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AN IMPROVED MODEL FOR THE PENETRATION OF A 
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ABSTRACT
A simple penetration model for rigid projectiles against ductile targets is enriched by the introduction of 
an exponential parameter that extends the validity of the model to projectiles with hemispherical heads. 
The application of the analysis to various head cases is demonstrated with emphasis on the hemispheri-
cal head for which simpler relations are derived and the equation of motion explicitly integrated. Resort 
to the considerable amount of numerical and experimental penetration data available in the literature 
allows the rational estimation of the various parameters that characterise the model.
Keywords: characterisation, ductile target, hemispherical head, modelling, ogival head, penetration, 
rigid projectile.

1  INTRODUCTION
The phenomena arising from high-energy impact on thick plates vary considerably with the 
type, range and intensity of attack, as well as plate geometry, material and support conditions. 
With the trend towards more penetration-resisting plating, more of the impact energy would 
be transmitted to and absorbed by the rest of the structure. This development has important 
implications on the design of the plate supports. Moreover, by studying the shock wave atten-
uation through the structure, it would be possible to assess the intensity of the excitation at 
selected points and hence the effect of the shock on sensitive equipment.

A rational design of structural elements against impact loads relies on a good approxima-
tion of the force arising during a missile–target interaction. Computational techniques are 
nowadays extensively used to model this complex interaction and predict its consequences. 
However, in problems where greater interest is placed on the overall response of the structural 
element and its connections with the whole structure, more easily tractable models for the 
impact force are desirable. A recent review article discussed the basic assumptions of such 
modelling and tested its effectiveness by referring to available, numerically or experimentally 
obtained, penetration data [1].

For given configurations and material characteristics of a projectile and its target, the pro-
jectile velocity is the most fundamental factor having a profound effect on the impact 
phenomenon [2]. For a certain, experimentally determined velocity limit, the projectile pen-
etrates into an elasto-plastically deformed target without itself sustaining any significant 
deformation. In such cases, the impact phenomenon is modelled as a penetration of a rigid 
projectile into a ductile target.

The impact force is equal to the resistive force applied by the target on the projectile during 
the latter’s penetration. Its time history can be obtained by solving the equation governing the 
motion of a rigid projectile:

	 mx F x x�� �= − ( , )	 (1)

where F is the resistive force, x the projectile penetration, m the projectile mass and a dot 
above a symbol indicates differentiation of the represented variable with respect to time. 
As implied by eqn (1), F would generally depend on both penetration and projectile velocity. 
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If the projectile is assumed axisymmetric and its head shape is described in cylindrical coor-
dinates by a function r = r(z), as shown in Fig. 1, then F is given by

	 F = 2π p x x r r
re

( , )� d
0
∫ 	 (2)

where p is normal pressure over the projectile–target interface and re the radius of the edge of 
the contact area. In Fig. 1, the projectile head of length Lh merges with the shank of calibre d 
at bourrelet.

Simple models for pressure p found in the literature usually comprise two terms: the first 
is a hardness term essentially depending on the rate-dependant mechanical properties of the 
target material, the second can be referred to as hydrodynamic since it is related to the kinetic 
energy of the plastically flowing target material around the penetrating projectile.

In the initial penetration phase, re = rx = r(z = Lh − x) as illustrated in Fig. 2a. When the 
impact velocity is very low, maximum x could be less than Lh; in such a case, the quasi-static 
part of the pressure predominates and the hydrodynamic part can be neglected; thus, accord-
ing to eqn (2), the resisting force depends mainly on penetration. For moderately high-impact 
velocities, re reaches d/2, its maximum value, as shown in Fig. 2b. Above a certain impact 
velocity, the phenomenon of cavitation occurs [3] and contact between the projectile head 
and target is lost for re = rc less than d/2, as shown in Fig. 2c. In this penetration mode, the 
role of the hydrodynamic pressure term becomes important.

To obtain an expression for the impact force from eqn (2) and thus enable the integration 
of eqn (1), a plausible model for pressure p needs to be adopted. This can be achieved by 

Figure 1: Projectile head profile subjected to normal pressure p.

