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The present paper deals with the analysis of cylindrical shells by the application of the 

Weighed Residual Method, more specifically the Least Squared Method, to obtain 

approximate solutions of shells structural problems, especially the cylindrical reservoirs 

subjected to hydrostatic shipment in the linear behavior regime. The ways of obtaining the 

approximate solutions refer to the adoption of linear, polynomial approximate bases, as 

well as the possibility of enriching the approximation by adding functions with similar 

characteristics to the accurate solution itself. Such procedures can be useful in the analysis 

of structures to significantly prevent the rise of the computational effort, by means of an 

approximate base that corresponds to the characteristics required by the analytical solution 

of the problem.  
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1. INTRODUCTION

Computational mechanics with its various numerical 

methods is being used to analyze different problems with 

various kinds of boundary conditions. Basically, the main 

advantage of meshless methods is to eliminate model meshing 

stage and to distribute nodal points throughout the model 

domain instead of meshing. In the element free Galerkin 

method (EFGM) using moving least squares (MLS) 

approximation, a linear combination of basic functions is fit to 

data by a weighted function [1]. 

The weighted residues method and its derived processes 

constitute formulations, which provide the obtainment of 

sufficiently accurate approximate solutions of a boundary 

value problem. They are expressed in a general form, weighted 

integration by the own representative differential equation of 

problem. 

Bin Liang et al. [2] analyze two types of optimization of 

thin-walled cylindrical shells loaded by lateral pressure, with 

arbitrary axisymmetric boundary conditions and the volume 

being constant. The first is to find the optimal thickness to 

minimize the maximum deflection of a cylindrical shell. Here 

expressions of the objective function are obtained by the 

stepped reduction method. 

A weighted Runge-Kutta discontinuous Galerkin method 

for the wave field modeling, which is simply called the 

WRKDG method, is developed by [3]. For this method, they 

first transform the seismic wave equations into a first-order 

hyperbolic system, and then combine the discontinuous 

Galerkin spatial discretization with a weighted Runge-Kutta 

time discretization. 

Reference [4] presents a comparison of a reliability 

technique that employs a Fourier series representation of 

random axisymmetric and asymmetric imperfections in a 

cylindrical pressure vessel subjected to an axial end load and 

external pressure, with evaluations prescribed by the ASME 

boiler and pressure vessel code, section VIII, division 2 rules. 

The paper of Gurinder et al. [5] contains a stress analysis of 

a cylindrical pressure vessel loaded by axial and transverse 

forces on the free end of a nozzle. The nozzle is placed such 

that the axis of the nozzle does not cross that of the cylindrical 

shell. 

Classical simple formulae for elastic hoop stresses in 

cylindrical and spherical pressure vessels continue to be used 

in structural analysis today because they facilitate design 

procedures. Traditionally such formulae are only applied to 

thin-walled pressure vessels under internal pressure. There do 

exist, however, some variations of these formulae that remain 

simple yet permit wider use [6]. 

The problem of crack detection in cylindrical shell 

structures is investigated by [7]. To do this, the differential 

quadrature method and bees algorithm have been used. 

In their study [8], static and free vibration characteristics of 

anisotropic laminated cylindrical shell with various end 

conditions are considered by making the use of differential 

quadrature method (DQM). Equations of motion are derived 

based on three-dimensional theory of elasticity. 

Three-dimensional thermo-elastic analysis of a functionally 

graded cylindrical shell with piezoelectric layers under the 

effect of asymmetric thermo-electro-mechanical loads is 

carried out by [9]. Numerical results of displacement, stress 

and thermal fields are obtained using two versions of the 

differential quadrature methods, namely polynomial and 

Fourier quadrature methods. 

An approach for simulating coupled acousto-elastic wave 

phenomena, including fluid-solid boundaries where the solid 

is allowed to be anisotropic, with the discontinuous Galerkin 

method, is developed by [10]. 

Regarding the shell structures, due to the specific 

characteristics of their differential equations, conventional 
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numerical solution processes employing polynomial 

approximations can have a very significant degree of difficulty. 

