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ABSTRACT
The required reliability levels recommended in national and international documents for new and exist-
ing structures vary within a broad range, while the reference to relevant costs and failure consequences 
is mentioned only very vaguely. This contribution attempts to clarify the relationship between the 
reliability levels required for existing structures, construction costs, failure consequences, reference 
period, the design working life and the discount rate. The theoretical study is based on probabilistic 
optimization of the total costs taking into account construction value including historical and artistic 
value, obsolescence of existing structures, discount rate and time to failure. However, historical and 
artistic values of some heritage structures are often difficult to assess in monetary units and then the 
expert judgements are to be utilized. It appears that the optimal reliability level depends primarily on 
the construction costs, failure costs, and relative cost for improving structural safety, and less signifi-
cantly on the discount rate and the time to failure.
Keywords: artistic values, discount rate, heritage structures, optimization, reliability, total costs.

1 INTRODUCTION
The target reliability levels recommended in various national and international documents for 
new structures are inconsistent in terms of the values and the criteria according to which the 
appropriate values are to be selected. Almost no recommendations are available for tempo-
rary structures. In general, optimum reliability levels can be obtained by considering both the 
cost of the structure and the expected cost of failure over the design working life.

The design working life is understood as an assumed period of time for which a structure 
is to be used for its intended purpose without any major repair work being necessary. Indica-
tive values of design working life (10 to 100 years for different types of new structures) are 
given in EN 1990 (2002) [1]. Recommended values of reliability indexes are given for two 
reference periods, 1 year and 50 years (Table 1), without any explicit link to the design work-
ing life that generally differs from the reference period, while no specific indicative values are 
available for temporary structures.

It should be emphasized that the reference period is understood as a chosen period of time 
used as a basis for statistically assessing the time variant basic random variables, and the 
corresponding probability of failure. The concept of reference period is therefore fundamen-
tally different from the concept of design working life. Confusion is often caused when the 
difference between these two concepts is not recognized.

It should be recognized that the couple of b values (for 1 year and 50 years) given in 
Table 1 for each reliability class correspond to the same reliability level. Practical application 
of these values, however, depends on the time period considered in the verification, which 
may be linked to available probabilistic information concerning time variant basic variables 
(imposed load, wind, earthquake, etc.). It should be noted that the reference period of 50 
years is also accepted as the design working life for common structures (see the discussion 
by Diamantidis (2009) [2]).

For example, considering a structure of reliability class 2 having a design working life of 
50 years, the reliability index b = 3.8 should be used, provided that probabilistic models of 
basic variables are available for this period. The same reliability level is achieved when a 
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reference period of 1 year, and a target of b = 4.7 are applied using the theoretical models for 
a reference period of 1 year. Thus, when designing a structural member, similar dimensions 
(reinforcement area) would be obtained considering b = 4.7 and basic variables related to 1 
year or b = 3.8 and basic variables related to 50 years.

A more detailed recommendation concerning the target reliability is provided by ISO 2394 
(1998) [3], where the target reliability indexes are indicated for the whole design working life 
without any restriction concerning its length, and are related not only to the consequences, 
but also to the relative costs of safety measures (Table 2).

Similar recommendations are provided in the JCSS (2001) [4] Probabilistic Model Code 
(Table 3) based on the previous study of Rackwitz (2000) [5]. The recommended target reli-
ability indexes are also related to both the consequences and to the relative costs of safety 
measures, though for a reference period of 1 year. The consequence classes in JCSS (2001) 
[4] (similar to EN 1990, 2002 [1]) are linked to the ratio r defined as the ratio (Cstr + Cf)/Cstr 
of the total cost induced by a failure (cost of construction Cstr plus direct failure costs Cf) to 
the construction cost Cstr as follows:

Table 1: Reliability classification in accordance with EN 1990 (2002) [1].

Reliability 
classes

Consequences of 
structural failure

Reliability index b  
for reference period 

Examples of buildings and 
civil engineering works

1 year 50 years

RC3 – high High 5.2 4.3 Bridges, public buildings
RC2 – normal Medium 4.7 3.8 Residences and offices
RC1 – low Low 4.2 3.3 Agricultural buildings 

Table 2:  Examples of life-time target reliability indexes b in accordance with ISO 2394 
(1998) [3].