Figure 2: The three main penetration modes.
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resorting to one such simple model among the various that have been proposed and can be 
found in the literature [3–8].

The focus of the present article is a particular pressure model proposed by Hill [3], which 
accounts for the influence of the head shape; although this model works well for ogival and 
conical heads, it was not found to be altogether satisfactory in the case of hemispherical 
heads for which it fails to predict a smooth transition from no cavitation to cavitation 
behaviour.

An attempt is here made to generalise Hill’s model so that it accounts properly for hemi-
spherical heads. A rational modification is introduced allowing the consistent application of 
the model to all types of head shapes. The characterisation of the head shape effect is achieved 
through the fitting of model predictions to experimental measurements.

2  BACKGROUND

2.1  Projectile head geometries

The head profile in the shape of a circular arc of radius nd, where n, a constant parameter 
greater than ½, is known as the calibre-radius-head (c.r.h) or the ogive. An ogival head is 
generated by the rotation of the ark about the z axis; it is pointed and merges smoothly 
with  the cylindrical base. In polar coordinates (Fig. 1), its profile is represented by the 
equation,

	 r(z) = (n2d2 – z2)½ – (n – ½)d	 (3)

It is easily shown that the ogive head length is given by

	 Lh = z(r = 0) = (n – ¼)½d	 (4)

Alternatively, the profile can be described parametrically by

	 r(ϕ) = ndcosϕ – (n – ½)d, z(ϕ) = nd sinϕ,	 (5)

where ϕ is the angle between the tangent to the profile and the z axis (Fig. 1) so that (dr/dz) = 
–tanϕ. At the tip, f0 = ϕ(0, Lh) is given by

	 tan
( )

φ0

1
4

1
2

1
2

=
−

−

n

n
	 (6)

which means that head slenderness (ϕ0 → 0) corresponds to n → ∞.
When n = ½, the head shape becomes hemispherical, which also merges smoothly with 

the  cylindrical base but is not pointed. In contrast, the conical head, for which ϕ is con-
stant,  is  pointed but does not merge smoothly with the cylindrical base; its profile is 
described by

	 r(z) = (Lh − z)tanϕ.	 (7)

Finally, it is possible to form a composite head by grinding a conical tip on an ogive. The 
geometry of this head is fully defined by the ogive parameter n, as well as the vertex angle 2ϕt 
and the basal radius rt of the conical cap. The penetration analysis for composite heads is, as 
expected, more complicated than that for plain ones but Hill facilitated it by postulating a 
simple rule governing the calculation of the resisting force F [3].
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2.2  Pressure formula

In most simplified penetration analyses [3–8], the normal pressure on the projectile head is 
represented by the expression

	 p(z, ẋ) = p0 + b(z)ρ ẋ2	 (8)

where p0 is the hardness term, b(z) plays the role of a shape drag coefficient [1] and ρ is the 
density of the target material. Assuming the response of the target material to be elasto-plas-
tic, the quasi-static part of the pressure can be expressed as

	 p0 = aσY	 (9)

where a is a constraint factor and σY the strain rate-sensitive yield or flow stress.
Hill neglected the frictional component of interface traction because of surface melting 

and adopted eqn (8) for the normal component with b(z) given by

	 b z K
z

r
r

z
( ) =











d

d

d

d
	 (10)

where K is a dimensionless, positive parameter, found experimentally to depend on head 
shape and target strength. It is easily shown that, in the case of conical head,

b(ϕ) = K(ϕ) tan2ϕ

The inspiration for eqn (8) with b given by eqn (10) was a pressure formula obtained for very 
slender heads of any shape assuming cylindrical expansion of the elasto-plastic target mate-
rial around the penetrating projectile [3]. According to this formula, for a slender conical 
head,

	 K(ϕ → 0) = ln
G

Yτ













1
2

	 (11)

where G is the modulus of rigidity and tY the shear yield stress of the target material. For 
slender ogival heads, eqn (11) provides an estimate of K(n → ∞) = K(ϕ0 → 0), according to 
eqn (6).

