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1. INTRODUCTION 

The single crystals production is an important issue for the 

optoelectronics industry and electronics [1]. Most 

commercial single crystals of semiconductors are grown 

from melt. This is mainly due to the simplicity of the melt 

growth systems, and also because of high growth rates 

achieved with this technique. The most used melt growth 

techniques are Czochralski (Cz), Bridgman (B) and zone-

freezing (ZF). Today, more than 80% of bulk commercial 

crystals are grown by the Czochralski technique. This 

technique has been particularly successful in growth of 

single crystals of silicon (Si), germanium (Ge) and 

compounds such as gallium arsenide (GaAs). 

The fluid flow in the Cz melt plays a significant role on 

the quality of the crystal [2], It is governed by a number of 

interacting forces such as buoyancy, Coriolis, centrifugal 

forces and surface tension [3]. Several researchers were 

interested in the study of mixed convection caused by crystal 

and/or crucible rotation during crystal growth, the studies 

were carried under different conditions with the addition of 

several factors such as magnetic field [4-7], and radiation [8] 

in order to improve the quality of the obtained single crystals. 

Basu et al. [9] have found that the crystal rotation affects the 

quality and the stability of the growing crystal, the 

centrifugal force due to the rotating crystal leads to a 

stabilizing effect on the three dimensional flow caused by 

natural convection. They have found a critical value of 

Richardson number (Ri = Gr/Re2 = 235) beyond it the flow 

become periodic. Galazka and Wilke [10] have showed that 

during the growth of YAG, the interface convexity decreases 

when the crystal rotation rate increases, it becomes almost 

flat for high Reynolds number values. Crochet et al. [11] 

studied numerically the effect of forced convection induced 

by rotation on the Czochralski crystal growth of GaAs in a 

cylindrical crucible for different Reynolds number values. 

Liu and Kakimoto [12] analyzed the effect of crystal rotation 

on the growth interface shape in the presence of a transverse 

magnetic field, they found that the melt-crystal interface 

changes from an obvious 3D shape when the crystal is not 

rotating to an almost 2D shape with increase in rotation rate. 

Mahfouz and Badr [13] treated the problem of the mixed 

convection of a horizontal cylinder carrying out rotating 

oscillatory movement in a fluid at rest of infinite dimension. 

Gelfgat et al. [14] presented a detailed numerical study of 

stable conditions and the onset of oscillatory instabilities of 

axisymmetric rotating Newtonian incompressible fluid flow 

confined in a vertical cylinder, with two disks rotating 

independently at the top and the bottom. Turbulent natural 

convection of a heat generating low Prandtl number fluid is 

studied numerically in a cylindrical enclosure. Computations 

are carried out for three different liquid metals [15]. Xinjun 

[16] reported numerical simulations of the Navier–Stokes 

equations for the axisymmetric recirculating zones during 

spin-up and spin-down for confined rotating fluid flows. 

Iwatsu [17] examined numerically the heat transfer 

characteristics of rotating viscous, incompressible and 

axisymmetric fluid flow generated by the constant rotation of 

the top disk in a cylindrical enclosure of aspect ratio Ar = 1. 

Hirata [18] found that unstable flow components and forced 

convection due to the rotating crucible bottom were electively 

suppressed and stable forced convection flows were produced. 

He also showed that due to the change in the melt motion, 

the radial uniformity was increased, temperature fluctuations 

within the melt were significantly decreased, and the radial 

temperature gradient was increased. Valentine and Jahnke 

[19] examined the flow field inside a cylindrical enclosure 

induced by the rotation of the top and bottom end walls with 

a fixed sidewall: a stable oscillatory solution was found for a 

Reynolds number Re = 3×103 and for aspect ratio γ = 1.5. A 
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numerical study of the periodic flow for γ = 2.5 was 

conducted by Lopez and Perry [20]. They showed the 

existence of oscillatory modes.  

The objective of the present paper is to carry out a 

numerical study of mixed convection in a cylindrical 

Czochralski configuration filled with silicon liquid. We study 

the effect of Richardson number and the aspect ratio on the 

velocity and thermal fields. We presented the results in terms 

of stream functions, isotherms, velocities and average 

Nusselt numbers. 

