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 Analysis of real network systems with high accuracy leads to building complex high-

dimension models. When the time for determining system, parameters plays an important role 

the system modeling, time becomes a critical parameter. So, one needs to find an approximate 

simpler representation of such network systems while preserving the characteristic properties 

of the higher dimension system. In this paper, an approach related to formal transformations 

of the system structure model using multilevel aggregation has been applied to obtain a 

reduction in computational complexity and faster modeling. Software implementation of the 

developed algorithm allowed evaluating the effectiveness of the approach. The efficiency of 

the approach is demonstrated using an example of solving the maximum flow problem. 

Multilevel structural model transformations result in the dimension reduction of a network 

system presentation and, consequently, a decrease in the execution time of computational 

procedures. 
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1. INTRODUCTION 

 

Modern technical and technological objects are 

characterized by many elements, a variety of links and a 

significant amount of processed information. Complex 

systems are systems in which the pattern of interactions 

between a system’s constituent parts is itself complex and is 

evolving together with the system’s dynamics. Complex 

systems are those where the number of states determined by 

the states of elements or by the interrelations between elements 

is combinatorically large or uncountable. It provides the 

system with essential properties and imposes a number of 

restrictions on the study of such systems. Complex systems 

require specific methods for analysis and design. The main 

purpose of these methods is that they reduce the system to a 

smaller dimension, using its aggregation or decomposition. 

Three groups of problems should be solved for them: 

(1) The analysis of properties and behavior of the system, 

depending on its structure and the value of its parameters. 

(2) The selection of the structure and values of the 

parameters based on the properties of the system. 

(3) The construction of complex systems. 

In the context of network theory, a complex network is a 

network with non-trivial topological features and with a 

multitude of non-trivial statistical challenges [1, 2]. 

The subject of research is network systems including 

discrete, dynamic and stochastic systems with discrete or 

continuous-time, where the flow balance law takes place [3]. 

This work is devoted to the problems of formal 

transformations of the structural models of network systems 

with the purpose of reducing the dimension of the system, 

when the time of evaluating system metrics plays an important 

role in solving real-time control problems, and when the time 

of modeling the system is a critical parameter. 

2. LITERATURE REVIEW 

 

Over the past decade, the number of papers devoted to the 

study of so-called «complex networks» or, in other words, 

complex systems with network topology, has increased. 

Networks are used as a common model of a wide variety of 

complex systems. The following classification of complex 

networks is widely used at present [4, 5]: Technological, 

biological, ecological and social. Much attention is paid to the 

theory of networks, network modeling. 

Many complex systems can be represented as multilevel 

networks composed by distinct elements, interacting and 

depending on each other. The basic elements of real-world 

systems are connected by different types of interactions. For 

example, in technological networks, a network element can be 

hardware, software, data, processes (including processes for 

providing service to users), facilities; in the case of social 

networks, in which the same set of people might have political 

or financial relationships, or might be interacting using 

different platforms like e-mail, Twitter, Facebook, phone calls, 

etc.; in ecological networks, network models are composed of 

a set of compartments, describing either species or functional 

groups, and a set of links that represent interactions or energy 

or biomass flows among compartments. 

One of the challenges for ecological and biological-network 

models is to study deferent properties of systems. For example, 

complexity and stability, controllability and observability. To 

study the properties of ecological systems, multilevel network 

models are constructed using a series of aggregation process. 

The construction of ecological multilevel network models is 

extremely difficult problem because of the limitations in data 

availability associated with the difference in type of network 

models, level aggregation and timescale. The authors [6] state 

that machine learning and better data sharing between 

International Journal of Design & Nature and Ecodynamics 
Vol. 15, No. 1, February, 2020, pp. 13-23 

 

Journal homepage: http://iieta.org/journals/ijdne 
 

13



 

ecologists represent very important areas for advances in 

ecological networks.  

It is known that the mathematical model of a technological 

network system consists of two parts: a description of its 

elements and a description of the structure of the system. The 

formal technics describing mathematical models of 

technological systems is well studied and includes: queueing 

theory, Petri nets, process algebra, and set theory. 

A number of problems of the system analysis require an 

investigation of the structural model of a complex system. At 

the same time, some of them are solved only by transforming 

the existing structure into a kind that allows to achieve the 

solution of the tasks assigned to the research.  

The authors [7] apply the aggregation of elements of a 

queuing network with the purpose of reducing its dimension 

and decreasing simulation time. The main point of the 

aggregation consists in dividing the network into two parts - 

the main nodes, being of interest, and the remaining nodes. It 

is claimed that the method is effective only in a limited range 

of statistical characteristics of the nodes. 

The authors [8] consider the method of investigating a 

complex network system based on its decomposition. The 

method reduces the dimension of the system model and 

improves the performance of the modeling system on parallel 

platforms. 

Concept of aggregation is used it the paper [9] to finding 

shortest paths in a graph. This is used for the satellite 

navigation to be able to efficiently respond in real-time to 

traffic updates.  

The authors [10] investigate aggregation schemes for 

Markov processes. The approach was to lump states of a 

Markov process together in groups and propose a Markov 

process on the set of groups which has the aggregated 

stationary probability. The potential benefits are efficient 

computation, including recomputation to take into account 

local changes. 