Therefore, weighted residues methods combined with 

unconventional techniques for enriching the approximate 

function, can constitute effective alternative to reduce the 

degree of difficulty in solving the problem. However, 

polynomial functions are not always the most efficient for the 

initial approach enrichment purposes, notably the problems of 

shell structures. Usually analytical solutions have 

characteristics such that they can only be played through the 

adoption of a very high degree polynomial for enrichment, 

which implies high computational cost. Thus, recourse to the 

use of special functions not polynomial for enrichment can 

prevent, significantly, the increase in computational effort in 

structural analysis. 

The present work has the objective of evaluating the 

performance of approximate solutions obtained by the 

application of Weighted Residues Methods, specifically the 

Galerkin Method and the Least Squares Method, to the 

analysis of structures of tubes submitted to hydrostatic loading. 

Regarding the methods adopted for the development of the 

research, the strong forms and weighted residues with which 

boundary value problem is expressed are analyzed. A 

comparative study of approximate solutions obtained by the 

use of bases of linear and polynomial functions of higher 

degree for the generation of the approximation function, as 

well as of special functions that have the same characteristics 

of the analytical solution is developed. 

The use of the enrichment technique of the approximate 

function on the form in weighted residues is also explored. 

Finally, the Finite Element Method for the approximation 

generation [11] for a boundary value problem formulated by 

the Least Squares Method is applied. In this sense, the work 

presents original contributions, such as the combination of 

approximation enrichment techniques on Weighted Residues 

Methods, and the application of the Least Squares Method 

with division of the integration domain, to solve the problem 

of linear behavior pipes. 

 

 

2. PIPES BENDING SCHEME: 

CONCEPTUALIZATION OF THE BOUNDARY 

VALUE PROBLEM AND ANALYTICAL SOLUTION 

 

2.1 Pipes with axisymmetric loading 

 

The shells are structural elements laminar and have an 

average surface not flat. This definition covers various 

structural shapes, said shell being revolution when its 

geometrical shape can be generated by rotating a line about an 

axis known as axis of revolution. In this work are considered, 

among the revolution shells, tubes, whose main geometric 

elements, with reference to their average surface are shown in 

Figure 1. 

Among its geometric elements, also highlight the height H, 

the thickness h and the radius of curvature r of their average 

area indicated in figure 2. 

In addition to internal pressure, circular cylindrical shell 

structures are often subject to concentrated or localized 

bending moments and forces of varying nature (external loads, 

loads arising from the interaction between structural 

components of differing stiffness, loads due to constraint 

reactions, and so forth), distributed symmetrically around the 

rotational axis [12-13]. 

Given our concern with conceptual design, we will use 

analytical models of general validity that, by introducing 

simplifying assumptions, ensure that the real world problem 

can be more readily addressed but in any case guarantee that 

the results thus obtained are meaningful in actual applications. 

Essentially, two simplifying assumptions will be introduced: 

axial symmetry in the broad sense (generalized axisymmetry), 

i.e., referring not only to the cylindrical body’s geometrical 

shape, but also to the surface forces (pressures) and the thermal 

load acting on it, its boundary conditions and the material’s 

elastic properties, and the assumption regarding the stress state 

and strain state [14-18]  

 
 

Figure 1. Cylindrical tube 

 

 
 

Figure 2. Geometric parameters of the revolution shell 

 

With regard to external forces, it is considered only the work 

of a pressure Internal representing the action of a fluid 

contained by the tube, the latter being completely full (figure 

3), given by the following equation: 

 

𝑃 = −𝛾(𝐻 − 𝑦)                                                                   (1) 

 

In these conditions the tube is characterized as a cylindrical 

reservoir. 

