
 J. R. Clymer, Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 3 (2017) 377-384

© 2017 WIT Press, www.witpress.com
ISSN: 1755-7437 (paper format), ISSN: 1755-7445 (online), http://www.witpress.com/journals
DOI: 10.2495/DNE-V12-N3-377-384

MATHEMATICS OF COMPLEX ADAPTIVE SYSTEMS

JOHN R. CLYMER
Clymer & Associates, Boone, Iowa USA.

ABSTRACT
The mathematics of Complex Adaptive Systems (CAS) consists of mathematical linguistics, symbolic
logic, and the physical laws of the system problem. These concepts are discussed in terms of a graphi-
cal simulation programming language designed to experiment with CAS that can occur at every level
of creation: including social, ecological, molecular, and quantum. In order to understand CAS, the
most important principle is understanding the interactions among entities. The understanding of these
interactions is more important than understanding the entity features. For example, understanding the
dynamics of individual vehicles is not enough to understand freeway traffic patterns. This is because
freeway traffic depends on the decisions of drivers as well as vehicles’ capabilities. For example,
wave behavior occurs in freeway traffic when drivers are free to enter the freeway without restric-
tion. This system behavior was found to be mitigated by controlling freeway entrance timing. Often,
when knowledge of other entities are shared or are observable and the decision making rules used by
entities to make decisions can evolve, emergent behaviors occur. Many examples of such complex
systems are discussed, focusing on entities that are intelligent agents. A submarine classification sonar
net and a vehicle traffic control network are presented as examples. A simulation programming system
is described that allows experiments with the system behavior of intelligent agents to be performed.
Keywords: complex adaptive systems, intelligent agents, interacting concurrent processes.

1 INTRODUCTION
System behavior is described by the interaction of concurrent processes [1] where groups of
processes describe the behavior of individual physical entities. Entities interact by communi-
cating facts that logically suggest actions to be taken by other entities. Of course, entity
capabilities are determined by the laws of physics.

A process can be thought of as a sequence of states that represent periods of time. As
 discussed later, these sequences are defined by transition rules that specify alternate state
changes and associated state change event actions. States are usually associated with ongoing
activities of entities as well as other periods of time. The flow of time for each process must
be synchronized into a concurrent flow of time for all processes. A description or model of
Complex Adaptive Systems (CAS), as presented in this article, requires mathematical linguistics
(process description), symbolic logic (map facts into actions), and the laws of physics (phys-
ics of motion, electrodynamics, etc.)

If network entities are allowed to learn the rules that map facts into the choices among
event actions and state activities, then an evolutionary, concurrent process may result describ-
ing the behavior of the network. If entities apply learned rules to decide event actions and
state activities optimally, they may be called intelligent agents. As a guide to agent network
evolution, consider Ross Ashby’s law of requisite variety [2] that states that the degrees of
freedom of the regulator processes must exceed the degrees of freedom of the processes
being regulated. For example, a group of entities evolve in order to regulate (control) the
effects of environmental processes. This law holds at all levels of the hierarchy of existence
and guides natural evolution of entities to increase requisite variety.

Operational Evaluation Modeling (OpEM) for Context-Sensitive Systems (CSS) is a
computer simulation tool OpEMCSS for networks of intelligent agents and environmental
processes. It implements the science of complex systems using a logical, graphical language

378 J. R. Clymer, Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 3 (2017)

that defines the states and state transitions and includes tools that learn rules to regulate
agent networks. OpEMCSS [3] allows the mathematics of complex systems to be executa-
ble, making experimentation with complex systems possible. Science is not science without
experimentation.

2 MATHEMATICAL LINGUISTICS MODEL
In systems engineering, design documentation includes: (1) a collection of architectural dia-
grams representing physical entities and communication links among entities and (2) a
collection of functional flow diagrams where functions are mapped to architectural entities.
Before this design documentation is developed, the system problem must be specified in an
executable form that allows for experimentation within the system’s operational environment
called the mission analysis and concept evaluation phases of the systems engineering process.
In OpEMCSS, the operation of a system (network) of communicating agents in the system’s
operational environment is described by a collection of interacting concurrent processes
called the operational view.