In the paper [11], the authors demonstrate how structure 

model metrics of a complex network system can be used to 

create random networks. The developed random networks 

estimate the types of network failures and their associated 

consequences. 

The tasks of topological analysis of systems represent a 

range of complex problems, the solution of which requires 

large computing resources and the development of 

mathematical methods. They can be combined into such 

groups: 

(1) Development of a valid structural description of a 

complex system. The tasks of this group compose a 

topological structure on the base of an original specification of 

a complex system, that is, determine elements and subsystems 

of a complex system and their connectivity. 

(2) Determination of characteristics of a complex system 

with a specified topological structure. For example, a 

definition of strongly connected components, shortest paths, 

cycles, races, etc.  In addition, the system structure model is 

used to analyze the quality metrics of the structure. For 

example, the number of links among subsystems; weighted 

number of links, whose weights are usually the functions of 

length, bandwidth or other characteristics of the channels, the 

rate of message transmission over channels, and so on. 

(3) Optimal design, equivalent transformations of the 

topological structure of a complex system. 

Most of the tasks of the third group are tasks of the increased 

complexity. The structure design for network systems is one 

of the main tasks and consists in choosing the optimal scheme 

for connecting nodes, selecting the transmission capacity of 

channels and optimal routing. The choice of a topological 

structure is carried out using various criteria and takes into 

account the constraints for time delay, the reliability of 

information transfer, etc. 

The problem of equivalent transformations considered in 

this paper belongs to the third group of topological analysis 

tasks. Equivalent transformations can be applied in the 

following cases: 

(1) Redistribution of links and interaction schemes 

within the framework of the initial structure. 

(2) Aggregation and decomposition of the system 

components. 

(3) Analysis of the model structure for detecting 

parallelism, deadlocks and solving the problem of mutual 

exclusions. 

(4) Reducing the dimension of a system, when the time 

of metrics evaluation plays an important role in solving real-

time control tasks, and also when the time of modeling the 

system is a critical parameter. 

 

 

3. CONSTRUCTION OF THE SYSTEM STRUCTURE 

MODEL AND MULTILEVEL TRANSFORMATION 

ALGORITHM 

 

This section is devoted to the construction of a system 

structure model and development of an algorithm for its multi-

level aggregation. Here, we consider the problems related only 

to transformations of an element connection scheme. The 

dynamic of a system is not considered. 

A complex system S contains elements Ci ( i 0,N= ), where 

N is a fixed number, and an external environment denoted by 

С0. Let’s consider the formal model of a complex system 

structure [12, 13]. 

We formulate the first assumption as follows. Elementary 

signals are transmitted in a system over elementary channels. 

The elementary channel l connected to the output of the 

element Cj can transmit only elementary signals yl
(j)(t) having 

a fixed index l. 

This assumption admits the following interpretation. The 

input of element Сj consists of mj input contacts; the contact 

Хi
(j) receives the elementary signals xi

(j)(t); ji 0,m= . Similarly, 

the output of element Сj consists of rj output contacts; the 

contact Yl
(j) gives out the elementary signals yl

(j)(t) which are 

accepted by one or more elements; jl 0, r= . Thus, the 

mathematical model of the element Сj used for the formal 

description of its connection with other elements is a pair of 

sets: 
m

( j)

i 1
X    and 

r
( j)

l 1
Y   , where for simplicity we use the 

notations m = mj, r = rj. 

The second assumption. Not more than one elementary 

channel is connected to the input contact of any element of 

system; any finite number of elementary channels can be 

connected to the output contact. 

We introduce the single-valued operator [14]: 

 

( )(k) ( j)

l iY R X=  (1) 

 

where, the domain of the operator is the set 
N

m
( j)

i 1
j 0

X
=

  
 and the 
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codomain of the operator is the set 
N

r
(k)

l 1
k 0

Y
=

  
. 

The operator in Eq. (1) assigns the output contact Yl
(k) to the 

input contact Xi
(j). If no elementary channel is connected to the 

contact Xi
(j) in the system under consideration, then the 

operator R is not defined for this Xi
(j). The operator in Eq. (1) 

we will call the operator of elements connections. 

The operator of elements connections, its domain and 

codomain we will call the elements connections scheme of 

system or the formal model of the system structure. The 

elements connections scheme of system contains exhaustive 

information about the connections of system elements. 

The form of the operator R plays an important role. It will 

affect the performance of any data processing algorithms 

especially in the case of large systems.  

Consider the system, which structure is represented in 

Figure 1. 

 

 
 

Figure 1. The structure of system S 

 

Note, the inverse operator Rj
-1 is not single-valued. 

 
(j) -1 (k)

i lX =R (Y )  (2) 

 

Create the operator of elements connections R in a tabular 

form. The Table 1 shows the values of the operator R for the 

considered example of the system S. 

In the Table 1, the numbers of rows correspond to the 

numbers of elements. The numbers of columns correspond to 

the numbers of the input contacts of elements. At the 

intersection of the row j and the column i there is a pair of 

numbers (k, l) indicating the number of the element k and the 

number of its output contact l, to which the contact Xi
(j) is 

connected. 

