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1. INTRODUCTION 

In recent years, liquid suspensions containing 
nanoparticles gained significant attention in science and 
engineering. Their unique thermophysical properties, such as 
a drastically reduced melting temperature of the 
nanoparticles compared to their bulk counterpart [1, 2], allow 
for novel methods in the manufacturing of nano and 
microelectronic devices. Many researchers intended to 
investigate experimentally and numerically the effects of the 
microtube and microchannel shapes, sizes, heat transfer and 
the other parameters that can be influence on the 
performance for the microelectronic devices. However, the 
recent numerical and experimental researches that related to 
microtube have been summarized in Table1.   

The purpose of this work is to provide a numerical study 
on the effect of geometrical parameters (entrance size, shape 
and inclination angle on enhancing the heat transfer at 
different Reynolds number ranged from 10 to 120 for 
different inclination angles ranged from 0° to ±90°. 

 

2. NUMERICAL MODEL 

2.1 Geometry and the governing equations 

Navier–Stokes and energy equations were used to describe 
the flow and heat transfer in the microtube. The following 
assumptions are adopted: (i) The nanofluid is incompressible, 
the flow is laminar, the radiation heat transfer effects are 
negligible; (ii) The nanoparticles are assumed to be spherical 
and single phase model is used; (iii) Constant thermophysical 
properties are considered for the nanofluid. The governing 
equations used are as follows: 
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Energy equation: 
 

1 1
( ) ( ) ( )

1

2 ( ) ( )

  


 

  
    

  

   
     

         
   

U RV Weff eff effR R R Z

K Keff eff
R

R R RC CR p peff eff

                                (3)       

 
Where the non-dimensional variables are defined as  
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The eff
, eff

,
effC  and 

effk are density, viscosity, heat 

capacity and thermal conductivity of nanfluid, respectively.  
 

2.2 Boundary conditions 

At the tube inlet, the inlet temperature was taken as 
Tin=301 K. No-slip conditions and uniform heat flux used 
was 50000 W/m2 to heat up the tube. Different velocities 
depending on the values of Reynolds number were used. At 
the tube outlet, the flow and heat transfer are assumed to be 
fully developed. 

 

2.3 Nanofluids thermophysical properties 

The thermophysical properties which are density, heat 
capacity, dynamic viscosity and thermal conductivity for 
SiO2–EG nanofluid are given in Table 2. These properties 
are calculated using the following equations:  

 
Effective thermal conductivity [32]: 
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( 2 ) 2 ( )

( 2 ) ( )





   
 

  
    

k k k k
np f f np

k kstatic f k k k k
np f f np

                                           (5)  

 

Where npk  and 
fk  are the thermal conductivity of the 

solid particles and the base fluid respectively. 
Thermal conductivity due to the Brownian motion 

presented by [33] as: 
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Where K is the Boltzman constant, T is the fluid 

temperature; T0 is the reference temperature, the   values 

for SiO2 particle expressed in as follow [33]: 
 
1.9526(100 ) 1.4594   for 1% 10%   at 298 363 K T K     

(7)  
                                                                                      
The effective dynamic viscosity is given as [34]: 
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While eff  and  f  are the viscosity of nanofluid and base 

fluid respectively, pd   is the nanoparticle diameter, fd  is the 

base fluid equivalent diameter and  is the nanoparticle 
volume fraction. M is the molecular weight of the base fluid 

and N is the Avogadro number.  fo
  is the mass density of 

the base fluid calculated at temperature T0=293 K. 
The effective density is given as [34]: 
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                                                         (10) 

 

Where eff
 and  f  are the nanofluid and base fluid 

densities respectively, and s   is the density of nanoparticle. 

 
The effective specific heat is given as [34]: 
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Where Cps  
is the heat capacity of the solid particles and 

Cp f
 is the heat capacity of the base fluid.  

 

Table 2. Thermophysical properties of nanofluids. 
 