The operational view features a collection of interacting concurrent processes [1]. This
view originally comes from mathematical linguistics using context-sensitive generative
grammars as discussed in [3], Chapter 2. In order to understand this view one must learn to
visualize strings (sequences of discrete states) representing the operation of an entity in the
system. These strings are generated by regular grammars [4]. When the states of agents are
synchronized in time, a context-sensitive grammar [4] is required. In other words, the gener-
ator rules of the language that define when each process can change state often depends on
the state of other processes, making them context-sensitive.

There are several examples of context-sensitivity that will help understand from an opera-
tional perspective. Suppose that one process cannot continue (change state) until another
process changes to a particular state. For example, the command and control process cannot
start to process a target (an environmental entity) until the surveillance process detects it. The
ship processes cannot detect the target until it is in the ‘detectable’ environmental state. This
interaction is called ‘synchronization.’ There are many forms of synchronization that can
occur.

For a second example, suppose one process is using a resource (a physical entity) required
to perform the process function. A second process enters a state ‘wait state’ where it also
requires the resource where it cannot change state until the resource is again free. This inter-
action is called ‘resource contention.’ Knowing the state transition rules for all concurrent
processes allows the system scientist to visualize the concurrent operational state flow of the
system.

Thinking about system operation using context-sensitive generator rules can be difficult.
Further, if the operational view is to be executable, state variables such as resource counters
(the number of physical entities currently available) must be provided to implement resource
contention. OpEMCSS uses a graphical representation of concurrent process state flow. State
variables are either global to all processes or local to a subset of processes. State variables
allow detailed mathematical sub-models to be included in the process model. In cases where
the laws of physics determine when state changes can occur, state variables allow detailed
mathematical calculations to be done. For example, a detailed radar detection calculation
(radar equation) could be used to decide when a target is detectable based on the target’s
process state and state variables. A ship model was very accurate in predicting ship system
behavior given various environmental situations.

 J. R. Clymer, Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 3 (2017) 379

OpEMCSS simplifies a concurrent process, by allowing a graphical diagram to represent
more than one process instance. This is called duplication. For example, consider a system
that consists multiple detection sonars and multiple ships (surface ships and submarines). The
sonars communicate to detect and identify the type of ship. The ships operate independently
but interact with each sonar by going into and out of the detection range. The object of this
experiment is to determine how to optimize the probability that each ship is identified cor-
rectly by type. The ships arrive and leave the scenario randomly so the number and type of
ships in the scenario varies. For a complete description of the OpEMCSS software package
see [3], appendices, and the sonar model [3], Chapter 8. The overview given in this article
should allow us to understand applications involving CAS consisting of a network of intelli-
gent agents [5].

Context-Sensitive Systems (CSS) are systems where decisions depend on the spatial and
temporal context formed by interacting concurrent system processes with processes of the
dynamic operational environment. CSS interactions result in very non-deterministic/non-lin-
ear system behavior: the same input does not necessarily produce the same output. Sometimes
CSS interactions result in emergent behavior typical of what is known as a CAS. For exam-
ple, a network of traffic light control systems [3], Chapter 9, where light control is
context-sensitive can have an emergent behavior such that vehicle waiting time in the net-
work is minimized. Self-synchronization of traffic light timing throughout the network, that
results in minimum vehicle waiting time, is an emergent property of the entire network. More
about this example is discussed subsequently.

3 EXAMPLE GRAPHICAL PROCESS MODEL
Figure 1 shows a sequential process diagram for a Fire Control System (FCS) as an exam-
ple of an OpEMCSS graphical diagram. There are many other process models not shown
with which the FCS process interacts. The states in the diagram are represented by circles
with the name of the state shown beneath the circle. Alternative state changes out of the
Designate FCS state are labeled Probability of Lockon (PLO) and Probability of Abort
Lockon (PAB). The alternate action icon next to the state opens to reveal a mathematical
equation to decide which alternate path to take. All OpEMCSS icons open to perform
mathematical computations that allow the concurrent process model to be an executable
computer program.

Figure 1: Fire control system process diagram.

380 J. R. Clymer, Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 3 (2017)

4 AGENT FUNCTIONAL FLOW MODEL
Figure 2 shows a functional flow diagram of an intelligent agent consisting of five kinds of
functions: (1) sensors, (2) transfer functions, (3) feature extractors, (4) classifier systems, and
(5) evaluators.