2.3  Cavitation velocity

The critical condition marking the beginning of cavitation develops for a critical velocity ẋc 
when pressure p vanishes at the bourrelet, that is, for z = 0. Using eqn (8) with b given by eqn 
(10), it is possible to show that, for ogival and hemispherical heads, ẋc is given by

	 �x
np

Kc =












2 0

1
2

ρ

	 (12)

3  A NEW HYDRODYNAMIC PRESSURE MODEL
It was pointed out in Section 2.2 that Hill was inspired into adopting eqn (10) for the drag 
coefficient by assuming a cylindrical expansion of the target material around the penetrating 
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projectile. This is a reasonable assumption for a slender, pointed projectile such as one with 
an ogival or a conical head. A blunt spherical head however would be expected to produce, at 
least initially, a spherical expansion of the target material. This consideration led to the mod-
ified modelling of the drag coefficient described in this section.

Hill’s model for the hydrodynamic pressure distribution over the projectile head is here 
generalised by adopting for the drag coefficient the formula

	 b z K
r

d z
r

r

z

k

k( ) =




















−

4
2

1
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d

d
	 (13)

or
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where the positive, not necessarily integer exponent k, is left for the moment unspecified; a 
plausible value for k will be deduced later through the application of the model to specific 
head shape cases. It is clear that, for k = 1, eqn (13) coincides with Hill’s formula, eqn (10). 
Substituting eqn (8) with b given by eqn (13) into eqn (2) and integrating leads to the expres-
sion for the resistive force

	 F r p K x
r

de
e

k

e= + 

















−

π 2
0

2

2 2

22
r f� tan 	 (15)

As mentioned in the Introduction, for moderately high-impact velocities, the whole head 
eventually comes into contact with the target. Provided that the head merges smoothly with 
the cylindrical base, ϕe = ϕ(½d, 0) = 0 and the resistive force reduces to

	 F = A p0	 (16)

where A = ¼pd2 is the cross-sectional area of the projectile base. Thus, during this second 
stage of penetration, the resistive force is constant depending only on the quasi-static part of 
the dynamic pressure.

Application of the cavitation condition, p(½d, 0) = 0, provides the critical velocity above 
which cavitation occurs so that the hydrodynamic pressure also contributes to the resistive 
force. Using eqn (8), with b given by eqn (14), and assuming again that the head merges 
smoothly with the cylinder at the bourrelet, the cavitation condition leads to

	 p0 + K
d r

z
x

z

c2

2

2

0

2d

d













=

ρ �  = 0	 (17)

Eqn (17) is independent of k; it should therefore result in the same cavitation velocity as that 
predicted by Hill for k = 1.

3.1  Ogival head

The analysis is facilitated by the introduction of the dimensionless coordinate z = z/d < n. In 
terms of z, the profile equation (3) and the derivatives of r(z) are written
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	 r(z) = [(n2 – z2)½ – (n – ½)]d	 (18)
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	 (19)

It is thus confirmed that the cavitation velocity obtained from eqn (17) would be given again 
by eqn (12), a result, as expected, independent of k. Substituting eqn (19) into eqn (14), the 
formula for the drag coefficient in the hydrodynamic pressure distribution becomes
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As pointed out in the previous section, for impact velocities lower than ẋc, the impact force is 
given by eqn (16). In the presence of cavitation (ẋ > ẋc), contact is lost away from the bourre-
let, at re = rc < ½d, ze = zc > 0 and ϕe = ϕc ≠ 0; then, the resisting force is determined from eqn 
(15) after obtaining the corresponding value of zc from the condition

	 p p K x
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Taking into account eqns (12) and (18), the above equation can be reformulated as

	 y3 + na2[2y − (2n − 1)]2k−2{2y [(k − 1)n2 −ky2] + n2(2n − 1)} = 0� (22)

where

	 y = n c
2 2

1
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�
�
x
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	 (23)

