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Abstract
The presented work is focused on the development of a simplified analytical method to study the struc-
tural response of a deeply immersed cylinder submitted to the primary shock wave of an underwater 
explosion. It relies on a methodology developed by Hoo Fatt and Wierzbicki where the two dimensional 
boundary value problem for a cylindrical shell is converted to an equivalent one-dimensional problem 
of a plastic string on a non-linear plastic foundation. Unstiffened cylinders immersed in shallow water 
have already been investigated by the authors, taking into account fluid structure interaction effects. 
The aim of the proposed work is to adapt the formulations to a deep immersed cylinder. The analytical 
developments will be presented for unstiffened cylinders. The resulting plastic dents are compared to 
experimental and numerical results. Although some limitations are pointed out, it is shown that this 
method is promising and may be advantageously used to assess rapidly the damage of a deep immersed 
cylinder submitted to an underwater explosions.
Keywords: fluid structure interaction, immersed cylinder, rigid-plastic analysis, Underwater 
explosion.

1  Introduction
The design of a submarine’s hull is crucial for its operability and crew’s safety, but also com-
plex. Indeed, engineers need to balance lightness, acoustic discretion and resistance to both 
immersion pressure and environmental attacks. Submarine explosions represent a first-rate 
threat for the integrity of the hull, whose behavior needs to be properly analyzed. This paper 
is the follow-up to two previous papers from the authors [1] and [2]. In these papers, the 
string-on-foundation model, developed originally by Wierzbicki and Hoo Fatt [3], is coupled 
to a simplified modelling of fluid-structure interaction between the shell and the surrounding 
fluid, but without taking into account the effects of hydrostatic pressure. This methodology is 
then validated by comparison with numerical and experimental results, and its limitations are 
highlighted. However, Gupta [4] and Biglarkhani and Sadeghi [5] have shown experimentally 
and numerically that the hydrostatic pressure has a dramatic influence on the mechanical 
behavior of the cylinder, and may lead to considerable damage even if the explosion is weak. 
This paper presents an extension of the presented methodology in [2] in order to take into 
account the effects of hydrostatic pressure, based on the formulations presented by Wierz-
bicki and Suh [6]. Closed-form expression of the final deflection of a deeply immersed 
cylinder subjected to the primary shock wave of an underwater explosion are obtained and 
compared to numerical results.

2  Explosive loading
A simplified modelling of the primary shock wave loading has been developed and is pre-
sented in a previous paper [2]. In this paper, only the major outcome are addressed.
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2.1  Theoretical foundations

Consider a cylindrical shell of length L, radius R and thickness h, clamped at both ends. It is 
filled with air and fully immersed in water at a depth Dim. An explosive charge of mass C 
detonates at a distance D0 from the stand-off point S0, located at the intersection of cylinder’s 
planes of symmetry, as shown in Fig. 1. On a current point S of the shell, shock wave’s pres-
sure amplitude may be calculated with the following expressions proposed by Cole [7]:
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Here, D is the distance between S and the charge centre location and Kp, KT, Ap and AT are 
characteristic parameters of the explosive. In the following developments, the fluid is sup-
posed to be infinite, inviscid and incompressible so that a potential flow can be assumed. In a 
point far enough from the charge, the pressure field in the water also verifies Bernoulli linear 
equation.

When the shockwave generated by the underwater explosion impacts the shell, fluid-struc-
ture interactions lead to a pressure field in the fluid of the following form:

	 p P t p P t p P tI S| .( ) = ( ) + ( )| | 	 (3)

Where pS is the so-called scattered pressure, i.e. the sum of wave reflected on the fixed and 
rigid cylinder and the wave radiated by shell deformation. It constitutes an unknown of the 
problem.

2.2  Simplified explosive loading

The pressure loading acting on the shell is broken down into two phases, in a similar way to 
the one used by Geers [8]. During the first phase, the shell is supposed to remain rigid and by 
considering the “short time approximation”, a kinetic energy transmitted to the cylinder by 
the shock wave is calculated. During the second phase, the cylinder deforms and, according 

Figure 1: Initial configuration of an immersed cylinder subjected to an underwater explosion.
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to the “long-time approximation”, the related shell displacements create an additional pres-
sure loading.