Taking a generic element of the average surface, delimited 

by two generators and two guidelines, as Figure 1, indicate the 

internal forces arising from the action of the liquid pressure in 

the reservoir in Figure 4, whose variations are consistent with 

restrictions of geometric symmetry and axial loading. As we 
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know from the standard texts [19-25], in the most general non-

axisymmetric conditions, the small element of the circular 

cylindrical shell is subject to ten stress resultants per unit 

length, four in-plane (Ny; N; Ny ; Ny) and six out-of-plane 

(Ty; T; My; M; My; My). The in-plane stress resultants are 

also termed membrane stress resultants. Imposing equilibrium 

conditions, it can be inferred that, as a result of axisymmetry, 

the membrane shearing forces Ny and Ny must be zero (Ny 

= Ny = 0), the transverse shearing forces T acting on the sides 

of length dz must be zero (T = 0) and the twisting moments 

My and My must also be zero (My = My = 0). As five out 

of the ten stress resultants are thus zero, viz., Ny, Ny, T , My , 

My; they are not shown in Figure 4. 

 
Figure 3. Hydrostatic pressure in the cylindrical reservoir 

 
 

Figure 4. Applicants efforts in the cylindrical reservoir 

 

Imposing the static equilibrium of forces and moments in 

the generic shell element, according to the directions defined 

by the axes x, y and z, result, the following equilibrium 

relationships: 

 

−
𝑑𝑀𝑦

𝑑𝑦
+ 𝑄𝑦 = 0                                                                  (2a) 

 
𝑑𝑁𝑦

𝑑𝑦
+ 𝑃𝑦 = 0                                                                      (2b) 

 

𝑟
𝑑𝑄𝑦

𝑑𝑦
+ 𝑁𝜃 + 𝑃𝑧 . 𝑟 = 0                                                       (2c) 

By combining the Eq. (2.3a) and Eq. (2.3c), we obtain: 

 

𝑟
𝑑2𝑀𝑦

𝑑𝑦2 + 𝑁𝜃 + 𝑃𝑧 . 𝑟 = 0                                                       (3) 

 

Note that Eq. (2b) refers to the equilibrium relative to the 

wall own weight, which is independent of the other equation 

Eq. (2a) and Eq. (2c). In the case where the bending moment 

throughout their height is null, by Eq. (3) are obtained: 

 

𝑁𝜃 = −𝑃𝑧 . 𝑟                                                                           (4) 

 

In this case, note that the displacement of the vessel wall 

can be determined by the radius length variation of the 

reservoir, Eq. (7). In view of Eq. (4), Eq. (5), and Eq. (6) 

mentioned below: 

 

𝜀𝜃 =
𝜎𝜃

𝐸
                                                                                 (5) 

 

𝜎𝜃 =
𝑁𝜃

ℎ
                                                                                 (6) 

 

The displacement function: 

 

𝑤(𝑟) = ∆𝑟 = −𝜀𝜃𝑟 = − (
𝜎𝜃

𝐸
) 𝑟 = −

𝑟

𝐸
(

𝑁𝜃

ℎ
) = −𝑁𝜃

𝑟

𝐸ℎ
       (7) 

 

Thus, the rotation of the wall of the reservoir can be 

expressed by the first derivative of the displacement function: 

 
𝑑𝑤(𝑦)

𝑑𝑦
=

𝛾𝑟2

𝐸ℎ
                                                                           (8) 

 

In view of Eq. (2a) and Eq. (2c) which define the bending 

problem in cylindrical walls shells, they are two equations and 

three unknowns: Nθ, My and Qy. In this case, you must enter a 

relationship between forces and displacements, because the 

problem is internally hyperstatic. This relationship can be 

obtained from Eq. (7): 

 

𝑤(𝑟) = ∆𝑟 = −𝜀𝜃𝑟 = − (
𝜎𝜃

𝐸
) 𝑟 = −

𝑟

𝐸
(

𝑁𝜃

ℎ
) = −𝑁𝜃

𝑟

𝐸ℎ
  

 

so that: 

 

𝑤(𝑟) = −𝑁𝜃
𝑟

𝐸ℎ
  →    𝑁𝜃 = −

𝐸ℎ

𝑟
𝑤(𝑟)                                    (9) 

 

With this, Eq. (2c) may be described as follows: 

 

𝑟
𝑑𝑄𝑦

𝑑𝑦
−

𝐸ℎ

𝑟
𝑤 + 𝑃𝑧 . 𝑟 = 0                                                           (10) 

 

The third problem is the equation given by: 

 

𝑀𝑦 = −𝐷
𝑑2𝑤

𝑑𝑦2                                                                              (11) 

 

Thus, there is now a problem with three equations: Eq. (2), 

Eq. (10) and Eq. (11). And three unknowns (Nθ, My and Qy) 

that can be reduced to two equations: Eq. (11) and Eq. (12). 