Relative costs of safety 
measures

Consequences of failure

small Some moderate great

High 0 1.5 2.3 3.1
Moderate 1.3 2.3 3.1 3.8
Low 2.3 3.1 3.8 4.3

Table 3:  Tentative target reliability indexes b (and associated target failure rates) related to 
1-year reference period and ultimate limit states in accordance with JCSS (2001) [4].

Relative costs of 
safety measures

Minor consequences 
of failure

Moderate consequences 
of failure

Large consequences 
of failure

Large b = 3.1 (p ≈ 10−3) b = 3.3 (p ≈ 5×10−4) b = 3.7 (p ≈ 10−4)
Normal b = 3.7 (p ≈ 10−4) b = 4.2 (p ≈ 10−5) b = 4.4 (p ≈ 5×10−6)
Small b = 4.2 (p ≈ 10−5) b =4.4 (p≈ 5×10−6) b = 4.7 (p ≈ 10−6)
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•  Class 1 Minor Consequences: r is less than approximately 2; risk to life, given a failure, 
is small to negligible and the economic consequences are small or negligible (e.g. agricul-
tural structures, silos, masts);

 • Class 2 Moderate Consequences: r is between 2 and 5; risk to life, given a failure, is me-
dium and the economic consequences are considerable (e.g. office buildings, industrial 
buildings, apartment buildings);

•  Class 3 Large Consequences: r is between 5 and 10; risk to life, given a failure, is high, 
and the economic consequences are significant (e.g. main bridges, theatres, hospitals, 
high-rise buildings).

However, it is not quite clear what is meant in JCSS (2001) [4] by ‘the direct failure costs’. 
This term indicates that there may be some other ‘indirect costs’ that may affect the total 
expected cost. Here it is assumed that the failure costs Cf cover all additional direct and indi-
rect costs (except the structural costs Cstr) induced by the failure. The structural costs are 
considered separately and related to the costs needed for an improvement of safety (costs per 
unit of decision parameter C1).

Both the documents ISO 2394 (1998) [3] and JCSS (2001) [4] seem to recommend relia-
bility indexes that are lower than those given in EN 1990 (2002) [1] even for the ‘small 
relative costs’ of safety measures. It should be noted that EN 1990 (2002) [1] gives the relia-
bility indexes for two reference periods (1 and 50 years) that may be accepted as the design 
working life for common structures (see also the discussion provided by Diamantidis (2009) 
[2]). ISO 2394 (1998) [3] recommends indexes for ‘life-time, examples’, thus related to the 
design working life, without any restrictions, while Probabilistic Model Code by JCSS (2001) 
[4] provides reliability indexes for the reference period of 1 year.

However, a clear link between the design working life and the target reliability level is not 
apparent from any of the above-mentioned documents. Thus, it is not clear which target reli-
ability index should be used for a given design working life different from 50 years (say 
10 years).

A new promising approach to specify the target reliability based on the concept of Life 
Quality Index (Fischer et al., 2012) [6] is considered in an on-going revision of the Interna-
tional Standard ISO 2394 (1998) [3].

The basic aim of this contribution is to clarify the link between the design working life and 
the reliability index, and to provide guidance for specification of the target reliability level for 
a given design working life. The submitted theoretical study based on probabilistic optimiza-
tion is supplemented by practical recommendations. This contribution is an extension of the 
previous study by Holicky and Retief (2011) and Holicky [7, 8].

2 GENERAL PRINCIPLES OF PROBABILISTIC OPTIMIZATION
Probabilistic optimization is based on a fundamental form of the objective function (not cov-
ering monitoring and maintenance) expressed as the present value of the total expected cost 
Ctot(x,o,q,n)

  Ctot(x,o,q,n) = Cstr 
1

n

P x i Q o i∑ ( ) ( )f , ,  + Cf 
1

n

P x i Q q i∑ ( ) ( )f , ,  + C0 + x C1 (1)

The cost of construction Cstr including artistic value is discounted as it is paid in the future 
after number of years i. Here, x denotes the decision parameter of the optimization (a  parameter 
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of structural resistance), o is the annual obsolescence (oldness) rate of heritage structure 
enhanced by annual discount rate q.

The cost of failure Cf including relevant artistic values is also discounted as it is paid after 
number of years i, q is the annual discount rate (without obsolescence rate o), e.g. 0.03, an 
average long run value of the real annual discount rate in European countries, n is the number 
of years to the failure, which may differ from the design working life (specified usually as 50 
or 100 years).