Considering that a > 1 and 0 < zc < (n − ¼)½, it is possible to show that n − ½ < y < n; there-
fore, if a solution of eqn (22) exists, it lies within a rather narrow range and can be easily 
obtained by some numerical technique such as the Newton–Raphson method. Then zc and rc 
are calculated using the first of eqns (23) and (18), respectively. Substituting these values into 
eqn (15), the force on the projectile can be obtained in the form

	 F = l2A p0	 (24)

where l is the ratio of cavity to projectile diameter given by
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or, in terms of y,

	 λ ψ α ψ

ψ
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It is apparent from eqn (26) that l depends on a, n and k. For k = 1, an explicit form is 
obtained for l as follows [1]
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1
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2 2 2 1 2 12 2
= ( ) − − −( )( ) ( )n n n n 	 (27)

which was correlated to experimental evidence to yield estimates for the parameters p0 and K 
for particular values of n.

3.2  Hemispherical head

The hemispherical head can be considered as a special case of the ogival if n is set equal to 
½. Then

	 r(z ) = (¼ – z2)½ d	 (28)

and

	 b K kk
k

( ) ( )ζ ζ ζ= −( ) −
−

−

22 2 1
4

2 2 2 1
4 	 (29)

The above relation indicates that for the pressure distribution function to be finite at z = Lh/d 
= ½, k should be at least 2. Adopting the value k = 2,

	 b K( ) ( )ζ ζ= −4 2 2 1
4  = K(2sin2ϕ – 1)	 (30)

The value k = 2 for the exponent in eqn (13) is consistent with the three-dimensional motion 
associated with spherical cavity expansion, which is the mode of deformation expected to be 
produced by a spherical head at the front of the propagating cavity.

The pressure distribution with b given by eqn (30) is not uniform and the application of the 
cavitation condition mentioned in Section 2.3 leads to a cavitation velocity also given by eqn 
(12) with n = ½. Substituting n = ½ and k = 2 into eqn (22) and solving the latter equation for 
zc gives

ζ
αc = ( ) −( )1

2 2
11 2

1
2

Thus, according to the new model, contact between head and the target decreases smoothly 
as the penetration velocity increases from ẋ = ẋc (a = 1) reaching a minimum corresponding 
to zc = d/8½ for a → ∞. In contrast, adopting k = 1 according to Hill’s model leads to uniform 
head pressure for a < 1 and contact only at the tip with infinite pressure there for a ≥ 1 [3]. 
From either eqn (25) or eqn (26), the ratio of cavity to projectile diameter is obtained as

	 λ
α

α

=
+1

2

2

	 (31)

3.3  Conical head

The profile of a conical head is described by the equation

r(z) = (Lh − z)tanϕ = ½d − z tanϕ

where the gradient angle ϕ is constant in this case. The pressure distribution is now given by

	 p z p K x
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d
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it is, therefore, non-uniform for k >1 but cannot vanish for any velocity, thus cavitation occurs 
only at the bourrelet. The resistive force is obtained from eqn (15) as

	 F x x r p K x
r
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e

k

( , ) tan� �= +


























−

2
0

2

2 2

22
ρ φ ,	 (33)

Thus, F depends on both penetration and projectile velocity only during the initial penetra-
tion phase, that is, for re = xtanϕ < ½d; when re = ½d, it becomes independent of k and 
projectile motion is analysed as described by Hill [3] who used the drag model represented 
by eqn (10).

4  RESULTS AND DISCUSSION
The proposed model makes the distinction between a pointed, ogive, and a blunt, i.e. hemi-
spherical, projectile head. The former is characterised by a large n (n → ∞) and can be 
associated with a cylindrical expansion of the target material around the penetrating projec-
tile; k = 1 is therefore a reasonable assumption in this case. In the case of hemispherical head 
(n = ½), a spherical cavity expansion seems more plausible and therefore the value k = 2 more 
appropriate. The relation between a normalised cavitation cross-section area and impact 
velocity for these two extreme cases is depicted in Fig. 3. The curve for n = ½, k = 2 repre-
sents eqn (31) while the relation for n = ∞, k = 1 is deduced from eqn (27).