 Base fluids Nanoparticle 

Properties EG SiO2 

ρ (kg/m3) 1114.4 2200 

μ (Nm/s) 0.0157 - 

k (W/mK) 0.252 1.2 

cp (kJ/kgK) 2415 703 

 

2.4 Numerical implementation 
 
The Finite volume approach is used to solve the continuity, 

momentum and energy equations along with the 
corresponding boundary conditions. SIMPLE algorithm is 
used to solve the flow field inside the MT. The diffusion term 
in the momentum and energy equations is approximated by 
second-order central difference which gives a stable solution. 
The second-order upwind differencing scheme is considered 
for the convective terms. Five different sets of the grid sizes 
were imposed to the geometry and simulated by calculating 
the Nusselt number along the MT. The five grids sizes 

( 8 6 200  ; 10 8 400  ; 12 10 600  ; 14 12 800   and 

16 14 1000  ) show no much difference in the values of 

Nusselt number. The grid size of  is selected 

in this study as it is found to provide a more stable solution. 
About the code validation part is documented in the Ref. [31]. 

 

3. RESULTS AND DISCUSSION  

The simulations are performed for Reynolds number in the 
range of 10 ≤ Re ≤ 160 and SiO2 nanoparticle with pure EG 
as a base fluid. The nanoparticles volume fraction used was 
0.04 with nanoparticles diameter 25nm. The MT used has a 
100 mm length with different diameters ranged from 0.5 to 
0.9 mm and different entrance sizes ranged from 0.371 to 2.5 
mm. The heat flux that used to heat up the microtube was 
50000 W/m2. The inclination angles from the horizontal 
position were 0°, ± 45°, ± 90° are used in this investigation. 

Table 1. Summary of numerical and experimental studies for MT  
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3.1 Effect of tube diameter 

The effect of tube geometry on, the axial and wall 
temperatures, axial velocity along the tube radius, Nusselt 
number and the pressure drop are presented in this section.  

In Figure 1a and 1b temperature profile at z/L=1 along the 
tube radius and tube axis shows that the tube with 0.9 mm 
diameter has the highest temperature along the tube radius 
and tube wall followed by 0.7 mm, 0.5 mm respectively. This 
is because the velocity proportional inversely with the tube 
diameter. Smaller diameter increases the velocity which leads 
to decrease the temperature and vice versa. 
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(a)                              (b) 

Figure 1. Profiles of temperature at z/L=1for 
different tube diameters: (a) Temperature along the tube 

radius; (b) Temperature along tube axis 

 
In Figure 2 the axial velocity along tube radius profile 

shows that the tube with 0.5 mm diameter has the highest  
 
axial velocity along the tube radius at z/L=0.2 for Reynolds 
number Re=80 followed by 0.7 mm, then 0.9 mm. This is 

because the smaller tube diameter is proportional directly to 
the velocity.  

Figure 3 shows the average Nusselt number for different 
Reynolds numbers. It can be obtained from this Figure that 
0.9 mm has the highest Nusselt number comparing to other 
tubes. The larger tube diameter has highest Nusselt number. 
This is because for Nusselt number is proportional directly 
with the tube diameter; higher tube diameter leads to higher 
Nusselt number and vice versa. Figure 4 the pressure drop 
along the tube axis show that the tube with 0.5 mm diameter 
has the highest pressure drop followed by 0.7 mm and 0.9 
mm. This is because the static pressure for the fluid is 
proportional directly with the velocity. Thus, 0.5 mm tube has 
the highest velocity which leads to increases the pressure 
drop.  
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Figure 2. Profiles of axial velocity for different tube 

diameters at z =0.1 and Re= Re= 80 
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Figure 3. Average Nusselt number versus Reynolds 

number for different tube diameters 
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Figure 4. Pressure drop along the tube axis for different 

tube diameters at Re =80 

3.2 Effect of entrance size 

 
Three different entrance sizes were investigated in this 

section. The configuration for different entrance is illustrated 
in Figure 5. According to the entrance sizes three different 
diameters which is 0.371 mm, 0.9 mm and 2.5 mm were 
investigated. The results as shown in Figure 6 show that 
though the entrance region is just 40% from the tube length 
but it affects the heat transfer rate through the tube. It is 
evident that 2.5 mm entrance diameter has the highest Nusselt 
number followed by 0.9 mm, 0.371 mm respectively. This is 
because the Nusselt number is proportional directly with the 
entrance size. 