Further, Pf(x,i) is the failure probability in year i, Q(o,i) is the discount factor dependent on 
the annual obsolescence rate o, Q(q,i) is the discount factor dependent on the annual discount 
rate q and the number of years i, C0 is the initial cost of intervention independent of the 
 decision parameter x and failure (a quantity not affecting the optimization) and C1 is the cost 
per unit of the decision parameter x (a structural parameter quantity affecting the structural 
resistance and optimization).

Note that the design working life may generally differ from the time to failure denoted by 
the number of years n and considered here as an independent variable affecting the probabil-
ity of failure. Maintenance and possible repair of the structure is not included in the objective 
function (1), and these aspects are to be considered in further studies. Assuming independent 
failure events in subsequent years, the annual probability of failure Pf(x,i) in year i may be 
approximated by the geometric sequence

 Pf(x,i) = p(x) (1 − p(x))i−1  (2)

The initial annual probability of failure p(x) is dependent on the decision parameter x. Note 
that annual failure probabilities can be assumed to be independent when failure probabilities 
are chiefly influenced by time-variant loads (climatic actions, traffic loads, accidental loads). 
Then the failure probability Pfn(x) during n years can be estimated by the sum of the sequence 
Pf(x,i), that can be expressed as

 Pfn(x,n) = 1 − (1 − p(x))n ≈ n p(x) (3)

Note that the approximation indicated in eqn (3) is fully acceptable for small annual proba-
bilities p(x) < 10−3.

The discount factor of the present value of the expected future costs in year i is considered 
in the usual form as

 Q(q,i) = 1/(1+q)i  (4)

Thus, the cost of malfunctioning Cf is discounted by the factor Q(q,i) depending on the dis-
count rate q and the point in time (year number defined as i) when the loss of structural utility 
occurs.

Considering eqns (2) and (4) the total costs Ctot(x,q,n) described by eqn (1) may be written 
in a simplified form as

 Ctot(x,o,q,n) = Cstr PQ(x,o,n) + Cf p(x) PQ(x,q,n) + C0 + x C1 (5)

Here, the total sum of expected structural cost after n years depends on the present structural 
cost Cstr, the annual probability p(x) and on the sum of the geometric sequence having the 
quotient (1− p(x))/(1 + o), denoted as the time factor PQ(x,o,n). Similarly, malfunctioning 
costs after n years is dependent on the product of the present value of malfunction cost Cf, the 
annual probability p(x) and a sum of the geometric sequence having the quotient (1− p(x))/
(1+ q), denoted as the time factor PQ(x,q,n):
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In general, the total cost Ctot(x,o,q,n) depends on the costs C0, C1, Cstr, Cf, the annual proba-
bility of failure p(x), the oldness rate o, on the discount rate q and the number of years n. Note 
that for small probabilities of failure p(x) (for appropriate structural parameter x) and very 
small (zero) rates o and q, the time factor PQ(x,o,n) ≈ PQ(x,q,n) ≈ n. Variation of the time 
factor PQ(x,o,n) with n for o = 0, 0.03, 0.06 and 0.13 is shown in Fig. 1. The same variation 
holds for the time factor PQ(x,q,n).

The necessary condition for the minimum of the total cost follows from (1) as
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Equation (7) represents a general form of the necessary condition for the minimum of total 
cost Ctot(x,q,n), the optimum value xopt of the parameter x and the optimum annual probability 
of failure popt = p(xopt). The optimum probability for the total design working life Td = n years 
follows from eqn (7) as
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Equation (8) represents a simplified form of the necessary condition for the minimum of total 
cost Ctot(x,o,q,n), the optimum value xopt of the parameter x and the optimum annual 

Figure 1: Variation of the time factor PQ(x,o,n) with n for o = 0, 0.03, 0.06 and 0.13.
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 probability of failure popt = p(xopt). The optimum probability for the total design working life 
Td = n years follows from eqn (3) as

 Pfn,opt = 1 – (1 – popt)
n ≈ n popt   (9)

The corresponding optimum reliability index bopt = − Φ-1(Pfn,opt). These quantities are in 
general dependent on the cost ratios Cstr/C1 and Cf/C1, rates o and q, and on the number of 
years n.

