Preparation of an Active Ni₂B/SBA-15 Catalyst to Improve NaBH₄ Hydrolysis for Hydrogen Generation

Fei Wu^{1,2}, Ting Li¹, Jindan Chen¹, Xiu Ru Yang¹, Cheng Ming Li¹, Mei Qiang Fan^{*,1} and Kang Ying Shu^{†,1}

¹Department of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, P R China ²Zhejiang Tianneng Energy Technology Co., Ltd., Changxing County, Zhejiang Province 313100, China

Received: September 27, 2015, Accepted: November 20, 2015, Available online: December 05, 2015

Abstract: $N_{i_2}B$ nanoparticle distributed on ordered SBA-15 mesoporous silica was prepared in situ and its catalytic activity for $NaBH_4$ hydrolysis was investigated in the presented paper. The problem of $N_{i_2}B$ aggregation is resolved and the catalytic activity of $N_{i_2}B$ is also improved due to the effect of SBA-15. The catalytic activity increases with $N_{i_2}B/SBA-15$ weight ratio increased from 1:4 to 2:1 and the catalyst with $N_{i_2}B/SBA-15$ weight ratio of 2:1 has high catalytic activity close to that of $N_{i_2}B$. The sintered experiment shows that the catalytic activity comes from amorphous $N_{i_2}B$, not crystalline $N_{i_2}B$. High sintering temperature leads to the conversion from amorphous $N_{i_2}B$ to crystalline $N_{i_2}B$ framework.

Keywords: Hydrogen generation; Ni₂B nanoparticles; ordered SBA-15 mesoporous silica

1. INTRODUCTION

Sodium boron hydride (NaBH₄) is a good hydrogen source for fuel cell as it has high hydrogen capacity (10.8 wt%), safety, pure hydrogen generation and mild hydrolysis temperature[1]. NaBH₄ is stable in dry air or alkaline solution. Its hydrolysis rate can be controlled via the addition of suitable catalysts, that is, a highly active catalyst is a key center for NaBH₄ hydrolysis [2]. Lots of catalysts including various noble metals, non-noble metal nanoclusters, and their derivatives have been developed to accelerate the hydrolysis rate of NaBH₄[3]. Hydrogen generation is accelerated by applying metal-metal oxide catalysts such as Pt, PtRu disposed on TiO₂, CoO and LiCoO₂[4, 5]. In order to reduce catalyst cost, the non-notable catalyst, especially that cheap Co-B and Ni-B catalysts are used to replace the notable metal. An effective method to improve the catalytic activity of Co-B and Ni-B catalysts is doped with other elements including Cr, P, Cu [6-8]. However, using chemical reduction of metal salt and sodium borohydride often leads to the aggregation and lowers down the specific surface area, which decreases the catalyst activity of the catalyst [9]. Now, the active site scattered on the surface of high-surfacearea supporting materials is effective to increase the contact area with the reactants sufficiently and prevent the aggregation and destabilization of catalyst nanoparticles [10, 11]. Finding a cheap,

high-specific-surface-area catalyst carrier is necessary to improve and keep the catalyst activity. Order SBA-15 mesoporous silica is considered as a good catalyst carrier as it has a large specific area, good chemical and physical properties, unique chemical stability and environmental friendliness [12]. The active sites such as Pt, Ni, Co deposit on the surface of SBA-15 and present high catalytic activity [13, 14].

 Ni_2B -based catalyst has been widely investigated as a catalyst for NaBH₄ hydrolysis owing to its low cost. Its catalytic activity can be potentially improved by applying Ni₂B distributed on some oxide particles due to the so-called dispersion effect [15]. But so far, Ni₂B/SBA-15 catalyst with different nanostructures has seldom been reported. In the presented study, a nanostructure of Ni₂B distributed on the surface of SBA-15 was prepared and its catalytic activity for NaBH₄ hydrolysis was investigated. The microstructure analysis will be used to reveal the catalytic behavior of Ni₂B for future catalyst design.