And two unknowns (Nθ and My): 

 

𝑟
𝑑2𝑀𝑦

𝑑𝑦2 −
𝐸ℎ

𝑟
𝑤 + 𝑃𝑧 . 𝑟 = 0                                                         (12) 

 

Substituting Eq. (11) in Eq. (12), we obtain the equation that 
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describes the behavior of cylindrical walls subjected to 

hydrostatic pressure, Eq. (13): 

 

𝑟
𝑑2

𝑑𝑦2
(−𝐷

𝑑2𝑤

𝑑𝑦2
) −

𝐸ℎ

𝑟
𝑤 + 𝑃𝑧 . 𝑟 = 0 

𝐷
𝑑4𝑤

𝑑𝑦4 +
𝐸ℎ

𝑟2 𝑤 = 𝑃𝑧                                                                      (13) 

 

Or yet: 

 
𝑑4𝑤

𝑑𝑦4 + 4𝛽4𝑤 −
𝑃𝑧

𝐷
= 0                                                                (14) 

 

Where: 

 

𝛽 = √
3(1−𝜗2)

ℎ2𝑟2

4
;    𝐷 =

𝐸ℎ3

12(1−𝜗2)
                                                (15) 

 

Once obtained the displacement w by solving the 

differential equation (2.14) can be determined all the 

parameters that characterize the static regime of the shell.  

The general solution of Eq. (14) is given by the following 

equation: 

 

𝑤 = 𝑒𝛽𝑦(𝐶1𝑐𝑜𝑠(𝛽𝑦) + 𝐶2𝑠𝑖𝑛(𝛽𝑦)) + 𝑒−𝛽𝑦(𝐶3𝑐𝑜𝑠(𝛽𝑦) +

𝐶4𝑠𝑖𝑛(𝛽𝑦)) + 𝑓(𝑦)                                                                   (16) 

 

where f (y) is a particular solution of the problem. In the case 

of pressure Hydrostatic, the particular solution of this equation 

is given by: 

 

𝑓(𝑦) = (
𝑟2

𝐸ℎ
) 𝑃𝑧 = (

𝛾𝑟2

𝐸ℎ
) (𝐻 − 𝑦)                                            (17) 

 

The constant appearing in Eq. (16) should be obtained from 

the imposition of boundary conditions. In this paper, for 

simplicity, we consider only cases of reservoir with hinged 

fixed and cantilever base, both with free top (zero bending 

moment and shear). 

 

 

3. METHOD OF WEIGHTED RESIDUALS AND THE 

ENRICHMENT OF APPROACH 

 

3.1 Enrichment approach 

 

The method of weighted residues establishes a natural 

condition for obtaining approximate solutions to many 

engineering problems. According Assan [26], the method of 

weighted residues differs from the so-called variational 

methods per no need the existence of a functional, directly 

using the differential equation (strongly) of the problem to be 

solved. 

In order to improve the quality of approximation, one can 

opt for use of an enrichment technique, which consists in 

expanding the basis of approximate functions already existing. 

The enrichment can be performed by direct addition of whole 

new basis functions existing, or by adding new terms resulting 

from the base multiplied by the previous base, when 

constitutes a unit of partition [27]. This paper presents the 

second enrichment option, under the meshless methods. Just 

like further remark such methods generate approaches from 

local functions defined in each nodal point hitching to it a local 

domain of influence called cloud, [27]. 

3.2 Method of weighted residuals with enrichment for the 

tubes problem 

 

Considering the approximate representation of functions of 

the method weighted residual according to equation: 

 

𝑢 ̃(𝑥) = 𝛼𝑖∅𝑖(𝑥) + 𝑢0̃ (𝑥)    𝑖 = 1, … . . 𝑛                              (18) 

 

where 𝑢 ̃(𝑥)  is the function that satisfies the constraints 

essential and natural contour, ∅𝑖(𝑥) are homogeneous 

functions in those restrictions, 𝛼𝑖 are the unknown parameters 

of the problem. 

