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ABSTRACT 
 

The aim of this note is to show that if  , ,
  X  is an linearly ordered system of compact spaces such that each X  has 

fixed point property for continuous multi-valued functions and each projection map is surjective, then the orbit space also 
has fixed point property for continuous multi-valued functions. 
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1. INTRODUCTION 

A topological space X  is said to have the . .f p p  (fixed 

point property) if for every continuous function : f X X , 

there exists some x X  such that ( )x f x . Hamilton [1] has 

proved that the chainable metric continua have the . .f p p . A 

topological space X  is said to have the . . .F p p  (fixed point 

property for multi-valued functions) if every continuous 

multi-valued functions : F X X  has fixed point; that is, 

there exist some point x X  such that ( )x F x . Clearly, a 

space has . . .F p p , then it is has . .f p p . But the converse need 

not be true [2]. 
Recently, the inverse limits has been widely used in 

Dynamical Systems,a series of good results were obtained (cf. 
[3]-[8]). Particularly, Yeng and Lin[9] investigated an inverse 
system and obtained some fixed point properties in inverse 
limit spaces. But the applications have been encountered 
many difficulties because the direction of the chain maps of 
inverse limits is exactly the opposite to the tracks of the 
relative dynamical system. In 2011, the authors [10] introduce 
the concepts of the orbit spaces by reversing the direction of 
chain maps of inverse limit space, and considered the 
preserving property of continuums in their orbit space. 
Naturally, it is posed whether fixed point property can be 
preserved in orbit space as well as inverse limit space. 

The aim of this paper is to give an affirmative answer to 

this problems. And we show that if  , ,
  X  is an linearly 

ordered system of compact spaces such that each X  has 

the . . .F p p , then the orbit space of the linearly ordered system 

 , ,
  X  also has the . . .F p p . 

 

 

2. PRELIMINARIES 

In all that follows, all spaces are assumed to be Hausdorff 

spaces. A multifunction, : F X Y , from a space X  to a 

space Y  is a point-to-set correspondence such that, for each 

x X , ( )F x  is a subset of .Y  For any x Y , 

 1( ) : ( ) .   F x x X y F x  Let A X  And 

.B Y  ( ) ( ) : , F A F A x A and 
1( ) F B  

 1( ) : . F y y B  

Definition 2.1. [9] A multifunction, : F X Y  is said to be 

continuous if and only if 

(i) ( )F x  is closed for each .x X  

(ii) 
1( )F B  is closed for each 2 . YB  

(iii) 
1( )F V  is open for each open set V  in .Y  

The following Lemma is due to [9]. 

Lemma 2.1 If : F X Y  is a continuous multifunction 

and if A  is a compact subset of X  such that ( )F a  is 

compact for each a A , then ( )F A  is compact. 

Let  
aX  be a family of topological spaces, where   is 

linearly ordered set. Denote the product space of  
aX  by 

 aX . Assume that :
   X X  is a continuous 

mapping whenever    for each 

,   . The triples  , ,
  X  is said to be a linearly 

ordered system if the following two conditions are satisfied: 

(a) 
  
     , whenever      for each 

, , ;     

(b) 

   idX  for each  , where 


  is an identity 

mapping from X to X . 

Usually, the subspace 
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  ( ) : ( ) ,
            x x X x x  of the 

product space  aX  is called to be the orbit space of the 

linearly ordered system  , ,
  X  and is denoted by 

 , ,
  X , where each point  

 , ,
  x X  is said to be an orbit of  , ,

  X , 

each mapping 

  is called to be a link mapping of 

 , ,
  X . 

Assume that : f X X  is a continuous mapping where X 

is a topological space. In Dynamical Systems, we call that 

( , )X f  is a discrete dynamical system, and for each 0 ,x X  

the sequence  0 0, ( ),x f x  is called to be an orbit of ( , )X f  

and is denoted by 0( )

f x . The set of all orbits of ( , )X f  is a 

subspace of the product space 0



n nX  where each nX X , 

we call it an orbit space of ( , )X f  and denote it by ( ).

f x  

As a special case of a linearly ordered system, if we take 
 Z  (the set of all non-negative integers). Each nX X  

and 
1  n

n f  for any n Z , it is easy to see that the linearly 

ordered system  , , m nX f Z  is the discrete system ( , )X f  

and 

 , , ( ).  m n

fX f Z O X  

The following two results are due to [10]. 

Lemma 2.3 Assume that X  is the orbit space of a linearly 

ordered system  , , .
  X  Then 

(i) The collections 
1

 { ( : ?}  )    U U is an open subset of 

  ,?    X  is a base of X ; 

(ii) If X  is Hausdorff, then X  is a closed subset of 

;  

(iii) If each ,  X  is compact, then so is X ; 

(iv) If each link map 

  is onto map, then X  is a 

continuum if and only if each X  is a continuum. 

