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(a) Acceleration response for model A, El Centro input motion.

(b) Acceleration response for model A, Tokyo-NS input motion.

(c) Acceleration response for model B, Tokyo-NS input motion.

Figure 6: Typical time history acceleration response.

modelling. Figure 7(a) shows the results for model A and Tokyo-NS input and Fig. 7(b) 
shows the results for model C and same input. Results for model C that has higher stiffness 
present bigger reaction force.

Distribution of acceleration responses along structure height is shown in Fig. 8. For com-
parison, results for model B (no collision) and model C (collision and high retaining wall 
stiffness) are presented. Figure 8(a) shows the case of no collision and it can be observed 
reduction of the acceleration response for all input motions. In case of model C (Fig. 8(b)), 
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Figure 7: Reaction force of retaining wall in case of collision.

(a) Reaction force of retaining wall model A, Tokyo-NS input.

(b) Reaction force of retaining wall model C, Tokyo-NS input.

(a) Maximum acceleration along story height for model B (no collision).
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an amplification of acceleration response is observed for long-period earthquakes. This is due 
to the collision against retaining wall. These acceleration responses are used to investigate the 
safety of indoor contents.

5  security evaluation for impact case
Evaluation of building content safety is evaluated based on flow of failure and sliding of fur-
niture proposed by Kaneko et al. [7]. This evaluation is performed defining an overturning 
limit acceleration and a slipping start acceleration. These parameters depend on furniture 
type, dimensions, and friction coefficient between furniture and floor slab. In this analysis a 
representative furniture (book shelf) is selected. Dimensions of this furniture are 200 cm 
height, 40 cm width (b/h = 0.20) and a friction coefficient of 0.3.

Maximum responses for each input motion compared with limit accelerations are shown in 
Fig. 9. In case of no collision (model B) maximum response, accelerations do not exceed the 
overturning limit as is shown in Fig. 9(a).

Figure 8: Maximum acceleration responses.

(b) Maximum acceleration along story height for model C (collision).

(a) Bookshelf fall acceleration and floor response for model B (no collision).
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Results for model C are shown in Fig. 9(b). In this case, collision occurs for long-duration, 
long period earthquakes and observed maximum accelerations exceed the overturning limits. 
Then is it clear that overturning of bookshelf can be originated due to high acceleration of 
upper floors.

6  conclusions
Using seismic waves with different frequency content characteristics, nonlinear time-history 
response analysis of a base-isolated reinforced concrete building was performed considering 
collision against retaining wall.

Evaluation of furniture safety by simple prediction method was carried out. Collision 
occurs for long period input motions and small clearance (model A and model C). In these 
cases, high acceleration responses were observed.

Analysis of building content safety suggested that high acceleration originated by impact 
could produce overturning of the furniture with high aspect ratio (bookshelf).
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(b) Bookshelf fall acceleration and floor response for model C (collision).

Figure 9: Maximum acceleration responses.
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