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ABSTRACT
The motto of the paper concerning physics and nature is a quotation by Eugene Wigner: ‘The miracle of 
the appropriateness of the language of mathematics for the formulation of the laws of physics is a won-
derful gift which we neither understand nor deserve’. The first case in this paper is based on an original 
paper by this author, and it uses Fletcher’s scale of speech intelligibility, for analysis of specific noise 
effect in the presence of background noise. The idea is based on the assumption that the brain uses the 
same scale for estimating both intelligibility and nuisance by specific noise. This notion was confirmed 
by experiments. The second case below is the use of the ‘simplex theory’, which is a mathematical 
model used in computer sciences, and was published originally by this author as a means for design of 
environmental sound barriers. The third application involves sophisticated use of specular reflections 
and scattering in acoustics, with application of acoustic quadratic residues in interiors acoustics, based 
on the mathematical theory of numbers, where prime numbers are involved. Leading mathematicians 
in this development are Euclid (325 BC–265 BC) and Gauss (1777–1855), who discovered in the 18th 
century quadratic residues. In the context of diffraction physics, the main contribution was by Röntgen 
(1845–1923), von Laue (1879–1960), W.H. Bragg (1862–1942), and W.L. Bragg (1890–1971). This 
long way towards sophisticated acoustic diffusers that turn specular reflections into a uniform diffu-
sion needed one more leading physicist to make the breakthrough. Manfred Schroeder (1926–2009) 
published a seminal paper in 1975, adding the number theory to room acoustics as a legitimate part. 
He has proved mathematically that specific panels with a sequence of one-dimensional or two-dimen-
sional grooves result in a diffusive-phase grating of wide band, instead of a specular reflection panel. 
This result was directly applicable from the theory of x ray diffraction. D’Antonio and Cox continued 
improving the results, leading to special quadratic residue diffuser (QRD) shapes. Many of the panels 
resemble shapes that exist in nature.
Key words: BS 4142: 2014, outdoor noise control, physical innovations, primary numbers, quadratic 
reduced difftusors (QRD), scattering of sound, Simplex method, Sound Barriers, squealing noise, Sub-
jective acoustics..

1 INTRODUCTION
Motto 1: Leonardo da Vinci ( 1452–1519 ), “Those who fall in love with practice without science are 
like a sailor who enters a ship without a helm or a compass, and who never can be certain wither he is 
going”, Notebooks of Leonardo da Vinci.

1.1 The use of basic mathematics and measurements in physics and engineering

Pure mathematical rules, and scientific measurements that may look useless, can be the keys 
for advanced technological applications. On the other hand, we find also such physical phe-
nomena in nature as it is. Simply by watching with our eyes and ears what exists around us, 
the solutions are there. Probably, though, they are not as quantitative as we need for exact 
design purposes. We show by three studies how basic physical measurements can lead to 
applied observations.

Because of their basic nature, such rules and observations ‘wait’ sometimes, even thou-
sands, hundreds of years or decades, until their published consequences are used in modern 
applications.
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2 THE SUBJECTIVE ANALYSIS OF WHEEL- RAIL SQUEALING NOISE BY 
MODIFICATION OF THE BRITISH STANDARD 4142: 2014

Case studies, based on acoustical measurements of the effect of signal to noise caused in 
industrial premises and environmental domains, can be concerned with extreme human sen-
sitivity to certain patterns of the noise, even if its total amount remains unchanged compared 
with other events. The case of rail-wheel squealing noise is characterized by extremely high 
noise levels, above background noise, at frequencies to which people are sensitive. We refer 
to, say, 70–80 dB, and up to 120 dB, depending on the distance between the source and the 
observer, see Fig. 1.

Figure 1: Spectral plots of background noise (bottom) and wheel/rail squeal (top) [4].
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Wheel-rail squealing noise depends on geometries, such as the diameter of the wheel and 
the radius of the curve, mass of the wheel and type of the train, which affect the dynamic 
response of the system. In addition, changes in the conditions and state of the system, such as 
weather (rainy, dry), slippery rails, effect of the stick-slip phenomenon that yields wheel 
squeal curving noise, rail imperfections, joints and certain truck designs, as well as wheel rail 
separation and hardly worn rail, can result in impact noise. Rail and wheel roughness, mate-
rial heterogeneity, curved and tangent curves can lead to rolling noise.

This large amount of noise causes, many of which can appear and disappear, makes it 
almost impossible to eliminate, for the long run, wheel-rail squeal noise, and much research 
has studied this problem since 1954 and up to-date [1–4]. Yet, during the 50 years of use, the 
standard BS 4142 [5] and ISO 1996 [6] have not given sufficient answers as to how to assess 
the effect of such noise and the effect of other sources of industrial noise on people.

Hence, the author [1–4] has developed a solution that uses spectral perception data in 
assessment of specific noise effects on people in the presence of background noise at the 
observer’s point. The suggested approach, when compared with that of BS 4142 standard, 
shows in some cases large differences in results consequences. The author shows explicitly 
how to use the scheme of the suggested method, in order to solve similar problems. Details 
for the specific case of wheel-rail squeal noise by the suggested method are given in [3–4]. 
The suggested method is based on the following:

First is the analogy between the privacy index (PI) and the rating level to background noise 
(RLBN) at the complaint point [4], see Table 1.