Lemma 2.4 Let  , , ,
  X X A X  and 

( ) A A  for each .  If 


 
  

A
 whenever    

for any ,   , then  , ,


  A  is a linearly ordered 

system and  , , .


   A A  

3. MAIN THEOREM 

Now, we state our main result in this paper. 

Main Theorem. Let  , ,
  X  be an linearly ordered 

system of compact spaces such that each X  has the  

. . .F p p , then the orbit space of the linearly ordered system 

 , ,
  X  also has the . . .F p p   

We divide the proof of this theorem into the following 
steps. In Lemma 3.1, Lemma 3.2 and Lemma 3.3, X will be 

the orbit space of the linearly ordered system  , ,
  X  

of compact spaces. 

Lemma 3.1 If : F X X  is a continuous multifunction, 

define :  F X X  by 1

    F F  

 For  , then F  is a continuous multifunction. 

Proof. This proof is modified by [9, Lemma 4]. By Lemma 
2.1 and the definition of the continuous multifunction, this 
result is directly. 

Lemma 3.2 Let : F X X  is a continuous multifunction, 

and :  F X X  be defined as in Lemma 3.1. Then, for 

each .x X  

 ( ), ,
    F x  and  ( ), ,

    F x
 
are linearly 

ordered systems of compact spaces, 

   ( ), , ( ), , 
          F x F x  (2) 

 ( ) ( ), , .
    F x F x  (3) 

Proof. (1) It is obvious that each ( ) F x  is compact. To 

show that  ( ), ,
    F x  forms an linearly ordered 

system, it suffices to show ( ) ( )
      F x F x  when ever 

  . Since 

1 1, ( ) ( ) ( ) ( ) ( ).   
                   x x x  

Furthermore, ( )
    F x  

1( ) ( ) ( ) 
       F x F x . Then  ( ), ,

    F x  is an 

linearly ordered system. 

For each , , x X  we have that 
1( ) ( )      F x F x 1( ) ( ) ( ),        F x F x  

Hence,    ( ), , ( ), , 
          F x F x . 

Next we shall show that  

   ( ), , ( ), , . 
            X F x X F x  

Indeed, for  ( ), , .
     y X F x  By Lemma 3.1, 

there exists ,   such that ( ) ( ).  y F x  

 Let , U V
 
be two open subsets of X

 
with   U V

 
satisfying ( ) ,  y U ( ) .  F x V

  
Then 

1( ) ( ).  F x V
 
By Lemma 2.1, there exists    

and some open subset U
 
of X , such that 

1( )  x U  and 

1 1( ( )) ( ).     F U V
 

Let  0 min , .   And let 
0 0

( ).
  U U

 
Since 

0 0

1 1 1( ) ( ) ,
        

0 0

1( ( )) ( ).
     F U V  

Thus,  

0 0 0 0 0 0

1 1( ) ( )) ( )            F U F U V
 

0 0 0 0

1 1( ) ( ) ( ) ( ). 
          V V

 
Particularly, 

0 0 0

1( ) ( ) ( ).
     F x V   

By the similar way, it is easy to check that 

0 0

1( ) ( ) ( ).
    y U

 
Since 

0 0

1 1( ) ( ) ( ) ( ) , 
      U V

 

0 0 0
( ) ( ).   y F x

 

Thus,  ( ), , .
     y X F x  
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Moreover,    ( ), , ( ), , . 
          F x F x  

So, (2) is true. 
(3) It is directly by Lemma 3.1 and (2). 
The following Lemma is directly. 

Lemma 3.3 Let : F X X  is a continuous multifunction, 

and :  F X X  be defined as in Lemma 3.1. Let 

 : ( ) .    P p X F p   

Then  , ,
  P  forms an inverse system. 

Proof. It suffices to prove ( ) ,
   P P  whenever   , 

which follows in a routine Way. 

4. PROOF OF MAIN THEOREM  

Since each X  has . . .F p p  and F  is continuous, P  is 

nonempty closed subset. By Lemma 3.3,  , ,
  P  is an 

linearly ordered systems of compact spaces, so it has a orbit 

space  , , .
  P  We assert that 

  , , , ( ).
    x P x F x  

Let  , , ,
   x P  Then ,   

( ) .  x P
 
That is to say ( ) ( ).   x F x  So, by 

Lemma 2.4 and Lemma 3.2, 

   ( ), , ( ), , ( ). 
           x x F x F x  

In fact, with the assumption of the main theorem and the 
notation of Lemma 3.3 together with the notation 

 : ( ) , P x x F x  we have the following sharper assertion. 

Theorem 3.4  , , .
  P P  

Proof. By the main theorem, we have 

 , , .
  P P  It remains to be proved that 

 , , .
  P P  

Let . x P  Then ( )x F x  and ,   

1( ) ( ) ( )( ) ( ( )).             x F x F x F x  

That is, ( ) ;  x P  It follows from Lemma 3.3 that 

 , , .
  P P  
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