 

 

Table 1. The operator R of the elements connections for the 

system S 

 

j\i 1 2 3 4 

0 1,2 6,1 10,4 -,- 

1 3,1 2,2 -,- -,- 

2 0,3 0,1 8,1 -,- 

3 1,1 4,1 10,2 -,- 

4 1,1 2,3 3,2 10,1 

5 6,2 1,1 2,1 -,- 

6 5,1 12,1 9,1 -,- 

7 2,3 0,3 8,2 -,- 

8 0,3 12,4 -,- -,- 

9 4,2 0,2 10,3 -,- 

10 9,2 3,3 12,3 -,- 

11 6,3 12,2 7,1 -,- 

12 11,1 1,1 0,3 -,- 
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Let’s represent the system S as an aggregate of a certain 

number of subsystems S, containing at least one element, 

where  = (0,1,2….М). Moreover, the element Сj, must 

belong to only one of the subsystems S. The subsystem Sµ0 

will include only one element С0 representing the external 

environment. 

The aggregation of the considered system on the subsystems 

can be realized as follows: Sµ0 = {С0}; Sµ1 = {С1, С2}; Sµ2 = 

{С3, С4}; Sµ3 = {С5, С6}; Sµ4 = {С7, С8}; Sµ5 = {С9, С10}; Sµ6 

= {С11, С12}. The aggregation proposed is depicted in the 

Figure 2.  

It is obvious that a subsystem Si, on the one hand, can itself 

be an independent system, just like the system S, and on the 

other hand, it can be an element of the system S. Further, for 

simplicity the subsystem Si will be considered as S. 

In this paper, the construction of the elements’ connections 

scheme and its implementation for these two cases are 

considered. In any case, the construction of the elements 

connections scheme consists of two steps: definition of the 

fictitious contacts on the border of the subsystem Si and 

construction of the operator of the elements connections. 

Step 1. Definition of the fictitious contacts. Each subsystem 

on the border must have fictitious input and fictitious output 

contacts for communication with other subsystems of the 

system S. The fictitious contacts play the role of male-female 

connectors that connect the blocks of complex electronic 

devices.  

In the first case, the subsystem S, considered as an 

independent system, has to have an external environment, 

which is denoted as an external element С0
 or subsystem S′

0.  

The internal structure of the external environment S′
0 is 

invisible to the elements of the subsystem S. The subsystem 

S interacts with the external environment S′
0 through its 

fictitious input contacts Xi
(0), which are connected to output 

contacts of the elements of the subsystem S, and through its 

fictitious output contacts Yl
(0), which are connected to input 

contacts of the elements of the subsystem S. 

In the second case, the system S is divided into several 

subsystems S. Each of the subsystems is considered as an 

element of the system S. The internal structure of a subsystem 

S is invisible to other subsystems of the system S. Each 

subsystem (on the border) must also have fictitious input Xi
() 

and fictitious output Yl
() contacts for communication with 

other subsystems of the system S. 

Combining these two cases, we come to the fact that the pair 

of contacts Xi
() and Yj

(0) and also Xi
(0) and Yl

() are 

combined into double fictitious contacts on the border of the 

subsystem S (Figure 2). 

 

 
 

Figure 2. The aggregation of the system S on the subsystems Si 
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Introducing the concept of fictitious contacts for each 

subsystem S plays an important role. In a project, if necessary, 

it is easy to replace the subsystem S with a new one. In 

comparison with the old subsystem S, a new one can: use a 

faster circuitry, which can improve the performance of a 

system S; allow extending functionality, for example, by 

integrating additional security mechanism and so on. 

Determine the fictitious contacts. It is obvious that the input 

and output fictitious contacts of the subsystem S are defined 

for the elements of two sets: 

(1) [Yl
(j)] is a set of the output contacts of all elements 

Сj, where Сj∈S, connected to the input contacts of the 

elements Сk, where Ck∉Sμ, as well as to the input contacts of 

the external environment С0. 

(2) [Xi
(j)] is a set of the input contacts of all elements Сj, 

where Сj∈S,, connected to the output contacts of the elements 

Сk, where Ck∉Sμ, as well as to the output contacts of the 

external environment С0. 

So, the set [Yl
(j)] is determined as: 

 

j k

( j) ( j,0) ( j,k)

l

C S C S

[Y ] {[Y ] ( [Y ])}
 



 

=   
(3) 

 

where, [Y(j,k)] is a set of output contacts of an element Cj 

connected to corresponding input contacts of an element Ck, 

where Ck∉Sμ. 

Selecting contacts Yl
(j) for inclusion in the set [Yl

(j)], in 

general case, we can meet the same contact Yl
(j) several times. 

According to the Idempotent Law of union of sets, the same 

contacts Yl
(j) are not repeated. Thus, for each Yl

(j)∈[Yl
(j)] it is 

sufficient to have only one fictitious contact Yl
(). 