3 FAILURE PROBABILITY OF A GENERIC STRUCTURAL MEMBER
Consider a generic structural member described by the limit state function Z(x) as

 Z(x) = x f – (G+Q) (10)

Here, x denotes a deterministic structural parameter (e.g. the cross-section area), f the strength 
of the material, G the load effect due to permanent load and Q the load effect due to variable 
load. Theoretical models of the random quantities f, G and Q considered in the following 
example are given in Table 4 (adopted from JCSS (2001) [4] and Holicky (2009) [9]).

Considering the theoretical models given in Table 4, the reliability margin Z(x) may be 
well approximated by the normal distribution ΦZ(x) that provides sufficient accuracy. The 
annual failure probability p(x) is then given as

 p(x) = ΦZ(x)(Z(x) = 0)  (11)

In eqn (11) the normal distribution is evaluated for Z(x) = 0; then for x = 1 and n = 50 the 
probability Pfn(1,50) ≈ 6.7 10-5 and corresponding reliability index b ≈ 3.8.

4 AN EXAMPLE
The following example illustrates the general principles, as well as a special case of probabil-
istic optimization. To simplify the analysis, the total costs Ctot(x,o,q,n) given by eqn (5) are 
transformed to the standardized form ktot(x,o,q,n) given as

  

κ tot
tot

str f

( , , , )
( , , , )

( ) ( , , )

x o q n
C x o q n C

C

p x
C

C
PQ x o n

C

C
P

=
−

=

+

0

1

1 1

QQ x q n x( , , )










 +

 (12)

The annual probability of failure p(x) considered here for a general structural member is 
given by eqn (11). However, the following procedure may be applied for any relevant 
dependence of the failure probability p(x) expressed as a function of a suitable structural 
parameter x.

Table 4: Theoretical models of the random variables f, G and Q (annual extremes).

Variables Distribution Mean Standard deviation Coefficient of variation

f Lognormal 100 10 0.10
G Normal 35 3,5 0.10
Q Gumbel 10 5 0.50
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Figure 3:  Variation of the optimum reliability index bopt with the cost ratio Cf/C1 for o = 0.13, 
q = 0.03, n = 50 and selected Cstr/C1 = 10, 100, 1000, 10000.

Figure 2:  Variation of the total standardized cost ktot(x,q,n) and the optimum reliability index 
bopt with the decision parameter x for o = 0.13, q = 0.03, n = 50, Cstr/C1 = 100, and 
selected Cf/C1 = 0, 1000, 10000, 100000 and 1000000.



 M. Holický, Int. J. of Safety and Security Eng., Vol. 7, No. 1 (2017)  17

In the example illustrated in Fig. 2, it is assumed that the rates o = 0.13 is q = 0.03, and the 
year number when the failure occurs is n = 50. Under these assumptions, Fig. 2 shows the 
variation of the total standardized costs ktot(x,o,q,n) (given by eqn (12)), and the optimum 
reliability index bopt, with structural parameter x.

Figure 3 indicates variation of the optimum reliability index bopt with the cost ratio Cf/C1 
for the rates o = 0.13, q = 0.03, number of years n = 50 and selected Cstr/C1 = 10, 100, 1000, 
10000.

5 CONCLUSIONS AND RECOMMENDATIONS
The target reliability levels recommended in various national and international documents are 
inconsistent in terms of the values and the criteria according to which the appropriate values 
are to be selected. It is shown that the target reliability of structures can be derived from the-
oretical principles of probabilistic optimization considering the objective function as the total 
costs expressed as a sum of the initial costs C0, the marginal costs x C1 (where x denotes the 
decision parameter and C1 the incremental cost of decision parameter x), and the failure con-
sequences consisting of the construction costs Cstr and failure costs Cf (the loss of 
structural utility at the time of failure), these being taken into account by the cost ratios (Cstr/ 
C1 and Cf/C1).

The construction costs Cstr is discounted considering an annual obsolescence (oldness) rate 
q and the time to failure (number of years) n, and the failure costs Cf is discounted consider-
ing an annual discount rate q and the time to failure (number of years) n. In such a way the 
total cost is affected (reduced) by the obsolescence rate o and discount rate q, and the number 
of years n.

An example of the probabilistic optimization of a generic structural member clearly shows 
(Figs 1 and 2) that the optimal reliability level, i.e. the reliability index b, depends primarily 
on:

•  The construction costs Cstr,

 • Failure costs (malfunctioning costs) Cf,

•  Costs for improving structural safety C1.

The obsolescence (oldness) rate o and discount rate q and the time to failure n seem to be less 
significant.
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