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 Currently, many adaptive filtering algorithms are available for the non-Gaussian 

environment, namely, least mean square (LMS) algorithm, recursive least square (RLS) 

algorithm, least mean fourth (LMF) algorithm, and subspace minimum norm (SMN) 

algorithm. Most of them can converge to the steady-state, but face various constraints in the 

presence of alpha (α)-stable noises. To solve the problem, this paper aims to develop an 

adaptive filtering algorithm for non-Gaussian signals in α-stable distribution, drawing on 

the merits of existing adaptive filtering algorithms. Firstly, the authors introduced the theory 

of α-stable distribution, the central limit theorem and fractional lower-order statistics 

(FLOS). Next, two classic adaptive filtering algorithms, RLS and LMS, were summarized, 

and compared through tests. On this basis, the FLOS-SMN algorithm was designed in the 

light of the features of the LMS and the SMN, which applies to the filtering of non-Gaussian 

signals in α- stable distribution. Finally, the proposed algorithm was proved as faster, more 

stable and more adaptable than the traditional method. 
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1. INTRODUCTION 

 

With strong impact features, human signals (e.g. underwater 

signals, atmospheric signals, and biomedical signals) are 

clearly different from traditional Gaussian signals. The 

distribution of these non-Gaussian signals, featuring a finite 

variance and long tails, can be described as processes with a 

finite or infinite variance. In engineering applications, non-

Gaussian signals often obey alpha (α)-stable distribution [1-8]. 

In general, non-Gaussian signals are processed based on 

higher-order statistics (HOS) or fractional lower-order 

statistics (FLOS) [9-12]. If these signals are incorrectly 

assumed to satisfy Gaussian distribution, the filter will 

perform poorly or cease to be effective [13], because these 

signals obey α-stable distribution rather than Gaussian 

distribution. 

In Gaussian distribution model, the observations are treated 

as elements in a Hilbert space, and the second-order statistics 

is taken as the optimal filtering criterion. In α-stable 

distribution model, the observations are treated as elements in 

Banach space (1≤α<2) or metric space (0<α<1). The two 

spaces differ greatly from the Hilbert space in properties. 

With the growing number of samples, the variance of 

Gaussian signals converges, but that of α-stable signals does 

not converge. For signals in α-stable distribution, the second-

order statistics is not a suitable optimal filtering criterion, and 

the minimum mean square error (MMSE) criterion is not 

sufficiently significant [14-16].  

In light of the above, this paper proposes an adaptive 

filtering algorithm for non-Gaussian signals in α-stable 

distribution, based on the least mean square (LMS) algorithm 

and the subspace minimum norm (SMN) algorithm. 

 

 

2. THEORY OF Α-STABLE DISTRIBUTION 

 

2.1 Concept of α- stable distribution 

 

For any random variable X, if there exists α∈(1, 2) satisfying: 

 

C A B  = +  (1) 

 

Then, X is an α-stable random variable, where α is the 

characteristic index. Thus, the α-stable distribution can be 

defined as: the random variable X obeys the stable distribution, 

if 1<α≤2, γ≤0 and -1<β≤1, if parameter a is a real number, and 

if the characteristic functions satisfy: 

 

( ) exp{ [ ( ) ( , )]}u jau u a j sign t u


    = − +  (2) 

 

where, ω(u,α) and sign(u) can be respectively expressed as: 
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where, β is the symmetry coefficient that expresses the slope 

of qualifiers distribution; γ, similar to the variance in Gaussian 

distribution, illustrates the dispersion of qualifiers distribution; 

u is the position parameter, corresponding to the mean or 

median. 
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The characteristic index 0<α≤2 determines the intensity of 

the pulse. The smaller the α value, the heavier the tail of 

distribution; the inverse is also true. If α=0, formula (2) can be 

rewritten as φ(u)=exp{jαu-σ2|u|2}, which is a special case of 

stable Gaussian distribution. If α=1 and β=0, formula (2) is a 

Cauchy distribution [17]. If α∈(0, 2], formula (2) becomes a 

non-Gaussian α-stable distribution, which has a greater impact 

than the Gaussian distribution. 