Each Yl
(j)∈[Yl

(j)] generates a double fictitious contact on 

the border of the subsystem S. A pair of operators is used to 

define this double fictitious contact:  

 
(μ) (j)

l μ l

(0)μ (j)

i μ l

Y =Q (Y ),

X =Q (Y )
 (4) 

 

The operators in Eq. (4) are called the numbering operators 

of fictitious contacts of the subsystem S. The operator Q 

defines an output fictitious contacts Yl
() of the subsystem S 

(second case) (Figure 2). The operator Q′ defines an input 

fictitious contacts Xi
(0) of the external environment S′µ0 (first 

case). In fact, each of these operators symbolizes a procedure 

of assigning values to fictitious contacts. The values of the 

operators in Eq. (4) can be represented by a table of numbering 

fictitious contacts.  

As an example, the Table 2 contains the numbers of 

fictitious contacts of the subsystem Sµ1, connected to contacts 

of the set [Yl
(j)]1 with the help of operators Q and Q′. 

 

Table 2. The values of the operators Q and Q′
 

 
Yl

(j) 

(j,l) 
1,1 1,2 2,1 2,3 

Qµ 1 2 3 4 

Q′µ 1 2 3 4 

 

Similarly, we consider the formation of the set [Xl
(j)]. We 

use the expression: 

 

j k

( j) ( j,0) ( j,k)

l

C S C S

[X ] {[X ] ( [X ])}
 



 

=   
(5) 

 

where, [X(j,k)] is the set of input contacts of an element Cj 

connected to the corresponding output contacts of an element 

Ck, where Ck∉Sμ. 

According to the Idempotent Law of union of sets, only 

different contacts Xl
(j) enter the set [Xl

(j)]. For numbering of 

the fictitious contacts Xi
(), we introduce the pair of operators: 

 
(μ) (j)

i μ i

(0)μ (j)

l μ i

X =P (X ),

Y =P (X )

 (6) 

 

The operators in Eq. (6) are called the numbering operators 

of the fictitious contacts of the subsystem S. The operator P 

defines the input fictitious contacts Xi
() of the subsystem S 

(second case) (Figure 2). The operator P′ defines the output 

fictitious contacts Yl
(0) of the external environment  S′µ0 (first 

case). In fact, each of these operators symbolizes a procedure 

of assigning values to the fictitious contacts. The values of the 

operators in Eq. (6) can be represented by the table of 

numbering the fictitious contacts.  

 

Table 3. The values of the operators P and P′ 

 
Xi

(j) 

(j,i) 
1,1 2,1 2,2 2,3 

Pµ 1 2 3 4 

P′µ 1 2 3 4 

 

As an example, the Table 3 contains the numbers of 

fictitious contacts of the subsystem Sµ1, connected to contacts 

of the set [Xl
(j)]1 with the help of operators P and P′. 

Step 2. Construction of the operator of the elements 

connections. This step, in turn, should be considered for two 

cases: first case, a subsystem S is considered as an 

independent system, just like the system S; second case, a 

subsystem S is considered as an element of the system S.  

Construction of the operator of the elements connections for 

first case. Denote this operator by R.  

Consider a subsystem S as an independent system. It 

means that all other elements of the system S including С0 

represent the external environment S′
0 in relation to the 

subsystem S. There are two types of connections within the 

elements of the subsystem S. 

The connections of first type are internal connections of 

input and output contacts of elements Cj, where Сj∈S. 

The connections of second type are connections of input and 

output contacts of the elements Cj of the subsystem S to input 

and output contacts of the element S′
0. The external 

environment S′
0 interacts with the subsystem S through its 

input contacts Xi
(0), which are connected to output contacts of 

elements Cj, where Сj∈S, and through the output contacts 

Yl
(0), which are connected to input contacts of elements Cj, 

where Сj∈S.  

In the first case, the sets of the contacts [X
(j) 

i ]
m 

1  and [Y
(j) 

1 ]
r 

1 of 

the elements Сj, where СjS are given. The operator of the 

elements connections R for this case is equal to R. 

In the second case, the subsystem S has to connect with the 

subsystem S′
0 in the following manner: input contacts of the 

subsystem S′
0 to output contacts of the elements of the 
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subsystem S and output contacts of the subsystem S′
0 to input 

contacts of the elements of the subsystem S. Thus, the 

operators Q′ in Eq. (4) and P′ in Eq. (6) define the input Xi
(0) 

and output Yl
(0) contacts respectively: 

 
(0) ( j)

i l

(0) ( j)

l i

X Q (Y ),

Y P (X )









=

=
 (7) 

 

Finally, the operator R is determined as:  

 

 (8) 

 

where, the domain of the operator is the set: 

 

j μ

m m
(0)μ (j)

i il lC S

X X


  
        

  

 (9) 

 

and the codomain of the operator is the set:  

 

j μ

r r
(0)μ (k)

l ll lC S

Y Y


  
        

  

 (10) 

 

Consider an algorithm of forming a set of codomains of the 

operator R. Analyzing the expression in Eq. (9), we conclude 

that the domain of R consists of three subsets.  