2. EXPERIMENTAL

2.1. Materials and preparation for Ni₂B/SBA-15 catalyst

The main materials used in the experiment, including nickel salt (analytical reagent), sodium boron hydride (analytical reagent), cetyltrimethylammonium bromide (CTAB, analytical reagent), were purchased from Aladdin reagent company. SBA-15 (100-500

To whom correspondence should be addressed:

Email: *fanmeiqiang@126.com, †kangyingshu@163.com

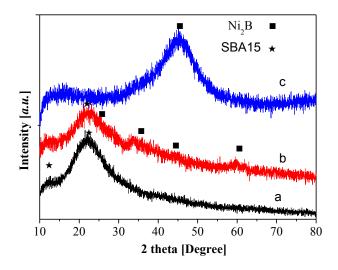


Figure 1. XRD patterns of SBA-15(a), $Ni_2B/SBA-15$ catalyst (b) and Ni_2B (c).

nm) was bought from Xianfeng nano Company in NanJing P. R. China. The materials were used without any pretreatments.

 $Ni_2B/SBA-15$ catalyst was prepared though the followed process. First, 0.1 g of SBA-15, 0.091 g of cetyltrimethyl ammonium bromide (CTAB, analytical reagent), and different mass of nickel salt were added to 250 ml of deionized water, and the mixture was stirred for 5 h. Thereafter, sodium borohydride solution was added dropwise to the mixture, which was stirred continuously at room temperature. The molar ratio of nickel salt and sodium borohydride was set at 1.05. The weight ratio of Ni₂B/SBA-15 was set at 1:4, 1:3, 1:2, 1:1, 2:1.

2.2. Measurement of hydrolysis kinetics

Hydrolysis experiments were performed in a sealed reactor attached to a condenser and a graduated cylinder at 25 °C and 1 atm. The detailed hydrolysis conditions were similar to those in our pervious studies [16]. The hydrolysis experiments were carried out at 50 °C unless otherwise stated.

2.3. Microstructure analysis

Powder X-ray diffraction patterns of the prepared samples were obtained using an X-ray diffractometer (Thermo ARL X'TRA, Switzerland). Scanning electron microscopy observations were collected with a JSM-5610LV (JEOL Co.) equipped with an INCA energy-dispersive X-ray spectrometer.

3. RESULTS AND DISCUSSION

3.1. Characterization of Ni₂B/SBA-15 catalyst

Fig. 1 shows the XRD patterns of SBA-15, Ni₂B/SBA-15 catalyst and Ni₂B. Peaks at 24° and 45° corresponding to SBA-15 and Ni₂B (JCPD 25-0576), respectively, are observed in the XRD patterns of SBA-15 and Ni₂B. The large wide peaks reflected small grain size of SBA-15 and Ni₂B. However, only wide peaks at 24° corresponding to SBA-15 and other weak peaks at 25° , 36° , 45° and 60° corresponding to amorphous Ni₂B are identified in the XRD patterns of Ni₂B/SBA-15 catalyst. Fig. 2 shows morphologies of

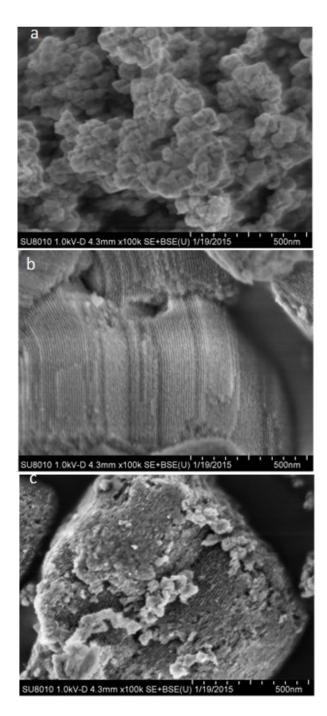


Figure 2. Morphologies of Ni_2B (a), SBA-15(b) and Ni_2B /SBA-15 catalyst (c).