  

2. MATHEMATICAL FORMULATION 

The problem under consideration consists of a vertical 

cylindrical crucible (Fig.1) of H height and RC radius with an 

aspect ratio Ar = H/RC. The crucible is completely filled with 

a silicon liquid ﴾Pr = 0.011﴿. The melt is bounded above 

partially by a crystal of radius Rs (Rs = RC/3), rotating at 

angular velocity ΩS and by a flat free surface. The crystal 

surface is cooled by TC (TC > melting temperature) and the 

sidewall of the crucible is maintained at higher temperature 

Th (Th > TC) whereas the bottom surface is assumed to be 

adiabatic. The thermo-physical properties of Silicon used in 

the present study are given in Table .1. 

The following governing equations were written in non-

dimensional forms by using RC , Ω.RC , ρ(ΩRC)2, (Th-TC) and 

ν.RC respectively, as the scale factors for the length, velocity, 

pressure, temperature and stream function. The governing 

equations are obtained by taking into account the following 

assumptions: 

- Laminar flow, stationary and axisymmetric with 

swirl.  

- The physical properties of the fluid are assumed 

constant, and the Boussinesq approximation is valid. 

- The liquid metal is incompressible and Newtonian. 

- Joule heating and viscous dissipation are negligible. 

- The free surface and the crystal-melt interface are 

assumed to be flat. 
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 Momentum equation in R-direction 
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 Momentum equation in Ө-direction 
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 Momentum equation in Z-direction 
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 Energy equation 
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The boundary conditions are given as: 

Along the bottom wall (Z = 0, 0 < R <1); 

 

U = V = W = 0, 
Z


 = 0                                                (6a) 

 

Along the crystal-melt interface (Z = Ar; 0 < R < RS);                       

 

U = V = 0, W = R,   = 0                                              (6b) 

 

Along the free surface (Z = Ar; RS < R < 1); 

 

Z

U





 = V = W = 0, Z



 = 0                                           (6c) 

 

Along the side walls (0 < Z < Ar; R = 1);  

 

U = V = W = 0,   = 1                                                   (6d) 

 

Along the symmetry axe (0 < Z < Ar; R = 0); 

 

U = W = 0, 
R

V




= 0, 

R


= 0                                          (6e) 
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Figure 1. Sketch of physical problem with boundary 

conditions. 

3. NUMERICAL METHOD 

The governing equations (Eqs.1-5) with the associated 

boundary conditions (Eqs.6a-e) are solved using a finite 

volume method. Scalar quantities (P, W and ) are stored at 

the center of control volume, whereas the vectorial quantities 

(U, V) are stored on the faces of each volume. For the 

discretisation of spatial terms, a second-order central 

difference scheme is used for the diffusion and convection 

parts of the mathematical model, and the SIMPLER 

Algorithm [21] is used to determine the pressure from 

continuity equation. The obtained algebraic equations are 

solved by the line-by-line tri-diagonal matrix algorithm 

(TDMA).The convergence is obtained when the maximum 

relative change between two consecutive iteration levels is 

less than 10-4. Calculations are carried out on a PC with CPU 

3 GHz.  

The increments R and Z of the grid are not uniform, they 

are chosen according to geometric progressions of ration 

equal to 1.05, which permitted grid refinement near the 

walls. In order to examine the effect of the grid size on the 

numerical solution, a number of sizes have been investigated 

for grid independence: 45×90, 60×120, 75×150 and 90×180 

nodes. The results are illustrated in (Figs.2a-b), examination 

of these curves allowed us to conclude that 75×150 and 

90×180 give better information on the nature of the flow and 

these results have guided the choice of the final mesh of 

75×150. As the program execution time for the grid 90×180 

is greater than the chosen grid. This choice is considered to 

show the best compromise between computational time and 

precision. 

 

Table 1. Thermophysical properties of Si melt 

 
Physical property Symbol Value Unit 

Density ρ 2570 [kg.m-3] 

Dynamic viscosity µ 7.75×10-4 [kg.s-1.m-1] 

Kinematics viscosity ν 3.01×10-7 [m2.s-1] 

Conductivity λ 66.9 [W.m-1.K-1] 

Specific heat Cp 915 [J.kg-1.K-1] 

Thermal diffusivity α 2.845×10-5 [m2.s-1] 

Thermal expansion β 1.41×10-4 [K-1] 

Prandtl number Pr 0.011 [-] 

4. RESULTS AND DISCUSSION 

4.1 Validation of the computer code 

Some comparisons with experimental results available in 

the literature are realized. Firstly, a comparison is made for 

the distribution of the radial and swirl velocity (U, W) along 

the vertical line (R = 0.60) with the experimental data (Figs. 