The enrichment technique is to introduce a basis functions 

𝜑𝑘, said enriching, so that the new basis for the approximation 

𝑢𝑒  ̃ result: 

 

𝑢𝑒  ̃(𝑥) = 𝛼𝑖 . ∅𝑖(𝑥) + 𝜆𝑖𝑘 . ∅𝑖(𝑥). 𝜑𝑘 + 𝑢0̃ (𝑥)        
 

𝑖 = 1, … . . 𝑛    𝑘 = 1, … … 𝑝                                                      (19) 

 

where p is the number of terms in the new base. Of course, the 

approximate solution should check the conditions of essential 

and natural contour. By definition, it follows that the residue 

of approximation is given by the following equation: 

 

𝑅(𝑢𝑒̃) = 𝐴(𝑢𝑒̃) − 𝑓                                                                   (20) 

 

where A is a differential operator of the function u (exact 

solution), responsible for generating plots containing different 

orders of derivatives that may appear on a specific problem. 

Annulment this residue in weighted form it is a condition for 

determining the coefficients of the approximate solution as 

follows: 

 

∫ 𝑅(𝑢𝑒̃). Ψ𝑗𝑑Ω = 0
Ω

                                                                  (21) 

 

where  is the weight function (a base functions linearly 

independent). 

The Eq. (21) generates the linear system, which defines the 

constants of approximate solution: 

 

𝛼𝑖 . 𝐴𝑖𝑗 = 𝑓𝑗 

 

The method of weighted residues states that the 𝛼𝑖  

coefficients contained in the approximate function are 

determined by the condition of residue annulment in shape 

weighted in the field of solution.  

Reuniting the coefficients  𝛼𝑖  in a column vector α, the 

coefficients 𝑓𝑗  into another column vector f and the 

coefficients 𝐴𝑖𝑗 in line positions i and j column of a matrix A. 

Note that, the 𝛼𝑖  now indicate all the coefficients of Eq. (19). 

One of the drawbacks presented by the technique refers to the 

cost computer which is required every time you enter an 

enriching role in the issue. If the linear system with non-

enriched base is of size n × n, after the introduction of 

enriching function obtains a system with dimensions (p + 1) ⋅ 
n × (p + 1) ⋅ n, where p is the number of enriching functions. 

4.2.1 Enrichment of linear polynomial basis with Exponential-

trigonometric base 

The analytical solution of the cylindrical tube, appear linear 

polynomial terms, that well represent the membrane behavior, 

and exponential terms that well represent the membrane 

behavior, and exponential-trigonometric terms, harvesting the 
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effects of localized bending. These characteristics can be 

directly utilized in the generation of approximate functions. 

Therefore, one can approximate function from a polynomial 

basis and apply the enrichment technique with auxiliary 

functions f1 and f2, of type: 

 

𝑓1 = 𝑒−𝛽𝑦 . 𝑐𝑜𝑠(𝛽𝑦)                                                                    (22) 

 

𝑓2 = 𝑒−𝛽𝑦 . 𝑠𝑖𝑛(𝛽𝑦)                                                                    (23) 

 

More specifically, for a cylindrical vessel, articulated at the 

base and free at the top, considering the enrichment for 

functions f1 and f2 a linear function 𝑤̃ defined by equation (24).: 

 

𝑤̃(𝑦) = 𝛼1. 𝑦 + 𝛼2                                                                     (24) 

 

Results in the following function enriched and 𝑤𝑒̃: 

 

𝑤𝑒̃(𝑦) = 𝛼1. 𝑦 + 𝛼2. 𝑦. 𝑒−𝛽𝑦 . 𝑐𝑜𝑠(𝛽𝑦) +
𝛼3. 𝑦. 𝑒−𝛽𝑦 . 𝑠𝑖𝑛(𝛽𝑦) + 𝛼4 + 𝛼5. 𝑒−𝛽𝑦 . 𝑐𝑜𝑠(𝛽𝑦) +
𝛼6. 𝑒−𝛽𝑦 . 𝑠𝑖𝑛(𝛽𝑦)                                                                   (25) 