2.2.1  First phase of loading
During this very short phase, the deformation of the shell is supposed to be sufficiently small 
to be neglected so only inertia forces are considered, as shown by Taylor [9]. Conservation of 
momentum expressed at a point S of the shell thus gives:
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Where w t( ) is the radial shell velocity at point S and m  is the mass per unit area of the 
shell. PS  and TS are calculated for each point S with help of eqns (2). By introducing the fol-
lowing dimensionless parameter β ρf ScT m= /  is the ratio of the mass of water displaced by 
the shock wave in the direction normal to the shell surface to the mass of the shell at point S, 
per unit area. Eqn (4) is a simple first order linear differential equation whose resolution is 
detailed in [2]. A field of maximal velocity attained by the shell velocity V Sm ( ) is obtained 
and can be estimated with the following expression:
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Where the term ( cos ) /1 2+ α  is used to take into account the effect of the shock wave 
incidence. This velocity field is then used to determine the total kinetic energy Ec which has 
been transmitted by the shock to the cylinder shell at the end of the first phase of loading:
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2.2.2  Second phase of loading
During the second phase of loading, mechanical deformation of the shell takes place and 
produces an additional pressure loading proportional to the shell deceleration. Moreover, 
since qd ST>> , the incident pressure field related to the shock wave has vanished, i. e. 
p S tI |( ) ≈ 0. The fluid structure interaction is thus assumed to be limited to water inertial 
effects. In reality, as mentioned by Taylor [9], the radiated pressure field is driven by velocity 
continuity between fluid-structure interface so radiation damping may still persist after pres-
sure decay. However, in order to simplify the analytical derivation of the shell movement 
equation, such damping is only considered in the first phase of loading and conservatively 
ignored in the second phase. Finite element analyses of an immersed cylinder subjected to an 
underwater explosion, carried out during this research work and validated by underwater 
explosion experiments, show that the shell deforming region is elliptic, as presented in 
Fig 2(a). Its circumferential extent then varies as a function of the position x along the cylin-
der generator. The added mass of water may be derived by postulating the following 
approximate displacement field for the shell deforming region:
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Where f  and g are shape functions respectively along longitudinal and circumferential 
directions, chosen from underwater explosion tests and numerical analyses. Considering that 
p S tI |( ) ≈ 0, the pressure at current point S is:
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Where 2ξ  is the longitudinal extent of shell plastic deformation and 

α π α ξx x( ) = −( ) − ( )0

2
1 / , which is the equation of an ellipse (see Fig 3b and c). The 

water added mass per unit area at point S writes:
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At each point S, expression (10) is integrated numerically and a field of water added masses 
distributed on the shell deformed area is obtained. In order to simplify the mathematical 
developments, this field may be expressed as:

	 m x M h x ha a, .θ θ( ) = ( ) ( )1 2 	 (10)

Where x ,θ  are the point S cylindrical coordinates and M a is the added mass of water per 
unit area evaluated at stand-off point S0. Shape functions h1 and h2 may be extracted from the 
actual water added mass field evaluated by numerical integration of eqn (9) as mentioned 
before. In our study, h1 is a third order polynomial function and h2 a fourth order one, whose 
expressions are detailed in [2].

3  Cylindrical shell mechanical behaviour
The extension of rigid-plastic string-on-foundation model, developed in our previous paper 
[2], in order to take into account the effects of the hydrostatic pressure is presented in this 
section. Consider the sealed cylinder depicted in Fig. 3, it is clamped at its extremities, except 
in the longitudinal direction 


x . Firstly, the elastic energy stored in the cylinder is calculated. 

Figure 2: Notations for added mass of water calculation.
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Secondly, a mechanical model of the cylinder’s response to the primary shock wave is devel-
oped, which includes both axial and radial component of the hydrostatic pressure. Inclusion 
of these effects in the model is based on the method developed by Wierzbicki and Suh [6] to 
study the indentation of a tube under combined loadings.

Using the membrane theory of shells, the elastic energy stored by the cylindrical shell 
under the action of the hydrostatic pressure p gDim im= ρ  is calculated with the following 
expression:
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Using the well-known expressions of axial and circumferential strains εx imp R Eh= −0 2. /  
and ε

θ
= −0 85. /p R Ehim  and integrating eqn (11) allows to obtain a closed-form expression 

of the elastic deformation energy:
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The loading due to the underwater explosion shock wave and immersion pressure is sup-
posed to be severe enough so that the shell deforms plastically. As a result, the shell undergoes 
radial deflection , ,w x tθ( ), where x ,θ  denote axial and circumferential coordinates respec-
tively and t is the time. In the range of moderately large deflection, elastic deformations are 
negligible as compared to plastic ones. Therefore, the material is assumed to be isotropic, 
time-independent, and rigid-perfectly plastic, described by a flow stress σ 0. The overall equi-
librium is expressed via the principle of virtual velocities in shell coordinates:
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Where σ ij and εij are the components of stress and strain rate tensors and dS dxRd0 = θ . 
Right hand side term of eqn (13) is the rate of energy dissipated by plastic deformation of the 