It is worth noting the proximity of the two curves in Fig. 3. The graphical representation of 
the same relation for any n is expected to lie between the two extreme cases and it can be 
obtained if k could be linked analytically with n. It is reasonable to assume that k drops 
quickly from 2 to 1 as n increases from ½ to higher values encountered in experimental inves-
tigations involving ogival heads. For instance, a relation of the form k = e–2n+1 +1 would 
reflect such a quick transition since it gives k = 1.007 for n = 3, a value characterising the 
ogival nose projectiles used by Forrestal and co-workers in their ballistic experiments [4–8].

Figure 3: Normalised cavitation cross-section area versus normalised impact velocity.
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The empirical parameters of the model are determined by comparing its predictions with 
those of numerical simulations or with experimental measurements. Hill attempted this but 
relied on a rather limited amount of penetration data [3]. Since then, a significant numerical 
and experimental output has appeared in the technical literature.

Starting with hemispherical heads for which the analysis is much simpler, reference can 
first be made for comparisons to relevant finite element modelling (FEM) work [9, 10]. A key 
output from the analysis of Batra and Wright, who assumed a rigid-perfectly plastic target 
[9], was a set of pressure profiles for a range of penetration velocities. It is worth noting from 
these results that the pressure was found independent of velocity at approximately ϕ = 45°, 
which is perfectly consistent with eqn (30). This result was subsequently confirmed by an 
FEM analysis, which accounted for the elasticity of the target [10].

The pressure profile predictions of Batra and Wright [9] allowed the estimation of param-
eter a in eqn (9) at approximately 4.06, which is consistent with values suggested in the 
literature [11]. Since cavitation was not anticipated by FEM, positive pressure was predicted 
over part of the head above a certain velocity, which can be considered the cavitation velocity. 
For a velocity equal to (0.72sY/ρ)½, the pressure was predicted positive over the whole head; 
using the extreme values of this pressure profile resulted in K = 3.41. With this value of K, the 
cavitation velocity was predicted equal to (1.19sY/ρ)½.

Comparisons were also made with the experimental results of Forrestal and co-workers 
using long rods with hemispherical heads [4]. The effect of the initial penetration phase on 
the overall penetration was considered small and it was thus neglected. Assuming first no 
cavitation, the maximum penetration obtained from eqn (1) with F given by eqn (16) is

	 x
mx

Apmax =
�

0
2

02
	 (34)

The above formula was applied using the data provided by Forrestal et al., (d = 7.1 mm, 
ρ = 2,710 kg/m3). In the first set of experiments [4], there was a small variation in the projec-
tile mass, hence all results were scaled relative to L + ⅓d = m/(rpA) where rp is the projectile 
density taken equal to 7,830 kg/m3. In the second set of experiments [5], rp was taken equal 
to 8,000 kg/m3 and the projectiles had various lengths and diameters; this might have been 
the reason for the wider spread of the results. The value p0 = 1.82 GPa was obtained by fitting 
the analytical results obtained from eqn (34) to the lower experimental values as shown in 
Fig. 4. It is seen in that figure that the predictions based on eqn (34) deviate considerably 
from the experimental results for higher impact velocities. This can be attributed to the addi-
tional target resistance due to cavitation.

The analytical integration of eqn (1) with F given by eqn (24), l by eqn (31) for ẋ > ẋc and 
l = 1 for ẋ ≤ ẋc gives
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where a0 = ẋ0/ẋc ≥ 1. Adopting a cavitation velocity value of around 450 m/s, eqn (35) pro-
vides the second set of analytical results shown in Fig. 4, which are in good agreement with 
the experimental data. The corresponding value of K, obtained from eqn (12), is around 3.31, 
which is close to the one identified earlier based on comparison with the numerical output of 
Batra and Wright [9].
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The same strategy can be applied to obtain the model parameters for ogival heads. Exper-
imental results for n = 3 are shown in Fig. 5 [4]. As pointed out earlier, it is reasonable to 
assume k = 1 for this value of n, thus l is given by eqn (27) in the case of cavitation. Maxi-
mum penetration for ẋ0 ≤ ẋc is again given by eqn (34). The analysis for ẋ0 > ẋc is now more 

Figure 4: �Experimental data and analytical predictions for hemispherical head projectiles 
against aluminium targets.