4.1 Sensors and transfer functions

Sensors probe the environment and return raw data that describes what is out there. Signal
processing transforms raw sensor data into refined data that measures various aspects of what
is out there. Refined data is transformed into features (crisp or fuzzy sets) that encapsulate
knowledge required for rules to make decisions.

For example, as discussed in [3], Chapter 8, for the sonar array model, when any ship
moves through water, acoustic signals are generated and propagated omni-directionally. Each
acoustic signal received by the sensor can be transformed into a set of features that measure
some aspect of the received signal. Some of these measurements are the frequency, band-
width, harmonic content, and signal stability. Feature ‘frequency’ is partitioned into about a
dozen contiguous crisp sets where each crisp set is defined in terms of a range of frequencies.
It is known that certain ranges of frequencies are associated with submarines and other ranges
with surface ships. Therefore, if the collection of all frequencies detected is properly parti-
tioned into crisp sets (feature facts), feature ‘frequency,’ along with other features, can be
used to discriminate between surface ships and submarines.

4.2 Feature extractors and classifier systems

In the sonar example, a sonar expert was available to define the features. Given a scenario that
no expert is available, the approach to the problem then becomes determining which signal
data measurements relate more closely to the goals of the system. This problem can be solved
by forming the refined data into crisp/fuzzy sets (feature facts) and using these feature facts
to learn rules that make the best decisions. The OpEMCSS Classifier block was used to learn
the rules that best classified surface ships and submarines correctly. This method was

Figure 2: Agent functional flow diagram.

 J. R. Clymer, Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 3 (2017) 381

discussed in [3], Chapter 8, for the sonar array system model. Holland [6] was among the
initial inspirations for the OpEMCSS Classifier block.

If the transformation from refined data to feature facts is not known, the Feature Extraction
function learns to transform a large refined data space, where each dimension is a data meas-
urement, into a more manageable and smaller feature space better suited to rule learning.
Usually, feature space forms a closed manifold that is non-Euclidian (the features are not
independent). Creating a feature extractor for a specific system design problem will probably
require advance mathematics such as differential geometry. Transforming high-dimensional
target description data into a small set of feature facts that provide correct target classification
was accomplished using evolutionary algorithms [7].

4.3 Evaluator function

The reward criterion defines success and failure for decisions made by the OpEMCSS Fea-
ture Extractor block and the Classifier block. For example, consider the Prisoner’s Dilemma
game discussed in [3], Chapter 7, that does not require a Feature Extraction block.

Reward for Agent 1 is computed as per the rules of the game:
IF Agent1 = Collaborate && Agent2 = Collaborate Reward = 5;
IF Agent1 = Collaborate && Agent2 = Defects Reward= 0;
IF Agent1 = Defects && Agent2 = Collaborate Reward = 6;
IF Agent1 = Defect && Agent2 = Defect Reward = −3;
Rule learning for the Prisoner’s Dilemma game always converges to both players collabo-

rating. Axelrod [8] discusses many strategies for this game. Some of these are intricate ploys
to trick your opponent into cooperating so you can defect; however, he shows that the best
strategy is ‘tit for tat,’ where an agent punishes his opponent each time he defects by defecting
next time and then returns to cooperating in a subsequent game. The learned classifier rules
were the ‘tit for tat’ rules that were quickly learned.

In general, the system behavior achieved is always determined by the reward system
devised. Therefore, the systems goals must be well understood and quantified by system
behavior. Often, understanding the real quantified goals of the system is the initial object of
the system design problem.

4.4 Learning feedback

Evaluations produced by the Evaluator function are feedback to the Classifier System func-
tion and the Feature Extraction function (this is a special block, user-defined mathematical
algorithm). Both of these functions learn to optimize their operations in order to maximize
the value of payoff received from the evaluator. Rule learning for the Classifier block is dis-
cussed in [3], Chapter 7. Learning for the Feature Extraction block is beyond the scope of this
article and is a separate research problem for each CAS.

4.5 Complex behavior of intelligent agents

Some of the agent’s decision actions may result in exerting partial control over the environ-
ment in a way that changes the environmental situation for other agents. The Prisoner’s
Dilemma model, discussed in [3], Chapter 7, is an example of two agents playing the Prison-
er’s Dilemma game. Each agent must decide on the basis of the outcomes of the last several
games whether to cooperate or defect.