 
 

 
 

(a) 

 
 

(b) 

 
 

(c) 

 

Figure 5. The configuration for different entrance sizes: 
(a) D= 0.9 mm; (b) D=2.5 mm; (c) D=0.371 mm 
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Figure 6. Average Nusselt number versus Reynolds 
number for different entrance sizes 

 

3.3 Effect of inclination angles 

 
Different inclination angles were investigated in this 

section.  The configuration for different inclination angles is 
shown in Figure 7. The results for different inclination angles 
show no changes in the Nusselt number values and the 
pressure drop at different Reynolds numbers as shown in 
Table 3. This is because no effect of the gravity, the 
Richardson number which is a function of Grashof number 
divided on the Reynolds number is less than Ri ˂ 0.1, so the 
natural convection is neglected and the forced convection is 
dominated.    

 

 
 

Figure 7. Configuration of microtube at different 
inclination angles 

 

Table 3. The effects of inclination angle on Nusselt 
number average and pressure drop at different 

Reynolds number 
 

 

(a) At Reynolds number 10 

 
Angle Nuave Pressure 

0° 7.362852 79515.71 

± 45° 7.362852 79515.71 

± 90° 7.362852 79515.71 
 

(b) At Reynolds number 40 

 
Angle Nuave Pressure 

0° 10.11316 317295.8 

± 45° 10.11316 317295.8 

± 90° 10.11316 317295.8 

 
 

(c) At Reynolds number 80 

 
Angle Nuave Pressure 

0° 11.75585 638552.4 

± 45° 11.75585 638552.4 

± 90° 11.75585 638552.4 
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(d) At Reynolds number 120 

 
Angle Nuave Pressure 

0° 12.86489 960093.9 

± 45° 12.86489 960093.9 

± 90° 12.86489 960093.9 

 

4. CONCLUSIONS  

The effect of geometrical parameters of microtube on the 
heat transfer enhancement was investigated numerically. It is 
concluded from the results that the heat transfer rate strongly 
depends on the geometry and the entrance size of the 
microtube. Higher tube diameter and entrance size have the 
highest Nusselt number and vice versa. No effects of 
inclination angle on heat transfer rate were found. 
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NOMENCLATURE 

 
Al2O3 Aluminum oxide 

Cp Specific heat of the fluid,  

CuO Copper oxide 
df Diameter of base fluid molecule 

dp Nanoparticle diameter,  

g Gravitational acceleration,  

k Thermal conductivity,  

keff                                Effective thermal conductivity  

L Length of the tube,  

M Molecular weight of base fluid 

N Avogadro No,  23 1 6.022 10N x mol   

Nu Nusselt number,   

P Pressure of fluid,  

Pr  Prandtl number,  

qx                                 Heat flux,  

Re  Reynolds number,    

Rnp                    Nanoparticle radius,  

Ri                     Richardson number,  

SiO2 Silicon oxide 

T Temperature of fluid,   

T                       Bulk temperature, K 
T0                          Reference temperature     

U ,́ V ,́ W  ́ Velocities in x ,́ y  ́and z  ́directions,  

U, V, W Dimensionless velocities in x, y and z directions  

U0 Average jet velocity at the entrance,  

V                     Axial velocity,   

ZnO   Zinc oxide 
 

Greek symbols 

 
μeff                               Effective viscosity  

α                       Thermal diffusivity,  

μ Dynamic viscosity of fluid,  

υ Kinematic viscosity of fluid,   

θ Inclination of tilted wall 

ρ Fluid density,  

ρ1 Nanofluid density  

φ Volume fraction of nanoparticles 
 

Subscript  

 
bf                      base-fluid 
nf                      nanofluids 
np                                 nanoparticle 
eff                     effective 

 

84