Gaussian distribution is actually a special case of α-stable 

distribution. If 1<α<2, the α-stable distribution can be called a 

Francoise lower-order alpha (FLOA) [18-19]; if β=0, u=0 and 

γ=1, the α-stable distribution can be called a symmetry α-

stable (SαS) distribution; If α=2, the distribution becomes a 

Gaussian distribution. 

 

2.2 Central limit theorem 

 

The central limit theorem holds that: if xi is independent and 

identically distributed with finite variance, the limit 

distribution is Gaussian distribution. The main difference 

between the α-stable distribution and the Gaussian distribution 

lies in the tail. The former has an algebraic tail, while the latter, 

an exponential tail. 

 

2.3 FLOS 

 

In recent years, the HOS has been widely adopted for signal 

analysis, i.e. the effective information is extracted from third- 

or fourth-order statistics. On this basis, the statistics lower than 

the second-order, i.e. the FLOS, was developed for signal 

analysis [20].  

Let E[X2] be the second-order moment of the FLOS X. Then, 

the fractional-lower order (FLO) moment E[|X|P] (0<p<2) for 

α-stable distribution can be defined as: 

 

( , ) ,0[ ]

,

p

P C p a pE X

p a

 

  = 
  

 (5) 

 

where, X is a random process in SαS distribution; α (α=0) is 

the position parameter; γ is the dispersion coefficient; C(p, α) 

is a function related to p and a but not to X. 

 

2.4 Negative moments 

 

Studies have shown that SαS random variable distribution 

might have finite negative moments: 

 

( ) ( , ) , 1
p

p
E x c p p  = −    (6) 

 

 

3. ADAPTIVE FILTERING ALGORITHM 

 

The adaptive filtering algorithm is defined as a filter 

algorithm capable of adjusting and tracking its own parameters, 

without knowing the statistical properties of input signals and 

noises [21-22]. 

 

3.1 LMS algorithm 

 

The LMS algorithm replaces the mean squared error (MSE) 

E[e2(n)] with the instantaneous squared value of output error 

|e(n)|2 [23]. In each iteration, the gradient estimation takes the 

following form: 
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(7) 

 

On this basis, the iterative formula of the LMS algorithm 

can be derived as: 

 

( 1) ( ) ( ) ( )mn n e n n+ = −w w X  (8) 

 

Under normal circumstances, the LMS algorithm is highly 

adaptable. However, the step length μ is difficult to determine, 

and the convergence is relatively slow [24, 25]. In the basic 

LMS algorithm, the value of μ usually remains constant, which 

is obviously not suitable for the iterative process. This gives 

rise to the normalized least mean square (NLMS) algorithm 

[26, 27], an LMS algorithm with variable step size. 

In the NLMS algorithm, the step length μ varies with the 

elapse of time [28]: 
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The weight vector is updated by:  
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This constitutes the so-called symbol error NLMS 

algorithm [29]. 

 

3.2 RLS algorithm  

 

Compared with the LMS algorithm, the RLS algorithm has 

a fast tracking speed, which is an important capability for time-

varying channels. Since the measurable data may have 

variable length [30], the minimized cost can be represented as 

a cost function J(n): 
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where, n is the variable length; ξ(i) can be expressed as: 

 

( ) ( ) ( ) ( ) ( ) ( )Te i d i y i d i n i
M

= − = −w x  (12) 

 

XM(i) is the tapping input vector: 

 

 ( ) ( ), ( 1),...., ( 1)
T

M i x i x i x i M= − − +x  (13) 
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W(n) is weight vector at time n:  

 

0 1 1( ) [ ( ), ( ), ..., ( )]
T

Mn w n w n w n−=w  (14) 

 

Note that the tap weights remain the same in the observation 

interval 1≤i≤n defined by the cost function J(n). 