3a-b) obtained by Michelson [22]. The author used the LDA 

technique (Laser Doppler Anemometry) to determine the 

distribution of radial velocity in cylindrical cavity, the upper 

disk is rotating and that for Re = 1800 and Ar = 1. The 

computed values are in fair agreement with experimental 

measurements. Secondly, a comparison was made with the 

experimental results due to Karcher et al. [23]. They used a 

cylindrical cavity of aspect ratio Ar = 4.125, filled with a 

fluid of low Prandtl number (Pr = 0.0203), the bottom and 

lateral wall were cooled by circulation of the water, and the 

upper wall heated electrically. The distribution of the radial 

velocity component U along R = 0.25 is showed in Fig.4. 

Our numerical results are in good agreement with the 

experimental results except for the region Z = (0, 0.6), where 

we can observe a slight difference between the two results.  
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Figure 2. Profiles of dimensionless axial velocity component 

V (a), and radial velocity component U (b), in the middle of 

the cavity for various grids 
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     (b) 

Figure 3. Comparison of the present results with 

experimental measurements of Michelson [22]; Profiles of 

radial velocity component U (a), and swirl velocity 

component W (b) along R = 0.60 
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Figure 4. Comparison of the present results with 

experimental measurements of Karcher et al. [23]; Profiles of 

radial velocity component U along the R = 0.25 

 

4.2 Effect of the Richardson number 

To study the effect of Richardson number in the velocity 

and thermal field, we set the Reynolds number at Re = 1500, 

aspect ratio at Ar = 2 and we varied the Richardson number 

for following values: Ri = 0.1, 0.5, 1, 1.5 and 2.  In Figs. 5-7, 

we have presented the streamlines, isothermal lines and the 

contours of the azimuthal velocity component for various 

values of the Richardson number.  

For low Richardson number values (Ri < 1), we see that 

the flow is unicellular, the main cell rotates counterclockwise 

created by the rotating crystal on one side and on the other 

hand supplement the effect of buoyant forces acting from top 

to bottom which generates increased velocity in a significant 

way, that the convection mode present in the case is natural 

convection. For Ri = 1, we see the birth of a second vortex 

that rotates clockwise, this vortex due to two types of 

convection, natural and forced convection, same vortex 

found by Wua et al. [24]. For Ri > 1 the forced convection 

dominate, the anticlockwise vortex becomes bigger and more 

intense and decomposed due to the acceleration of particles 

of liquid metal in the heart of the cavity. 

Fig. 6, shows the temperature distribution in the cavity.It 

is found that the heat exchange occurs but with a dominance 

of conductive regime especially in the region under crystal 

where the isotherms become noticeably compressed 

horizontally (a strong gradient), and a remarkable deviation 

of occurs in the insulated region of the contacts of the fluid at 

the side wall. This deviation is directed towards the hot side 

wall. When we increase the number of Richardson, the 

isotherms become distorted. We can connect this 

deformation to the increases of velocity (Figs.8a, b), this 

creates a high intensity rate of flow which promotes 

convective appearance. 

The variation of the temperature according to Z at R = 0 

for various values of the Richardson number is illustrated in 

Fig.9a, we find a high temperature gradient near the crystal 

and the side wall, which results in these areas better heat 

exchange, on the contrary in the middle of the enclosure 

exchange is low.The variation of average Nusselt number in 

function of the Richardson number is shown in Fig. 9b. We 

can see that average Nusselt decreases with increasing of the 

Richardson number, this allows us to conclude that the heat 

transfer improves as much as Ri decreased. 

4.3 Effect of the aspect ratio 

In this section, we study the effect of aspect ratio Ar = H/ 

RC (H, RC are the height and radius of the cavity respectively) 

in the flow and heat transfer. We set the Reynolds number at 

Re = 1500 and Richardson number at Ri = 0.5, the cavity 

filled by metal liquid (Silicon, Pr = 0.011) and subject to the 

same temperature gradient. Four aspect ratios Ar = 1/3, 1/2, 

1, 2 and 3 were tested (Figs. 10a-e). 

It is noted that the flow is unicellular, for all cavities, these 

cells circulate in the counterclockwise, except to the aspect 

ratio Ar = 3 where the flow is bicellular. We note that the 

streamline are inclined and extend according to the 

extension of the cavity. This means that the walls of the 

cavity effects on the structure of movement of fluid particles. 