The first subset. A contact Xl
(j) of an element Cj, where 

Cj∈S, is connected to a contact Yl
(k) of an element Ck, where 

Ck∈Sμ. It can be written: 

 

k

( j) ( j,k)

l

C S

[X ] [X ]


 =  (11) 

 

In this particular case, it is evident the contact Yl
(k) is defined 

as  

 
(k) (j)

l iY = R(X )  (12) 

 

Thus, the operator R is equal to the operator R: 

 

μR =R  (13) 

 

A procedure of forming the first subset in Eq. (11) of the 

subsystem S consists of two steps. 

Step 1. Consider all rows j (where Сj∈S) and the pairs of 

numbers (k, l) in the Table 1. If the first number k is such that 

Ck∈Sμ, then the second one l denotes the number of the output 

contact of the element Сk connected to the input contact Xi
(j). 

Step 2. The value of the operator R has to be determined, 

using the expression in Eq. (11). 

The two-step operation has to be executed for all rows j of 

the Table 1, where Сj∈S.  

The second subset. A contact Xi
(j) of the element Сj, where 

Сj∈S, is connected to the contact Yl
(k) of the element Ck, 

where Ck∉Sμ. It can be written: 

 

k

( j) ( j,k)

l

C S

[X ] [X ]






=  (14) 

 

In this case, it is necessary to form a fictitious contact Yl
(0) 

on the border of the subsystem S, using the operator P′ in Eq. 

(7). The procedure of forming the second subset in Eq. (14) of 

the subsystem S consists of two steps. 

Step 1. Сonsider all rows j (such as Сj∈S) and the pairs of 

the numbers (k, l) in the Table 1. If the first number k is such 

that Сk∉S, then the second number l is the number of the 

output contact of the element Сk connected to the input contact 

Xi
(j). 

Step 2. The operator R has to be determined. It is equal to 

the operator P' in Eq. (7). So, 

 

μ μR =P  (15) 

 

Finally, the fictitious contact has to be found as:  

 
(0)μ (j)

l μ iY =R (X )  (16) 

 

The third subset. Consider the third subset that consists of 

fictitious input contacts Xi
(0) of the external environment S′0. 

The operator Q′ in Eq. (7) has to be used in order to determine 

a contacts Yl
(k), which is connected to the fictitious contacts 

Xi
(0). It is easy to conclude that:  

 
(k) -1 (0)μ

l μ iY =(Q ) (X )  (17) 

 

where, the operator (Q′)-1 is an inverse operator Q′
. 

Thus,  

 
-1

μ μR =(Q )  (18) 

 

Note, the operator Q′ is a one-to-one operator. 

Finally, the procedure of constructing the operator R is 

defined by the expression: 

 

 (19) 

 

As an example, the values of the operator R where =1 

are given in Table 4. Like the Table 1, the Table 4 shows the 

values of the operator R1. The row 0 in this table corresponds 

to the external environment S′
0. The fictitious contacts Xi

(0) 

and Yl
(0) correspond to the input and output contacts of S′0, 

respectively. The rows 1 and 2 correspond to the elements С1 

and С2, respectively. The number of columns of this table is 

equal to the maximum number of input contacts among the С1, 

С2 and S′0 and is equal to 4. At the intersection of rows and 

columns there are pairs of numbers (k, l) indicating the number 

of the element k (where Ck∈Sμ and S′0) and the number of its 

output contact l, to which the input contact Xi
(j) is connected. 

The case, where a subsystem S is considered as an 

independent system has been applied to the design of secure 

hardware systems. In the paper [15], hardware obfuscation 

technique on the base of proposed formalism is described. 

 

 

( )(k) ( j)

l iY R X=

( )

( )

( )

j k

j k

( j) ( j) ( j,k)

i i

C S C S

(k) 1 ( j) ( j) ( j,k)

l i i

C S C S

m
1 1 (0) (0) (0)

i i i l

R X for X X

Y P X for X X

(Q ) X for X X

 

 

 



 

−   



    



 =   



   

18



 

Table 4. The operator R for the subsystem Sµ1 

 

j\i 1 2 3 4 

0 1,1 1,2 2,1 2,3 

1 0,1 2,2 -,- -,- 

2 0,2 0,3 0,4 -,- 

 

Now, consider construction of the operator of the elements 

connections for the case where a subsystem S is considered 

as an element of the system S (second case). In fact, that is an 

operator of subsystems connections or a two-level operator of 

the elements connections. Denote this operator by RII. Similar 

to the operator R, determine the operator RII as: 

 
(v) (μ)

l II iY =R (X )  (20) 

  

where, the domain of the operator is the set of fictitious output 

contacts of subsystem S 
M

0

( ) m

i 1[X ]




=

, and the codomain of the 

operator is the set of fictitious input contacts of subsystem S 
M

0

( ) r

i 1[Y ]




=

. 

If no elementary channel is connected to the contact Хi
(), 

then the operator RII is not defined for this Хi
(). 

Consider an algorithm of forming a set of codomains of the 

operator RII. A procedure of the operator RII is based on an 

analysis of a chain to which the contacts Xi
() and Yl

() belong. 

This procedure consists of two steps. 