The weighting factor β (n, i) was introduced to make the 

filter track the changes of observed data under non-stationary 

environment [31]: 

 

( , ) 1, 2,,n i
n i i n 

−
= =  (15) 

 

The weighting factor should satisfy: 

 

0 ( , ) 1, 1, 2, ...,n i i n  =  (16) 

 

The cost function Jw(n) can be described as the sum of the 

weighted sum of squared errors and the regularization term. 
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The weighted sum of squared errors can be expressed as: 
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Depending on the input data, the weighted sum of squared 

errors reflects the relationship between the expected response 

d(i) and the actual response y(i) of the filter: 

 

( )= ( ) ( )T

My i n iW X  (19) 

 

The regularization term can be expressed as: 

 
2

( ) = ( ) ( )n n Tn n n w w w  (20) 

 

where, the regularization parameter δ is a positive real number. 

It can be seen that regularization only depends on W(n). To 

solve the problem of least squares regression, smoothing 

should be considered in the regularization process [32]. 

Despite its fast convergence, the RLS algorithm faces an 

insufficient stability, possible divergence, and complex 

computing, failing to output ideal results [33]. If H-1 is not 

positive definite, the RLS algorithm cannot be updated; if 

when λ<1, the algorithm will diverge. 

 

3.3 Comparison between RLS and LMS algorithms 

 

The structure of the LMS filter is explained in Figure 1 

below. 

The noisy input signals can be expressed as: 

 

)()()( nvnsnx +=
 (21) 

 

where, s(n)=sin[2πnf/fs] (f=50, fs=16, n=0, 1, …, N-1; N=96); 

the mean value of v(n) is zero. The input signals contain 

Gaussian distribution with the variance of 1. The signal waves 

of the LMS filter with and without the noisy signals are 

displayed in Figure 2. 

 

 
 

Figure 1. The structure of the LMS filter 

 

 
 

Figure 2. The signal waves of the LMS filter with and 

without the noisy signals 

 

The LMS and RLS algorithms were simulated separately to 

compare their features. First, the filter length and step length 

of the LMS algorithm were set as M=32 and μ=32, respectively. 

The signals predicted by the LMS and the actual signals are 

compared in Figure 3(a), and the prediction error of the LMS 

is shown in Figure 3(b). Obviously, the LMS algorithm could 

effectively predict the actual signals after a period of time. 

Next, the RLS algorithm was adopted with the forgetting 

factor λ=0.48. The other parameters were the same as the LMS 

algorithm. The filtering performance of the RLS algorithm is 

presented in Figure 4 below. 

According to the comparison between Figures 3 and 4, it 

took only 10 iterations for the RLS algorithm, but 100 

iterations for the LMS algorithm, to reach the steady-state. 

Obviously, the RLS converged much faster than the LMS. 

However, the fast convergence was realized with a high 

computing complexity and instability. By contrast, the LMS 

algorithm is easy to implement and stable in performance. But 

this algorithm is too sensitive to ratio of the maximum 

eigenvalue to the minimum eigenvalue. Therefore, this paper 

attempts to design a new filtering algorithm that combines the 

merits of the LMS and other algorithms. 
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Figure 3. The filtering performance of the LMS algorithm 

 

 
 

Figure 4. The filtering performance of the RLS algorithm 

 

 

4. LMS-BASED FLOS-SMN ALGORITHM 

 

4.1 Adaptive system identification model 

 

In our adaptive system identification model (Figure 5), the 

input signals can be described as Xk=[x(k),x(k-1),…,x(k-N+1)]T, 

where N is the order of the filter. Let n be the length of input 

sequence, wk is the weight vector of adaptive filter, and nk be 

the α-stable distribution noises of input signals [34]. As shown 

in Figure 5, e(k) can be expressed as: 
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Figure 5. Adaptive system identification model 

 

4.2 Algorithm implementation  

 

In this paper, the LMS algorithm is improved under non-

Gaussian α-stable conditions, and verified through simulation 

[35]. 

Taking J(k)=E|e(k)|2 as the cost function, the LMS 

algorithm has the following iterative formula: 

 

( 1) ( ) ( ) ( )k k e k x k+ = +w w  (23) 

 

The least-mean-fourth (LMF) algorithm takes J(k)=E|e(k)|4 

as its cost function. The relationship between LMS and LMF 

algorithms can be summarized as an SMN algorithm with the 

cost function: 
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The iterative formula of the LMF algorithm can be 

expressed as: 
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where, 0≤λ≤1 is the hybrid parameter. Under Gaussian noises, 

the second moment E|e(k)|2, the fourth moment E|e(k)|4 and the 

2n-th moment E|e(k)|2n of the instantaneous error e(k) have 

limited values. Under SαSG noises, the three moments have 

no finite values, and the iterative formula (25) is no more 

applicable. In this case, e(k) [36] can be replaced by seeking 

for a convergent expression. 