Ni₂B, SBA-15 and Ni₂B/SBA-15 catalyst. Ni₂B presents framework structure with loose sphere piled together. The particle size ranges in hundreds of nm. SBA-15 exhibits layer structure with lots of fine slit distributed on its surface. After Ni₂B deposited on the surface of SBA-15, lots of fine particles with tens of nm are observed and many fine slits disappears in Fig. 2c. The Ni₂B distributed on SBA-15 surface has smaller particle size than pure Ni₂B.

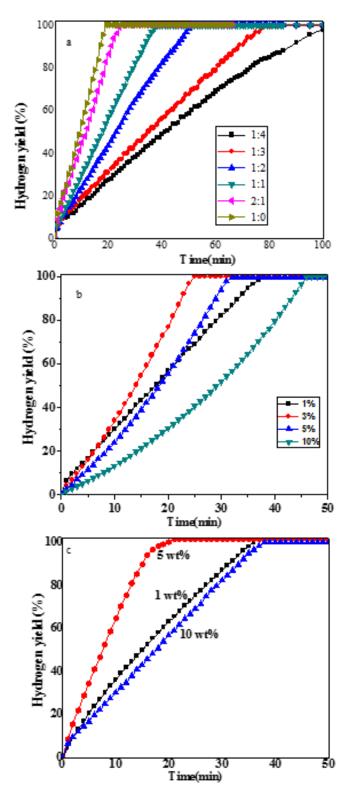


Figure 3. Hydrogen generation curves of NaBH₄ hydrolysis catalyzed by Ni₂B/SBA-15 catalyst. a, effect of Ni₂B/SBA-15 weight ratio; b, effect of NaBH₄ concentration; c, effect of NaOH concentration.

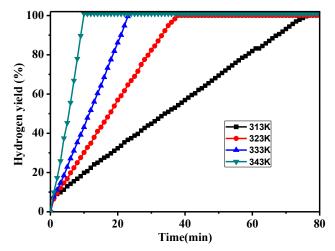


Figure 4. Hydrogen generation curves of NaBH₄ hydrolysis catalyzed by Ni₂B/SBA-15 catalyst with different temperatures.

3.2. Composition design on hydrogen generation

Fig. 3 shows hydrogen generation curves of NaBH₄ hydrolysis catalyzed by Ni₂B/SBA-15 catalyst. Ni₂B is a catalyst for NaBH₄ hydrolysis and 100% of hydrogen yield is obtained within 100 min in 1 wt% NaBH₄-10 wt% NaOH solution. The hydrogen generation rate increases with the increase of Ni₂B/SBA-15 weight ratio. Reaching 100% of hydrogen yield needs 105, 78, 53, 38, 25 and 20 min when Ni₂B/SBA-15 weight ratio increases 1:4 to 1:3, 1:2, 1:1, 2:1 and 1:0 in Fig. 3a. The catalytic activity increases with the increase of Ni₂B/SBA-15 weight ratio. But the catalyst with Ni₂B/SBA-15 weight ratio of 2:1 has almost similar catalytic activity to that of Ni₂B, reflecting that the nanostructure of Ni₂B distributed on SBA-15 improved catalytic activity of Ni₂B.

The effect of NaBH₄ concentration on hydrogen generation is shown in Fig. 3. The hydrogen yield up to 100% needs different time when NaBH₄ hydrolysis is catalyzed by Ni₂B/SBA-15 catalyst. About 38, 25, 32 and 47 min correspond to 1, 3, 5 and 10 wt% of NaBH₄ concentration. The results show that Ni₂B/SBA-15 catalyst has good catalytic activity for NaBH₄ hydrolysis and hydrogen generation rate increases with NaBH₄ concentration increasing from 1 to 3 wt%, but decreases with NaBH₄ concentration further increased. It was due to low diffusion rate at high NaBH₄ concentration because the increase of hydrolysis byproduct NaBO₂ concentration increases the viscosity in the hydrolysis process.