For isothermal line, we can see that they are almost parallel 

to the cold wall, which means that the intense heat transfer 

in this region.  
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The average Nusselt number is plotted as a function of 

aspect ratio (Ar) in Fig.12, it can be seen that the average 

Nusselt number is an increasing function of the aspect ratio 

Ar of the cavity as the most effective configuration is where 

the vertical exchange surface (active walls) is large (Fig.11b), 

since the maximum value of average Nusselt number is in 

the maximum configuration of large heat exchange surface 

(Ar = 3). This is in agreement with the numerical results of 

Turan and Poole [25].  

The Profile of axial velocity component along Z = 1 is 

presented in Fig. 11a, we can see that the variation of aspect 

ratio has an important effect on the velocity field where the 

increase of this factor stabilizes the velocity in the cavity and 

the best stabilization found in large aspect ratio (Ar = 3). 

Similar results were found by Oudina and Bessaih [26]. 

 

           
           a)Ri = 0.1             b) Ri = 0.5              c) Ri = 1 

 

      
                  d) Ri = 1.5              e) Ri = 2 

 

Figure 5. Streamline for various values of the Richardson 

number 

 

           
 

        a)Ri = 0.1             b) Ri = 0.5              c) Ri = 1 

 

      
 

                      d) Ri = 1.5              e) Ri = 2 

 

Figure 6. Isothermal lines for various values of the 

Richardson number 

 

           
     a)Ri = 0.1            b) Ri = 0.5             c) Ri = 1 

      
                      d) Ri = 1.5             e) Ri = 2 

 

Figure 7. Contours of azimuthal velocity component for 

various values of the Richardson number 
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Figure 8. Profiles of radial velocity component U along 

of R = 0 (a), and axial velocity component V along of Z 

= 1 (b), for various values of the Richardson number 
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Figure 9. Profiles of temperature Ө along of R = 0(a), 

and average Nusselt number for various values of the 

Richardson number (b) 
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e)  Ar = 3 

Figure 10. Isothermal ligne (right) and stream function 

(left), for various aspect ratios 
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Figure 11. Profile of axial velocity component V along 

of   Z = 1(a), and temperature Ө along of R = 0 (b), for 

various aspect ratios 
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Figure 12. Average Nusselt number for various aspect ratios 

5. CONCLUSION 

A numerical study of mixed convection in the cylindrical 

Czochralski configuration for crystal growth of the silicon, 

the finite volume method has been used to solve the 

mathematical model. The main results obtained in this study 

can be summarized as follows: 

- The computer code developed in this study was 

validated with the results found in the literature, 

and good agreement has been obtained. 

- Increasing of the Richardson number increases the 

velocity of the fluid in cavity and reduces the rate of 

heat transfer. 

- The strongest stabilization of the velocity field 

occurs in the low Richardson number. 

- The change of aspect ratio has a significant effect 

on the velocity field and heat transfer, where the 

best stabilization found in a large aspect ratio. 

The results presented in this work, allowing experimenters 

by the Czochralski method, the preparation of their processes 

of semiconductor in good conditions, in order to improve the 

quality of the semiconductors obtained during the crystal 

growth. 
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NOMENCLATURE 
 

Latin symbols 

Ar Aspect ratio 

Cp Specific heat (J. kg-1. K-1) 

g Gravitational acceleration (m. s-2) 

H Height of the cylinder (m) 

Nu Average Nusselt number 

P Dimensionless pressure 

Rc Radius of the cylinder (m) 

R, Z Dimensionless meridional coordinates  

T Temperature (K) 

U Dimensionless radial velocity 

V Dimensionless axial velocity 

W Dimensionless azimutal velocity 
 

Dimensionless numbers 

Pr Prandtl number 

Re Reynlolds number 

Ri Richardson number 

 
  

Greek symbols 

α Thermal diffusivity (m2. s-1) 

β Thermal expansion coefficient (K-1) 

λ Thermal conductivity (W. m-1. K-1) 

Ө  Dimensionless temperature 

υ  Kinematic viscosity (m2. s-1) 

ρ  Density of the fluid (kg. m-3)  

Ψ  Dimensionless stream function 

Ω  Angular velocity (rad. s-1) 
 

 

Subscripts  

c  cold 

h  hot 
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