382 J. R. Clymer, Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 3 (2017)

Physical agents may move and interact in the real world. For example, the world model,
discussed in [3], Chapter 8, simulates 30 agents that move on a playing field and interact. The
world model demonstrates how the agent motion and spatial interaction blocks are used;
however, the world model is also a good example of a CAS. Each agent is modeled using
three concurrent processes: agent motion, agent interaction, and agent group maintenance
that are each duplicated for each agent. When an agent (Agent 1) comes into a specified inter-
action range ‘IntRng’ of another agent (Agent 2), Agent 1 adopts the velocity vector of Agent
2. Agent 1 also sends his new velocity vector to all other agents in a message. Any other agent
that is within ‘IntRng’ of Agent 2 also adopts the new velocity vector. The overall behavior of
this system begins with each agent randomly placed on the playing field with each agent
having a random motion vector. The overall CAS behavior emerges to the situation where all
agents are in a group with a common group motion vector.

The sonar sensor array modeled in [3], Chapter 8 is an example complex system where
there are sonar sensor agents and environmental entities (i.e., surface ships and submarines).
The sonar sensor agents have a fixed position in the physical world and do not move. How-
ever, the agents share their ship classifications with each other, applying a majority vote to
decide the overall system classification. The ship entities, particularly the submarines, could
have been modeled as intelligent agents that perceive their environment and adapt their
behavior (change internal function) to minimize sonar sensor detection. The submarine
agents would probably not communicate with each other (send output messages), however.

5 A SELF-ORGANIZING, CONTEXT-SENSITIVE SYSTEM
As an example of a CSS system having emergent behavior, a distributed vehicle traffic con-
trol network located in a large city is discussed in [3], Chapter 9. This traffic control network
is an example of a System of Systems (SOS) where each system in the network independently
provides specific services and each system can operate independently of the rest of the SOS.
Additional services are provided through collaboration among the networked traffic control
systems. Network Centric Operation (NCO) of related business units and combat system
platforms are other examples of SOS that are currently of research interest [5].

Each major intersection has a vehicle traffic light controller to determine traffic light tim-
ing. In this system, each traffic light controller uses its sensor-obtained perceptions about
incoming traffic flow to optimize light timing, thus minimizing local vehicle waiting time.
The result of each traffic light controller adapting light timing to accommodate traffic flow
coming from other intersections is to minimize the average waiting time in the entire net-
work. Global minimization of traffic waiting time results as a consequence of the emergent
behavior of this system, which is the self-synchronization of each traffic controller’s light
timing with all other controllers. Such self-synchronization results from the context-sensitive
behavior of the network.

As light timing control in the overall traffic grid evolves in the way discussed above, a
complex but definite pattern in network operation, north-south red to green transition times,
emerges out of an initial random light pattern. The emergent behavior of the traffic grid can-
not be explained through an understanding of each controller alone. Understanding only
comes when we study the interactions of the controllers (the entire network) as they adapt
their behaviors in response to sensor perceived information about incoming traffic flow,
achieving self-synchronization of all traffic light controllers in the network.

The desired emergent behavior for the traffic control system was achieved by experiment-
ing with feedback in the network. With no feedback, the traffic lights operate independently

 J. R. Clymer, Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 3 (2017) 383

and average vehicle waiting time is high. With very strong feedback, the traffic control net-
work operation appears chaotic (little self-synchronization occurs) and the average vehicle
waiting time is high. When the feedback is just right, operating on the edge of chaos, the
emergent behavior (minimization of network waiting time) is observed. It is also interesting
to note that the overall system never reaches steady state operation; indeed, the system seems
to be in a constant state of flux as observed by the random appearance of the light timing
control signals, even when the average vehicle waiting time is being minimized, implying
emergent behavior.

A similar result occurs in a three-dimensional set of non-linear, simultaneous differential
equations. Individual state variables appear random, but a graph of the three-dimensional
point (x,y,z) follows a clear trajectory through space that never goes through the same point
twice. In general, a single feature may appear chaotic, but several features can have a corre-
lated path to optimal behavior. The Classifier block can follow the trajectory of the correlated
path of features, even when they appear uncorrelated separately, to discover how to achieve
optimal system behavior. It amazes me when it does it.