Figure 5: �Experimental data and analytical predictions for ogival head projectiles against 
aluminium targets.
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complex since the equation of motion cannot be integrated explicitly. Thus, numerical quad-
rature was used, implemented through a short FORTRAN program.

Fitting the analytical predictions of maximum penetration to the corresponding experi-
mental data as shown in Fig. 5 provided estimates for p0, ẋc and K equal to 1.87 GPa, 900 m/s 
and 5.14, respectively. It is worth noting that, for the same target material, the hardness 
parameter is very close to that obtained with the hemispherical head, while parameter K, 
controlling the hydrodynamic contribution, increases significantly with n.

The model parameters are expected to depend also on the mechanical properties of the target 
material. This was confirmed by fitting the analytical predictions to another set of experimental 
data obtained using again ogive-headed projectiles with n = 3 [6]. The target material in these 
experiments was an aluminium alloy with sY = 448 MPa and sf(0.75) = 675 MPa in contrast to 
that of the earlier experiments for which sY = 276 MPa and sf(1.00) = 375 MPa. The parameter 
values estimated from these data were p0 = 2.25 GPa and K = 7.9, leading to ẋc = 790 m/s. 
These values reflect the higher resistance to penetration expected from harder materials.

It is noted in both Figs 4 and 5 that, for low impact velocities, the predicted penetration is 
less than the actual one. This may be due to ignoring the effect of the initial penetration phase 
during which both contact area and material constraint is less than assumed thereby actually 
providing less resistance to penetration. Evaluation of the extent of penetration during this 
phase requires numerical time-step integration since the resistive force depends on both x and 
ẋ according to eqn (15).

5  CONCLUDING REMARKS
Hill’s model is an elegant mathematical representation of the penetration phenomenon but it 
has not been given sufficient attention in the ballistics literature. It was shown here how its 
scope could be expanded by enriching it with an additional parameter and linking its predic-
tions with experimental evidence.

The importance of the new form for the drag coefficient proposed here, which depends on 
the additional parameter k, lies in its allowing the application of the model to make a smooth 
transition from projectiles with blunt hemispherical heads to those with slender, pointed, 
ogival or conical heads.

For this model to be useful in practice, it should be fully and reliably characterised under 
a wide range of conditions. It is therefore necessary to be tested against the relevant output 
from every available numerical and experimental work and this requires considerable effort. 
Additional experimental data for projectiles with ogive and hemispherical heads, such as 
those reported by Piekutowski et al. [7] and Forrestal and Piekutowski [8] as well as numer-
ical simulations, such as that by Chen [12], can be found in the literature and used to confirm 
the validity of the model.

It would be desirable to establish empirical relations between the various model parame-
ters and the kinematic, geometric and material characteristics of the penetration event. A 
possible relation between the exponent k and the ogival parameter n was suggested in the 
previous section but remains to be verified. The drag factor K depends on both n and target 
material strength; the results of the previous section suggest that K decreases as n decreases 
and increases as E/sY decreases. The latter conclusion is contrary to the trend suggested by 
eqn (11) but is consistent with Hill’s estimate of K(n = 1.5) = 2.8 for mild steel, which has a 
higher E/sY ratio than an aluminium alloy.

The hardness term p0 can be estimated from eqn (9) using one of the expressions for the 
constraint factor a suggested in the literature [4, 11]. Uncertainty however remains regarding 
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the appropriate value of the flow stress due to its strain-rate dependence. Malvern’s model 
[13] expresses this dependence and has been fitted to steel and aluminium alloy data [14], it 
is however difficult to assess a relevant value of the strain rate, which varies in both space and 
time. This can be resolved by resorting to numerical work such as that by Lin and Batra [15].
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