Step 1. For a fictitious contact Xi
(), there is always a contact 

Хi
(j) (where Сj∈S), which can be determined using the 

expression:  

 
(j) -1 (μ)

i μ iX =P (X )  (21) 

 

where, P
-1 is the inverse operator P in Eq. (6). 

The operator P
-1(Xi

()) is not a one-valued operator. Thus, 

there can be more than one contact Хi
(j) for a fictitious contact 

Xi
(), but it does not matter. If the fictitious contact Xi

() 

corresponds to more than one contact Хi
(j), the output contact 

Yl
(k), where Сk∉S, will always be the same. 

Step 2. Definition of a fictitious output contact Yl
(). If for a 

contact Хi
(j) there exists an output contact Yl

(k) of the 

component Сk, such that Сk∉S and Сk∈Sv, then there always 

exists an operator: 

 
(k) (j)

l iY =R(X )  (22) 

 

Therefore, we define the required fictitious contact Yl
() 

with the help of the operator in Eq. (4):  

 
(v) (k)

l v lY =Q (Y )  (23) 

 

Thus, 

 

II vR =Q  (24) 

 

Consider a particular case, when k С0, fictitious contacts 

Yl
(0) and Xi

(0) of the subsystem S0 coincide with the 

corresponding contacts Yl
(0) and Xi

(0) of the element С0. 

Formally, the contacts Yl
(0) and Xi

(0) are obtained as a result 

of applying the operators Q0 in Eq. (4) and P0 in Eq. (6), 

respectively. In this case, the value of the operator RII is 

obtained using the operator: 

 
(μ0) (0)

l μ0 lY =Q (Y )  (25) 

 

Finally, the operator RII is defined by the expression: 

 
(k)

l k( )

l (? ) (0)

l 0 l

Q (Y ), if k 0, C S
Y

Y Q  (Y ), if k 0

 



  
= 

= =

 (26) 

 

where, Yl
(k) = R[P

-1(Xi
())]. 

The values of the operator RII for the considered example 

are given in Table 5. 

 

Table 5. The operator RII for the considered system S 

 
j\i 1 2 3 4 

0 1,2 3,1 5,4 -,- 

1 2,1 0,3 0,1 4,2 

2 1,1 5,3 1,4 5,2 

3 1,1 1,3 6,1 5,1 

4 1,4 0,3 6,3 -,- 

5 2,3 0,2 2,2 6,2 

6 3,2 4,1 1,1 0,3 

 

Like the Table 1, the Table 5 shows the values of the 

operator RII. The row number in the table corresponds to the 

subsystem numbers of the second level. The column number 

in the table correspond to the number of fictitious input contact 

of subsystem of the second level. At the intersection of the 

rows and the columns there are pairs of numbers (k, l) 

indicating the number of the subsystem k and the number of 

its fictitious output contact l, to which fictitious input contacts 

of subsystems are connected.  

To solve many practical problems related to network 

systems, it is necessary to aggregate subsystems S into larger 

subsystems S3
μ (third level), and those, in turn, into even larger 

ones, etc. In this case, it is necessary to consider a three-level 

RIII or four-level operator of the elements connections RIV, and 

so on. Algorithmic implementation of operator construction 

for higher levels is invariant. Like the second level the 

construction of the subsystem’s connections scheme for third 

and larger level consists of two steps: definition of the 

fictitious contacts on the border of the subsystem S3
μ; 

construction of the operator of the elements connections. The 

content of each of these steps for each level is the same. The 

construction of a multilevel aggregation scheme can be 

performed recurrently.  

 

Table 6. The operator RIII for the considered example of the 

system S 

 

j\i 1 2 3 4 5 

0 1,2 3,1 2,3 -,- -,- 

1 2,1 0,3 0,1 3,3 -,- 

2 1,1 1,4 0,2 3,2 -,- 

3 1,1 1,3 2,2 1,5 0,3 

 

As an example, in the work the third level aggregation was 

performed. The subsystems S  of second level have been 

aggregated as follows: S3μ0 = {C0}; S3μ1 = {Sμ1, Sμ4}; S3μ2 = 

19



 

{Sμ2, Sμ5}; S3μ3 = {Sμ3, Sμ6}. Table 6 shows the values of the 

operator RIII for the considered example of the system S. 

Thus, the application of the multilevel aggregation 

algorithm shows that, in comparison with the first level, at the 

third level of the system the number of elements has decreased 

by sixty-nine per cent and the number of connections has 

decreased by fifty-eight per cent. 

It is easy to show that all elements connections schemes 

(one-level, two-level and three-level and so on) are equivalent 

from the following point of view. To each elementary channel 

connecting the contacts Хi
(j) and Yl

(k) = R(Хi
(j)) in one-level 

elements connections scheme corresponds an elementary 

channel connecting these contacts in multilevel elements 

connections schemes. 

 

 

4. PROGRAM IMPLEMENTATION 

 

This section is devoted to the description of the program 

implementation. The algorithm of multilevel aggregation of 

the network system has been programed. The program is 

written in the Java programming language and consists of 

fourteen classes, ten of which display the structure and 

functionality of the program, four are test classes. Simplified 

UML diagram with class names and fields is represented in 

Figure 3.  