The effect of NaOH concentration is shown in Fig. 3c. The hydrogen generation rate increases with increasing in NaOH concentration and reaches a maximum at 5 wt%, then decreases with further increasing in NaOH concentration. It was due to that hydroxyl ion was involved in the hydrolysis of NaBH₄. But excessive concentration of NaOH will lead to decrease the solubility of NaBO₂ and the subsequent precipitation from the solution and adherence on the catalyst surface, which lower the catalytic activity of the catalyst.

3.3. Effect of hydrolysis temperature

Fig. 4 shows hydrogen generation curves of NaBH₄ hydrolysis catalyzed by Ni₂B/SBA-15 catalyst at different temperatures. Hy-

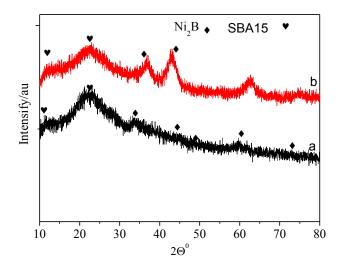


Figure 5. XRD patterns of $Ni_2B/SBA-15$ catalyst before and after sintered at 300 ^{0}C .

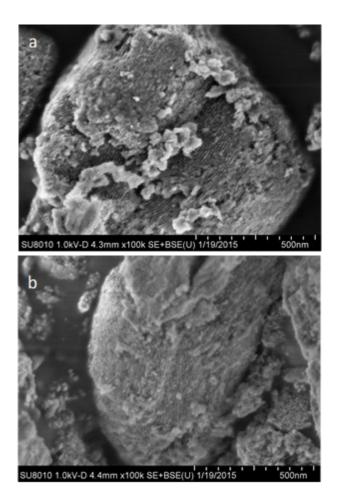


Figure 6. Morphologies of $Ni_2B/SBA-15$ catalyst before and after sintered at 300 ^{0}C . a, unprepared; b, sintered at 300 ^{0}C . z at 300 ^{0}C .

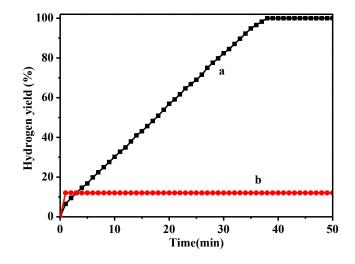


Figure 7. Hydrogen generation curves of NaBH₄ hydrolysis catalyzed by Ni₂B/SBA-15 catalyst before and after sintered at 300° C. a, unprepared; b, sintered at 300° C.

drogen yield up to 100% for NaBH₄ hydrolysis were obtained at 313, 323, 333 and 343 K. It is known that the higher the hydrolysis temperature, the higher the hydrogen yields percentage and the shorter the hydrolysis time. The hydrogen generation rate increases with temperature increase. The average hydrogen generation rate can be calculated in the first 10 min. Their value is 1.98, 3.01, 4.31 and 10.08 corresponding to 313, 323, 333 and 343 K, respectively. The relative apparent activation energy (Ea) is calculated to be 46.89 kJ mol⁻¹.

3.4. Effect of sintering temperature

Fig. 5 shows XRD patterns of Ni₂B/SBA-15 catalyst before and after sintered at 300 $^{\circ}$ C. In comparison with amorphous Ni₂B, broadened peaks for crystalline Ni₂B significantly occurred at 36, 42 and 62 $^{\circ}$ after Ni₂B/SBA-15 catalyst was sintered at 300 $^{\circ}$ C. It can also be observed that the peak lines for SBA-15 and Ni₂B become wider, reflected that the grain size decreases. The phenomena can be further confirmed in Fig. 6, which shows morphologies of Ni₂B/SBA-15 catalyst before and after sintered at 300 $^{\circ}$ C. The unprepared Ni₂B/SBA-15 catalyst presents Ni₂B layer distributed on the surface of SMA-15, including some Ni₂B particles with hundreds of nm diameter are observed in Fig. 6a. After sintered at 300 $^{\circ}$, the Ni₂B layer disappear and fine loose particles with ten of nm diameter are observed. The results shows that fine Ni₂B particles were generated on the Ni₂B layer when amorphous Ni₂B was converted to crystalline Ni₂B at 300 $^{\circ}$ C.