The next step is to make the SMN algorithm, which only 

applies to Gaussian noises, suitable for the FLOS distribution 

through expansion [37]. Under α-stable noises, if x=y, the FLO 

covariance can be defined as the FLO auto-covariance. From 

the properties of the FLOS, we have: 
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If 0<P≤α, the P-order moment E[|X)|P]<∞. Then, 0<P≤α/2, 

0<2P≤α and: 
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Similarly, if 0<P≤α/2n, then 0<2nP≤α and: 

 
2 2

[ ] [ ]
n n PPE X E X  =   (28) 

 

Replacing e(k) in formula (25) with e(k)<P>, a new 

algorithm suitable for SαSG noises can be obtained, which is 

called FLOS-SMN [38]. In the new algorithm, the cost 

function can be expressed as: 
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Taking the derivative of w(k), the gradient can be estimated 

as: 
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Thus, the iterative formula can be obtained as: 
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where, 0≤λ≤1 is hybrid parameter; μ is the step length; 

0<P≤α/2n; α(α<2) is the characteristic index of α-stable 

distribution noises.  

 

 

5. RESULTS ANALYSIS 

 

Suppose the unknown system in Figure 5 is wopt=[1, a1,…, 

a10]=[1 2 3 4 5 6 5 4 3 2 1]. The input signals can be defined 

as: 
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Let n(k) be independent additive SαSG noises: 
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where, k=1, 2, …, N (N is the sequence length). If N=500 and 

γSαSG=2γG=γ=1, the mixed signal-to-noise ratio MSNRSαSG can 

be defined as: 
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(34) 

 

Then, the signal magnitude can be derived from MSNRSαSG: 
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Next, the FLOS-SMN was compared with the RLS with the 

initial weight vector w0=0, step length μ=0.06, and K=200. The 

system weight curves of both algorithms are compared in 

Figure 6 below. 

 

 
 

Figure 6. Comparison of system weight curves 

 

As shown in Figure 6, the system weights of both 

algorithms converged quickly and smoothly to the steady-state 

values. However, the system weights of the FLOS-SMN were 

much larger than those of the RLS. 

Taking hybrid parameter λ=0.5, percentage of α-stable 

distribution noises p=1.2 and the steady state error power as 

Pε, the equivalent convergence factors (μ1 and μ2) of the two 

algorithms were obtained.  

Next, the adaptive filter coefficients were initialized as 

w(k)=[1 2 3 4 5 6 5 4 3 2 1], and the SNR was set to 2dB. Then, 

both FLOS-SMN and RLS were iterated adaptively. The 

filtering performance of the two algorithms is compared in 

Figures 7 and 8. It can be seen that the MSE learning curve of 

the FLOS-SMN converged to the steady-state earlier, and had 

fewer jitters than the RLS. 
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Figure 7. Comparison of MSE learning curves 

 

 
 

Figure 8. Comparison of vector learning curves 

 

 

6. CONCLUSIONS 

 

Besides the common Gaussian noises, the α-stable noises 

are also a hot topic in signal processing. This paper mainly 

designs and implements an adaptive filtering algorithm for 

signals obeying the α-stable distribution. Firstly, the theory on 

α-stable distribution was thoroughly reviewed. Then, adaptive 

filters like the RLS and LMS were introduced in details, and 

compared through tests. Based on the LMS algorithm, the 

authors developed the SMN algorithm, and defined its scope 

of application: second-order noise distribution. Thus, the SMN 

algorithm was improved into the FLOS-SMN algorithm, to 

suit the noises obeying the FLO distribution. Finally, the 

proposed algorithm was compared with the traditional RLS 

algorithm in experiments. The comparison shows that our 

algorithm achieved faster computing speed, converged to the 

steady-state earlier, and had fewer jitters than the RLS. 
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