was 

improved into the CFA to solve our model. Simulation results 

show that the CFA can effectively solve our TOP adjustment 

model. Our research provides a realistic strategy to tackle the 

delays in the HSR network. 
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