Figure 3: Deeply immersed cylinder impacted laterally by the primary shock wave of an 
underwater explosion.
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shell and the left hand side term corresponds to the rate of external work. The first term cor-
responds to the work rate of the axial force due to immersion pressure. The third one is 
related to the inertial forces associated to the shell radial acceleration and the second describes 
the work rate of the lateral pressure which can be expressed as:

	 p x t p x t pchoc im, , , , .θ θ( ) = ( ) + 	 (14)

Where pchoc is the pressure obtained from eqn (8). Using the simplified expression of the 
field of water added mass given by eqn (10), and assuming a plane stress state and the 
Love-Kirchhoff hypothesis for the shell deformation, eqn (14) becomes:
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Where ε
αβ

 and κ
αβ

 are the generalized strain and curvature rate tensors, and N
αβ

 and M
αβ

 
are the corresponding tensors of the membrane force and bending moment. So right-hand 
side term of eqn (15) is the rate of internal energy Wint . For relatively thin shells, i.e. when 
20 150< <R h/ , undergoing moderately large deflection, i.e. when W R/ .< 0 2, some 
deformation modes such as transverse shearing may be neglected. Considering all hypothe-
ses detailed in references [1] and [2], the rate of internal energy writes:
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Where M hpl = σ 0
2 4/  is the fully plastic bending moment per unit length and N hpl = σ 0 . 

The two terms on the right hand side of eqn (16) represent respectively the rate of bending 
energy in the circumferential direction (crushing of rings) and the rate of axial membrane 
energy (stretching of generators). In the presented model, these two deformation modes are 
assumed to be decoupled, which simplifies the mathematical resolution of the problem. Phys-
ically, this means that the cylinder is considered as a set of independent generators supporting 
independent rings, which may deform independently without shearing. Replacing eqn (16) 
into eqn (15), the formulation of the problem may be written as:
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4  Cylinder response considering axial hydrostatic pressure
In order to calculate the contribution of the deforming generators, the global strain rate ε xx  is 
decomposed into two parts:

	   ε ε ε
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The strain rate ε1, related to local indentation, differs from one generator to another. The 
strain rate ε 2, due to uniform compression of the tube is the same for all generators. Accord-
ing to the theory of moderately large deflections of beams, one has:

	  e1 = w w’ ’.	 (19)
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Where the prime denotes derivation with respect to x . Considering the displacement field 

given by eqn (7) and taking f x= − ( )( )1
2 2

/ ξ , the contribution of a single generator to the 

rate of energy dissipated through radial deformation writes:
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The pure axial strain rate, which results from the beam-like theory, is linear  ε 2 = u’, and 
can be readily integrated with respect to x . The rate of energy dissipated by all the deforming 
generators Wm is then:
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Where  u u0 = ( )ξ  and π α− 0  is the half-circumferential extent of the deformed area, which 
is supposed to be rectangular. In the following developments, α0 will be set to zero, so the 
circumferential extent of the deformed area is equal to whole circumference of a cylinder 
cross section. Wierzbicki and Suh [6] chose the same circumferential extent for their model. 
In previous research [2], a sixth-order polynomial function was chosen for shape function. 
A closed-form expression of the integral in eqn (21) may be obtained by introducing a sim-
plified expression of g2:
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Where a  may vary from 0 to 1. Functions g g, 2  and g are plotted in Fig 4.

Figure 4: Plots of displacement shape functions along circumferential direction.
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By setting θ π α θ= −( )0
 and taking α0 0= , eqn (22) becomes:
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In absence of radial deformation,  κ
θθ
= =w 0 in eqn (18), which leads to:

	 N Nim p= − .	 (24)

Where N RNp pl= 2π  is the plastic force capacity of an undeformed cylinder cross-section. 
This means that the cylinder remains free of axial deformation as long as the axial hydrostatic 
force remains lower than N p . As observed by Wierzbicki and Suh [6], the axial force acting 
alone may not lead to the cylinder failure. However, it may dramatically change the denting 
strength of the pre-stressed shell. When the shell radial deformation is non zero, the total 
axial force in a cross-section may be written as:
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The argument of the sign function in the first integrand of eqn (26) changes its sign when 
 
θ θ= 1 such as:
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After integration, eqn (25) becomes:

	 N Nim p= − −( )1 2 1
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The axial force Nim is also related to the immersion depth Dim :

	 N R p g R Dim im im= − = −π ρ π
2 2 .	 (28)

According to Wierzbicki and Suh [6], eqn (27) means that for any choice of Dim  such as 
− < <N Np im 0, there is a unique point on the cylinder half-circumference  

θ θ= 1 at which 
axial strain rate vanishes and stresses change from tension to compression. Having deter-
mined such switching point, integration of eqn (24) can be performed to give:
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Disregarding the axial hydrostatic force and following the same procedure, the energy 
dissipated by the deforming generator &

%Wm can be calculated as follows:

	 &
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In the following development, a is set to 0.5 to be in accordance with the choice of circum-
ferential shape function. The second term in the right hand-side of eqn (29) is identical to the 
first term of the left-hand side of eqn (17). The second term in eqn (17), corresponding to the 
work rate of the radial pressure of immersion can be expressed as a function of δ :
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Here, p Rp Gim im im= 2π  is the equivalent radial immersion pressure where 
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θ θ .  is obtained by numerical integration. This equivalent parameter can 

be interpreted as an integrated average value of the respective quantity with the associated 
velocity as a weighing function. Concerning other terms of eqn (17), detailed derivations of 
their expressions with respect to δ  may be found in [1]. For the time being, the water inertial 
effects are not considered, so m xa ,θ( ) = 0. Replacing these expressions in eqn (17), a sec-
ond order linear ordinary differential equation is obtained:
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Where coefficients b1, b2 and b3 are defined as:
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Here, q M G Rpl q= 2 /  is the equivalent ring crushing resistance per unit length, 

N RN apl= ( )2 2 3π /  is the equivalent tensile force per unit length and m RmGm= 2π  is the 

equivalent mass per unit length, where Gq = 6 3.  and Gm = 0 22.  are also determined by 
numerical integration. Initial conditions related to eqn (32) may be written as follows:

	 δ δ δ δ0 0( ) = ( ) =i i& .  	 (34)

The initial velocity δ i is calculated by considering the kinetic energy Ec transmitted to the 
cylinder wall by the shock wave, at the end of first phase of loading (details of derivation of 

δ i are given in [2]):
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The initial displacement δ i is determined from the cylinder hydrostatic pre-loading, by 
converting the corresponding elastic energy stored inside the structure into plastic energy to 
be dissipated through the plastic mechanism. An « equivalent » initial deflection is thus 
calculated by solving the following equation:
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Above equation admits the following solution:
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Once initial conditions δ i and δ i are known, the solution of eqn (32) writes:
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The constitutive material being considered as rigid-plastic, the cylinder is supposed to 
deform without any elastic restoring movement. The permanent deflection amplitude is thus 
defined by δ δf ft t= =( ) where t f  is the time at which the central velocity vanishes. By 
differentiating eqn (48) and by setting δ t f( ) = 0, a relation is found for deriving t f :
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Eqn (39) is solved for both values of parameter b2, i.e. with and without considering axial 
forces, for a charge of mass C = 1.1 kg at a distance D0 = 0.42 m, and a cylinder described in 
Table 1. Fig 5 shows the discrepancies between both solutions, for a depth of immersion Dim 
ranging from 1 to 350 m. In this figure, analytical values are compared to values obtained 
from numerical simulations, carried out using nonlinear finite element solver LS-DYNA 
coupled with code USA. Detailed description of the simulation methodology is available in 

Figure 5: Discrepancy in final deflection δ f  between model with and without axial forces.
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[1] and [2]. Analytical discrepancies is approximatively three times to twice as small as 
numerical ones for the considered depths of immersion. Analytical discrepancies remain 
small, inferior to 1.6% for immersion depths up to 350m, which is quite closed to the critical 
immersion of the cylinder, equal to 487 m according to formulations from Pinna [10]. In 
conclusion, this simplified mechanical model shows that axial forces may be neglected when 
estimating the response of an immersed cylinder to an underwater explosion. A more com-
plex mechanical is then developed, similar to the one presented in [2], which includes only 
the radial pressure of immersion.