For the practical implementation of this task, it was 

necessary to construct classes that would reflect the structure 

and behavior of the system. The following structural parts 

were identified: a system that contains components; 

component; component port; connection between components. 

On the basis of this division such classes as 

SystemOfComponents, Component, Gate, Connection were 

constructed. 

This system is a multilevel system, and to represent its 

levels the LevelOfSystem class was created. To store the 

layers of the system a collection was created in the 

SystemOfComponents class. 

To create a hierarchical structure, the components were 

combined into subsystems. The component is both a 

component and an independent system. For the software 

implementation of this aspect, the inheritance mechanism was 

applied and, as consequence, the Component class was 

inherited from the LevelOfSystem class. 

 

 
Figure 3. Simplified UML diagram with class names and fields 

 

Each component has input and output ports which have a 

fundamental difference: only one connection can enter the 

input port, while several connections may leave the output port. 

However, at the same time, these ports have the same 

functions. Thus, to represent the ports of the component, the 

Gate class was created.  

The next task was to represent the connection between two 

components. To solve it, the Connection class was created. To 

determine the beginning and the end of communication it was 

necessary to create a certain object that would store the 

component and port from which the connection leaves, and the 

component and port into which this connection enters. Thus, 

the following classes were created: the ConnectionElement 

class that stores the component and the ConnectionElementIn 

and ConnectionElementOut classes that inherit 

ConnectionElement class and store the input and output ports 

respectively. To create a connection between components, a 

mapping collection was created in the Connection class, the 

key of which is the ConnectionElementIn object, and the value 

is ConnectionElementOut. 

As a result of the program implementation, the Tables 46 

were obtained, representing the connections of the subsystems 
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at each level of the system. 

 

 

5. EFFECTIVENESS ASSESSMENT OF MULTILEVEL 

TRANSFORMATIONS OF SYSTEM STRUCTURE 

MODEL 

 

The formal transformations of the system structure model, 

using a multilevel aggregation, results in reduction in 

computational complexity and faster modeling. The efficiency 

of the approach is demonstrated using an example of solving 

the maximum flow problem [16]. The maximum flow problem 

belongs to the group of topological analysis problems whose 

purpose is to distribute network flows to achieve the maximum 

values of communication efficiency. 

The maximum flow problem is formulated as follows: the 

maximum possible total value of the flow between the source 

and the sink has to be found for given network with established 

initial distribution of flows for graph edges and capacities. It 

means that the flow has to be increased if it has not reached 

the maximum value. The maximum flow value is equal to the 

sum of weights of the edges in the minimum cut in accordance 

with the theorem proved by Ford and Fulkerson, which is 

applied for solving the maximum flow problem [17]. 

The Ford-Fulkerson algorithm consists of the following 

steps. 

(1) A path from the souse to the sink which is called an 

augmenting path has to be found in the given flow network.  

(2) The maximum value of the flow in the augmenting 

path which is called the residual capacity has to be found. Each 

edge in the augmenting path must be labeled with the its 

capacity and residual capacity via slash notation. The flow 

value must be nonnegative and must not exceed the given 

capacity, but can be equal to it. 

(3) If the flow is equal to the capacity of the edge, this 

edge is saturated. As a result, it cannot be considered in 

searching next augmenting path. 

(4) Enumeration finishes when transfer from the source 

to the sink becomes impossible due to no augmenting paths 

exist. 

(5) The value of the maximum flow is equal to the 

capacity of the minimum cut. It can be found as the sum of the 

flow values of the edges which are incoming to the sink. 

The maximum flow of the network is calculated according 

to the formula: 

 
n

i

i=1

f = f  (27) 

 

where, n is the amount of the edges which are incoming to the 

sink; fi is the flow value of the edge which is incoming to the 

sink. 

The average length of the augmenting path is calculated 

according to the formula: 

 
n

i

i=1
avg

L

L =
n


 

(28) 

 

where, n is the amount of the augmenting paths; Li is the length 

of the augmenting path. 

Implementation of the approach is shown below. To 

evaluate the efficiency of the approach proposed, an 

experiment has been performed. For each of three levels of 

structural system model the maximum flow has been 

calculated. Consider this experiment in detail. 

First, find the maximum flow for the initial network (first 

level) applying the Ford-Fulkerson algorithm. For the initial 

network (Figure 1), we assign the capacity values of the 

channels, which connect the components. We transform the 

Table 1 of the elements connections into the Table 7, where 

the channel capacities are indicated by the third values. 

The graph of the system was constructed (Figure 4), where 

the source combines the output contacts of the external 

environment and the sink combines the input contacts of the 

external environment. The weight of each edge is equal to the 

capacity of the corresponding channel. 

The search of the maximum flow was fulfilled using the 

Ford-Fulkerson algorithm. An augmenting path from the 

source to the sink was chosen on each iteration. Each edge was 

labeled with capacity and maximum possible flow via slash 

notation. The enumeration of the possible augmenting paths 

finished when transfer from the source to the sink became 

impossible in consequence of the saturation of the edges of the 

graph. After that, the maximum flow of the network was found 

as a result of the summation of the flow values of the edges 

which are incoming to the sink. 