6 CONCLUSION
The behavior of a complex system that includes the interaction of multiple entities and the
dynamic environment can be represented as communicating concurrent processes. Processes
describe sequences of states where each state represents a period of time required to perform
the action of the state. Process interactions include fact communication and forms of process
synchronization usually determined by the physics of the problem (you can’t process a target
before you detect it). Logic is applied to facts to decide actions using rules. Rule learning
allows communicating processes to evolve toward optimal system behavior, which may
include regulatory actions on the environment. Such evolution can result in emergent behav-
iors for the whole system.

Operational Evaluation Modeling (OpEM) for CSS or OpEMCSS is a simulation library
that works with ExtendSim, a product of Imagine That Inc. OpEMCSS and ExtendSim are
available from [3] on a disk in the back cover of the book for immediate application to
experimentation with CAS. Also provided in [3] is all information, including hands-on
experiments, required to apply OpEMCSS to your complex system problem. OpEMCSS is
designed to do complex system simulation and optimization. OpEMCSS includes: (1)
blocks required to simulate interacting concurrent system processes within the dynamic
operational environment; (2) blocks required to do evolutionary optimization of the system
behavior; and (3) blocks required to simulate motion and spatial interactions among a set of
physical entities in the system and its environment. OpEMCSS was created by the author to
experiment with CAS and to greatly simplify creating a simulation program for system sci-
ence study.

OpEMCSS blocks are connected in a network, as shown in Fig. 1, to simulate the execu-
tion of the concurrent threads of activities that comprise system and environmental behavior.
System behavior can be optimized in terms of the number of each kind of resource and activ-
ity reaction times using the evolutionary algorithm block [7]. System management rules can
be learned using the Classifier System block that optimizes system control decisions. Blocks
are available to simulate motion and spatial interactions among a set of physical entities in the
system and its environment. Often the position and velocity of system and environmental
entities are critical to accurate description of system behavior in a dynamic operational envi-
ronment.

384 J. R. Clymer, Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 3 (2017)

OpEMCSS is a computer simulation program defined by graphical icons of process behav-
ior, but allows for detailed mathematical models to whatever depth is required. Special blocks
are included in an auxiliary library that allows a detailed mathematical model of entity phys-
ical operation to be included in an OpEMCSS simulation. Based on ExtendSim, OpEMCSS
can be considered a general programming language with blocks provided to do discrete event
simulation of interacting concurrent processes and entity behavior.

OpEMCSS is the culmination of 50 years of research, experimentation, and application to
real world problems; most of them US DOD classified. The textbook [3] describes a method-
ology for the front end of systems engineering: mission analysis and concept evaluation
where the real world problem is defined and top level requirements are specified. This paper
focuses on the fundamentals of mathematical linguistics, symbolic logic, and the ‘physics of
the problem’ required to do the front-end systems engineering of CAS.

REFERENCES
 [1] Hoare, C.A.R., Communicating Sequential Processes, Prentice Hall: Englewood Cliffs,

NJ, 1985.
 [2] Ashby, W.R., Introduction to Cybernetics, Chapman & Hall: London, 1956.
 [3] Clymer, J.R., Simulation-Based Engineering of Complex Systems, John Wiley & Sons

Inc.: Hoboken, NJ, 2009.
 [4] Hausser, R.R., Foundations of Computational Linguistics: Human-Computer Commu-

nication in Natural Language, 2nd edn., Springer: Berlin, 2001.
https://doi.org/10.1007/978-3-662-04337-0

 [5] Weiss, G. (ed.), Multi-Agent Systems: A Modern Approach to Distributed Artificial
Intelligence, MIT Press: Cambridge, MA, 1999.

 [6] Holland, J.H., Hidden Order, Addison-Wesley: Reading, MA, 1995.
 [7] Fogel, D.B., Evolutionary Computation: Toward a New Philosophy of Machine

 Intelligence, IEEE press: Piscataway, NJ, 1995.
 [8] Axelrod, R.M., The Evolution of Cooperation, Basic Books: New York, 1984.
 [9] Haussler, D., Quantifying inductive bias: AI learning algorithms and valiant’s learning

framework, Artificial Intelligence, 36, pp. 177–222, 1988.
https://doi.org/10.1016/0004-3702(88)90002-1

[10] Westerdale, T.H., An approach to credit assignment in classifier systems, complexity.
Journal Santa Fe Institute, 4(2), pp.49–52, 1998.

https://doi.org/10.1016/0004-3702(88)90002-1