5  VALIDATION OF THE METHOD including IMMERSION EFFECTS

5.1  Mechanical model

This new mechanical is developed from eqn (17), but this time the deformed area is 
considered elliptic, i.e. circumferential extent is varying with respect to x, with 

α π α ξx x( ) = −( ) − ( )0

2
1 / . Added mass of water is also considered, and modeled with 

the simplified field described by eqn (10). With these assumptions, eqn (17) can be expressed 
as a second ordinary linear differential equation:

	 a a a3 2 1 0δ δ+ + = . 	 (40)

Where coefficients a1, a2 and a3 are defined as:
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Where p R p Gim im im
’
= −( )2 0π α , N RN Gpl m

’
= 2 , m RmGm
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Coefficients G h g d Gma m= ( ) ( ) =∫ 20

1 2 0 82  θ θ θ .  and G h x f x dxma
’ .= ( ) ( ) =∫ 10

2 0 92
ξ

 are 

obtained from numerical integration. In our previous article [2], it has been shown that it is 
necessary to take into account the deformed area evolution with respect to time, in order to 
correctly estimate the shell final deflection. It is done by considering a linear variation of 
damaged parameters, which leads to the determination of averaged values for coefficients ai, 
given by the following equation:
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Where ε1ξmax and ε2π  are respectively longitudinal and circumferential initial damaged 
lengths. Resulting expression for coefficients ai are detailed in [2]. Regarding initial 
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conditions related to eqn (40), determination of δ i and δ i  follows the same procedure. Solu-
tion to eqn (40) is identical to the one of eqn (32), but with coefficients ai instead of 
coefficients bi .

5.2  Comparison with finite element results

In order to validate the model presented in previous section, obtained results are compared 
with numerical results considered as a reference. For that purpose, numerical simulations of 
the problem depicted in Fig. 3 have been carried out using the Underwater Shock Analysis 
(USA) code coupled with nonlinear finite element solver LS-DYNA. The response of the 
cylinder submitted to underwater explosion is simulated up to 50 ms. An elastic-plastic 
behavior law with strain hardening is considered to simulate the behavior of the stainless 
steel which constitutes the cylinder. Table 1 sums up shell characteristics as well as material 
properties. The same charge as in section 4 is used, and the considered depths of immersion 
range from 1 m to 130 m with steps of 10 m.

Simulations of these scenarios have been conducted using the simplified model with two 
different yield criteria; one inscribing the actual one: σ σinscr . .= 0 63 0, and one circumscribing 
it: σ σcircum = 0. As shown in Fig 6(a), the analytical model overestimates the energy dissipated 
plastically when compared to numerical simulations. The difference decreases with the 
increase in immersion. Regarding stored elastic energy, Fig 6(b) proves that the analytical 
model is in accordance with numerical results, with discrepancies always below 5%.

Final deflections δ f  obtained from numerical simulations and simplified method 
are compared in Fig. 7(a), for all depths of immersion. The increase in deflection 
∆δ δ δf f im fD= ( ) − ( )0  is also plotted in Fig. 7(b). Fig. 7(a) shows that the actual response 
of the cylinder lays between solutions obtained with inscribing and circumscribing yield 

Table 1: Characteristics of cylinder and material.

Cylinder Material

Length L (m) 2.8 Young Modulus (Pa) 2E11
Radius R (m) 0.7 Density (kg.m-3) 7800
Thickness h (m) 0.015 Yield Stress (MPa) 355

Tangent Modulus (MPa) 415

Figure 6: Comparison of analytical and numerical results : (a) Plastically dissipated energy  
(b) Stored elastic energy.
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criteria, with an error inferior to 30% whatever the depths of immersion. Concerning the 
increase in deflection, analytical solutions follow the same trend as the numerical solutions 
up to a depth of immersion of 70 m. For deeper immersion, the actual increase in deflection 
is greater than the analytical ones. This highlights the limitation of the simplified method, 
for which a new mechanism should be developed for the response of the shell to the radial 
immersion pressure. In fact, there is a change in the mechanical behaviour of the shell at 
some point of the cylinder’s response to the combined loading of the shockwave and the 
hydrostatic pressure.

6  Conclusion
In the present paper, a simplified method for assessing the damage of a deeply immersed 
cylinder subjected to underwater shock is described for application to pre-design analysis. 
The method is based on a simplified mechanism of shell deformation, the so-called plastic 
string-on-foundation mechanism, together with an approximation of the primary shock wave 
loading from the underwater explosion. It has been shown that the axial forces applied by the 
hydrostatic pressure on the cylinder are of little influence on the response of the shell. How-
ever, radial pressure may have a dramatic effect on the survivability of a cylinder impacted by 
a shock wave. The developed simplified method approximate quite well the behavior of the 
shell for moderate depth of immersion, but a new mechanism of deformation of the shell 
should be developed in order to consider deeper immersion. The simplified method should 
also be extended to ring-stiffened shell, and it will be the subject of future research.
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