The catalytic activity of Ni₂B/SBA-15 catalyst before and after sintered at 300 $^{\circ}$ C. The unprepared Ni₂B/SBA-15 catalyst has high catalytic activity for NaBH₄ hydrolysis, 100 % of hydrogen yield can be obtained within 40 min. However, the sintered Ni₂B/SBA-15 catalyst has worsened catalytic activity for NaBH₄ hydrolysis, only approximate 12% of hydrogen yield is obtained in the initial one minute of hydrolysis process and then there is no hydrogen generated in the following time. The results shows that the catalytic activity of Ni₂B/SBA-15 catalyst is seriously worsened due to the effect of sintering at 300 0 C. Combined with the XRD, SEM results, the catalytic of Ni₂B/SBA-15 catalyst come from amorphous.

4. CONCLUSION

The Ni₂B/SBA-15 was prepared in situ and its catalytic activity for NaBH₄ hydrolysis was investigated. The catalytic activity came from amorphous Ni₂B, not crystalline Ni₂B. It increases with Ni₂B/SBA-15 weight ratio increased from 1:3 to 2:1. The catalyst with Ni₂B/SBA-15 weight ratio of 2:1 was close to that of Ni₂B, reflected that the nanostructure of amorphous Ni₂B deposited on SBA-15 surface improved the catalytic activity of Ni₂B.

5. ACKNOWLEDGMENTS

This work was financially supported by the Scientific Research Foundation for the Returned Scholars, postdoctoral support of P. R China (2015M581910), postdoctoral preferential support of Zhejiang province (BSH1502029), the National Science Foundation of China (Project No. 51501175), and the Guangxi Key Laboratory of Information Materials (Guilin University of Electronic Technology, project No. 1210908-02-K).

REFERENCES

- Demirci U.B., Akdim O., Miele P., Int. J. Hydrogen Energy, 34, 2638 (2009).
- [2] Liu B.H., Li Z.P., J. Power sources, 187, 527 (2009).
- [3] Kim J.H., Kim K.T., Kang Y.M., Kim H.S., Song M.S., Lee Y., Int J Hydrogen Energy, 29, 263 (2004).
- [4] Yoshitsugu K., Suzuki K., Fukumoto K., Sasaki M., Yamamoto T., Kawai Y., Hayashi H., Int J Hydrogen Energy, 27, 1029 (2002).
- [5] Krishnan P., Yang T., Lee W.Y., Kim C., J Power Sources, 143, 17 (2005).
- [6] Patel N., Fernandes R., Miotello A., J Power Sources, 188, 411 (2009).
- [7] Ding X.L., Yuan X., Jia C., Ma Z.F., Int. J. Hydrogen Energy, 20, 11077 (2010).
- [8] Fernandes R., Patel, N., Miotello A., Applied Catalysis B: Enviromental, 92, 68 (2009).
- [9] Xu D., Wang H., Guo Q., Ji S., Fuel Process Technol., 92, 1606 (2011).
- [10]Umegaki T., Yan J.M., Zhang X.B., Shioyama H., Kuriyama N., Xu Q., J. Power Sources, 191, 209 (2009).
- [11]Tian H., Guo Q., Xu D., J. Power Sources, 195, 2136 (2010).
- [12]Rioux R.M., Song H., Hoefelmeyer J.D., Yang P., Somorjai G. A., J. Phys. Chem. B., 109, 2192 (2005).
- [13]Song H., Rioux R., James D.H., Komor R., Niesz K., Grass M., Yang P., Gabor A.S., J. Am. Chem. Soc., 128, 3027 (2006).
- [14]Carrero A., Calles J. A., Vizcaino A., Applied Catalysis A: General, 327, 82 (2007).
- [15]Chen Y., Kim H., Fuel Process Technol., 89, 966 (2008).
- [16]Fan M.Q., .Sun L.X., Xu F., Int. J. Hydrogen energy, 37, 4571 (2012).