 

The problem of boundary conditions are as follows: 

a) Essential boundary condition: displacement on the basis 

null 

 

𝑤𝑒̃(0) = 0                                                                                    (26) 

 

b) Natural boundary condition: Bending Moment on the 

basis null 

 
𝑑2𝑤𝑒̃(0)

𝑑𝑦2 = 0                                                                                  (27) 

 

So that when applying these conditions on enriched function 

results: 

 

𝑤𝑒̃(𝑦) = 𝛼1. 𝑦 + 𝛼2. 𝑦. 𝑒−𝛽𝑦 . [𝑐𝑜𝑠(𝛽𝑦) + 𝑠𝑖𝑛(𝛽𝑦)] +

𝛼3[1 − 𝑒−𝛽𝑦] + 𝛼4. 𝑒−𝛽𝑦 . 𝑠𝑖𝑛(𝛽𝑦). (1 +

𝛽𝑦)                                                                                                (28) 

 

Thus, the base enriched functions are defined as follows: 

 

∅1 = 𝑦                                                                                           (29) 

 

∅2 = 𝑦. 𝑒−𝛽𝑦 . [𝑐𝑜𝑠(𝛽𝑦) + 𝑠𝑖𝑛(𝛽𝑦)]                                      (30) 

 

∅3 = 1 − 𝑒−𝛽𝑦                                                                            (31) 

 

∅3 = 𝑒−𝛽𝑦 . 𝑠𝑖𝑛(𝛽𝑦). (1 + 𝛽𝑦)                                                (32) 

 

Under these conditions the enriched approach, with the 

boundary conditions implied, can be represented as: 

 

𝑤𝑒  ̃ (𝑦) = 𝛼1. ∅1(𝑦) + 𝛼2. ∅2(𝑦) + 𝛼3. ∅3(𝑦) +
𝛼4. ∅4(𝑦)                                                                                      (33) 

 

Applying the definition of weighted residues method, 

coefficients 𝛼𝑖 can be determined by: 

 

𝛼𝑖 . ∫ 𝐴(𝜙𝑖)Ω
. Ψ𝑗𝑑Ω = ∫ 𝑓

Ω
. Ψ𝑗𝑑Ω                                        (34) 

 

Recalling that the problem of cylindrical vessels differential 

operator 𝐴(𝜙𝑖) and the function 𝑓 are given by: 

 

𝐴(𝜙𝑖) =
𝑑4 𝜙𝑖

𝑑𝑦4 + 4. 𝛽4. 𝜙𝑖                                                           (35) 

 

𝑓 =
𝑃𝑧

𝐷
                                                                                           (36) 

Since the equation (34), can be rewritten as follows: 

 

𝛼𝑖 . (∫
𝑑4 𝜙𝑖

𝑑𝑦4Ω
. Ψ𝑗𝑑Ω + 4. 𝛽4. ∫ 𝜙𝑖Ω

. Ψ𝑗𝑑Ω) =

∫
𝑃𝑧

𝐷Ω
. Ψ𝑗𝑑Ω                                                                            (37) 

 

Or implicitly represented as: 

 

𝛼𝑖 . 𝐴𝑖𝑗 = 𝑓𝑗                                                                                    (38) 

 

In previous relationship, we have: 

 

𝐴𝑖𝑗 = ∫
𝑑4 𝜙𝑖

𝑑𝑦4Ω
. Ψ𝑗𝑑Ω + 4. 𝛽4. ∫ 𝜙𝑖Ω

. Ψ𝑗𝑑Ω                        (39) 

 

𝑓𝑗 = ∫
𝑃𝑧

𝐷Ω
. Ψ𝑗𝑑Ω                                                                       (40) 

 

A specific variant of weighted residues method that will be 

used, it is then dependent on the function Ψ𝑗 to be adopted. In 

the following are shown the applications of Galerkin and least 

squares methods. 