 

Table 7. The first level elements connections with capacity 

values 

 

i\j 1 2 3 4 

0 1,2,20 6,1,25 10,4,10 -,- 

1 3,1,15 2,2,10 -,- -,- 

2 0,3,30 0,1,75 8,1,15 -,- 

3 1,1,15 4,1,15 10,2,10 -,- 

4 1,1,10 2,3,5 3,2,25 10,1,10 

5 6,2,15 1,1,5 2,1,5 -,- 

6 5,1,15 12,1,5 9,1,25 -,- 

7 2,3,15 0,3,45 8,2,25 -,- 

8 0,3,60 12,4,10 -,- -,- 

9 4,2,5 0,2,45 10,3,15 -,- 

10 9,2,15 3,3,10 12,3,15 -,- 

11 6,3,5 12,2,10 7,1,10 -,- 

12 11,1,10 1,1,10 0,3,50 -,- 

 

The augmenting paths, the residual capacities and the 

number of the traversed edges are shown in the Table 8. 

 

Table 8. Result of the graph traversal 

 

№ Augmenting path 
Residual 

capacity 

Amount of the 

traversed edges 

1 Source–2–1–Sink 10 3 

2 Source–2–5–6–Sink 5 4 

3 
Source–2–4–3–1–

Sink 
5 5 

4 Source–9–6–Sink 20 3 

5 
Source–9–6–11–

12–10–Sink 
5 6 

6 Source–9–10–Sink 5 3 

7 
Source–9–10–3–1–

Sink 
5 5 
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Figure 4. Graph of the first level of the system 

 

Thus, the maximum flow of the network was found 

according to the formula in Eq. (27): 

 

1f =20 25 10 55+ + =   

 

The seven augmenting paths were traversed during 

algorithm implementation. The average length of the path was 

found according to the formula in Eq. (28): 

 

avg1

3 4 5 3 6 3 5
L = 4,14

7

+ + + + + +
=   

 

By analogy with the first level, the maximum flow was 

found for the second and third levels.  

As a result of using this method, the number of the elements 

and the number of the connections between the elements have 

decreased. Moreover, the number of graph traversal iterations 

has declined by fifty-seven per cent in finding the maximum 

network flow at the third level of the system. In addition to this, 

the average length of the augmenting path from the source to 

the sink has decreased by thirty-six per cent. 

The final results of the computational experiment are given 

in the Table 9. 

Summarizing: 

(1) The value of the maximum flow for each of three 

levels of system structural model is the same. This is an 

indirect confirmation of the equivalence of multilevel 

structural model transformations, as well as the correctness of 

algorithmic and software implementation. 

(2) Multilevel structural model transformations result in 

the dimension reduction of a network system presentation and, 

consequently, a decrease in the execution time of 

computational procedures. The results of the evaluation of the 

efficacy of the composition method: the number of the element 

of the system decreased by 69%; the number of the 

connections among the elements of the system decreased by 

58%; the number of the graph traversal iterations decreased by 

57%; average length of the path from the source to the sink 

decreased by 36%. 

Table 9. Results of the evaluation of the effectiveness of the 

composition method 

 

Parameters 
First 

level 

Second 

level 

Third 

level 

Result: 

decreased 

by 

The number of the 

element of the 

system 

13 7 4 69% 

The number of the 

connections 

between elements 

of the system 

38 26 16 58% 

The number of the 

graph traversal 

iterations 

7 4 3 57% 

Average length of 

the path from the 

source to the sink 

4,14 3 2,67 36% 

Maximum flow 55 55 55 - 

 

 

6. CONCLUSIONS AND FUTURE WORK 

 

In this paper, we examined the technique of formal 

transformations of structural models of complex systems and 

its application. We demonstrated, that: 

(1) Multilevel structural model transformation 

techniques provide a simpler representation of network 

systems while preserving the topological properties of the 

higher dimension system. 

(2) The results of the work can be used to study and solve 

problems associated with streaming processes in networks, 

when throughput or other parameter changes over time and the 

time of system modeling is a critical parameter. 

(3) The formal transformations of the structural models 

of complex systems with the purpose of reducing the 

dimension of the system, can be leveraged in the multi-tier 

telecommunication network management model. This will 

allow the management system to make decisions in real time 

to identify bottlenecks in a network, meet customer needs for 
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rapid deployment of new services, meet strict quality of 

service requirements. 

(4) The application of the object-oriented concept in the 

program implementation allows making the transformation 

techniques invariant to the way of a formal presentation of a 

system structural model. 

Within the framework of the future study, we can present 

such ideas:  

(1) Development of a generator of structural models with 

specified topological characteristics of large-scale network 

systems. This will allow evaluating the effectiveness of 

proposed technologies to solve various optimization problems 

associated with large networks. 

(2) In various problems of managing complex network 

systems, time is a critical parameter. These problems include 

detecting bottlenecks, parallelism, as well as mutual exclusion, 

deadlocks etc. Therefore, the study of the application of 

equivalent multilevel topological transformations for these 

problems is an important task. 
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