 

3.3 Method of Galerkin 

 

The first example of this case, resolves the problem of a 

reservoir with an articulated base, imposing itself prior to 

approaching the essential boundary conditions at the base in 

relation to displacement and natural referring to the bending 

moment. The natural boundary conditions for the reservoir top 

are directly checked by the approach. In the graphs (Figures 5, 

6 and 7) of displacement, bending moment and shear shown 

below, highlights the potential of the Galerkin method to 

capture exact solutions by adopting a basis for approximate 

function that contains the same solution characteristics. 

Then they present the graphs of displacement, bending 

moment and shear: 

Articulated base – Galerkin 

 
Figure 5. Displacement obtained by the enrichment of the 

approximation 
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Figure 6. Bending Moment obtained by the enrichment of 

the approximation 

 

Fixed base – Galerkin 

 
Figure 7. Shear stress obtained by the enrichment of the 

approximation 

 

The second example of this case, resolves the problem of a 

reservoir with cantilever base, imposing previously the 

essential boundary conditions on the basis relative to the 

nullity of displacement and rotation. As in the case of 

articulated reservoir, it is evident that the potential of the 

Galerkin method to capture the exact solutions to adopt a base 

to approximate function that contains the same characteristics 

as the exact solution (Figures 8, 9 and 10). 

The present Galerkin method can be seen to give very 

satisfactory results in comparison to analytic solution. 

 
Figure 8. Displacement obtained by the enrichment of the 

approximation 

 
Figure 9. Bending Moment obtained by enrichment of the 

approximation 

 
Figure 10. Shear stress obtained by the enrichment of the 

approximation 

 

3.4 Least Squares Method (LSM) 

 

The same previous examples are now analyzed with the 

Least Squares process. As shown in the graphs of 

displacement, bending moment and shear, this method can 

also capture very specific solutions by using a basis for the 

approximation function that contains the same features as the 

exact solution. The results for Examples articulated and 

clamped reservoir are shown in the following Figures (11 - 16). 

 

Articulated base – LSM 

 
Figure 11. Displacement obtained by exponential-

trigonometric approximation 
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Figure 12. Bending moment obtained by exponential-

trigonometric approximation 

 
Figure 13. Shear stress obtained by exponential-

trigonometric approach 

Fixed base – LSM 

 
Figure 14. Displacement obtained by exponential-

trigonometric approximation 

 

The general principles of the forecasting estimation method 

are presented for indexes with different nature, this method is 

based on the least squares matrix. Among the advantages of 

the proposed method is the availability of explicit expressions 

for formula estimates saving structure of relations between the 

characteristics. 

 
Figure 15. Bending Moment obtained by exponential-

trigonometric approximation 

 
Figure 16. Shear stress obtained by exponential-

trigonometric approximation 

 

 

4. CONCLUSION 

 

In this research, apply formulations derived from the 

Weighed Residual Method in Resolution of reservoirs 

subjected to hydrostatic loading. The responses were analyzed 

using Galerkin methods and least squares, considering directly 

the weighted integral of the differential equation problem. 

In both methods were adopted different approximate 

functions: bases polynomial, mixed bases composed of linear 

polynomial terms and terms Exponential-trigonometric. 

Regarding the polynomial based approximations generated 

with higher degree, it was found that the extent that it increases 

the polynomial of the degree approximately the response tends 

to exact answer. However, it is necessary to adopt very high 

degree of polynomial terms to achieve greater adherence to the 

exact solution. For this type of approach, comparing the 

methods, it was found that both presented very similar 

accuracy and computational effort. 

As the use of mixed bases with functions having the same 

characteristics as the exact solution, firstly, it was not 

necessary to apply the natural boundary conditions related to 

the free top of the reservoir, because the exponential terms 

generate sufficient damping to reset the bending stresses along 

the height of the extended shells. In addition, in both methods, 
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the approximate solution coincided with the exact solution, 

demonstrating the potential of methods to capture exact 

solutions by adopting an approximate base containing the 

same characteristics as the exact solution. 
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