This observation has led us to suggest a model of scaling that is extended to industrial and 
environmental acoustics, using an inverse analogy to the regulation ANSI S 3.5 – 1997 [7], 
while using the same weighting factors. The results shown in [4] and Table 1 match perfectly 
this analogy and the categories used in defining the likelihood of complaints.

The design for acoustic communication and privacy in halls is generally based on suitable 
articulation indices (AI) as defined by ASTM E 1130 [8]. The AI depend strongly on the sig-
nal to noise ratio (SNR), where the deterioration in articulation is a function of masking and 
of its dependence on frequency, where pure tones of higher pitch are masked by tones of 
lower pitch, as introduced by Mayer [9]. For that reason, pink noise is regularly used for 
masking, to cover a wide range of frequencies, including lower ones. Fletcher [10–11] sum-
marized masking effects in chapter 10, pp. 153–175 of the book, and articulation scores in 
chapter 17, pp. 318–414. On page 334, he shows a graph of articulation versus the level of 
received speech above threshold and the results show that for 10 dB above threshold the 
Articulation Index is about 0.2 and for 55–60 dB above threshold the articulation index is 
about 0.9.

Table 1: Privacy, rating noise effect, privacy PI and RLBN.

RLBN levelPIRating noise effectPrivacy

> 00–60IntrudingNone

-3 dB60–80ExistsPoor

-6 dB80–95
80–95

FairNormal

-9 dBLowGood

-12 dB95–100NoneExtraordinary



252 G. Rosenhouse, Int. J. of Design & Nature and Ecodynamics. Vol. 14, No. 4 (2019) 

The AI analysis is based on third-octave analysis. The key of this method is the signal to 
noise ratio – SNRi for the ith frequency band (200–5000 Hz) and the corresponding weighting 
factors – Wi (see Table 1 column 2 in ref. [4]) that are used to adjust speech data. The Privacy 
Index (PI) was defined as:

 
PI AI= −( ) ×1 100% , (1)

and

 

PI W SNRi i= − ×











∑100 1
200

5000

 (2)

For environmental acoustics we change PI to SPI (specific source ratio) and replace SNR 
by rating level to background noise (RLBN) at the complaint point, in analogy to regulation 
ANSI S 3.5 – 1997 [7]:

 

SPI W RLBNi i= − ×











∑100 1
200

5000

 (3)

The weighting factors, Wi, are given in the ASTM E 1130–02 [8] and column 2 in Table 1 of 
ref. [4] for both room and environmental acoustics, see Table 2. The numbers in Table 2 have 
to do with the biological mechanism of hearing and ear response at various frequencies [2].

Some calculations:
To find the RLBN at 160 Hz we first subtract LA90 from background noise LAeqT and get 

specific sound level Ls = LArTr [4, 5]. Then:

 
L lgs

L LAeq T A T= × −





× ×10 10 1010
0 1 0 1 90. ., ,

 (4)

L lg dBAs = × −  =× ×10 10 10 65 310
0 1 66 1 0 1 58 2. . . . .

Table 2: Effect of noise, specific noise index SPI and RLBN.

Specific noise Rating noise effect SPI* RLBN**

None Complaints are Unlikely 0–60*** < 0

Low Marginal effects 60–80*** 3 dB

High Complaints are likely 80–95*** 6 dB

Very high Complaints are most likely 80–95*** 9 dB

Extraordinary Intruding, involves
conflicts

95–100 12 dB

* An example follows.
** RLBN levels are taken into account in the frequency domains, where the intruding noise 
is dominant above background noise (positive values), and with ignoring values at domains 
where the positive values are not significant.
*** Needs further research.
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Now we subtract the existing background noise level from Ls and get RLBN by using the 
conventional BS4142 approach up to date, for about 50 years:

RLBN = 65.3–58.2 = 7.1 dBA

We see from Table 1 in [4] that the squeal noise is dominant at the frequency domain 
2000–5000 Hz and add all the RLBN × Wi at that frequency domain, to get the excessive noise 
in that frequency to get SPI:

RLBN Wx i× = + + + + =0 046 0 0286 0 0914 0 0271 0 0326 0 2256. . . . . .

SPI = −( ) = × =100 1 0 2256 0 7744 100 77 44. . . %

Then the difference between the specific noise and the background noise becomes:

RLBN lgHz2000 5000 6 10
1 21 0 82 2 69 1 13 1 6310 10 10 10 10 10− = + + + +. . . . .{{ }

RLBN dBAHZ2000 5000 27 5− = .

Thus, a huge difference between the BS4142 result (13.9 dB) and the suggested method 
(27.5 dB) is obtained – See Table 1 in [4]. This difference is likely to cause severe complaints 
about squeal noise. There are many combinations of calculations, and theory might be 
improved, but we find the suggested approach is the right way to find the subjective differ-
ence between squeal noise and background noise in each case.

The above example shows that BS 4142 is either over-simplified or at least unsatisfactory 
in considering the real effect of noise on people and we have tried to present an alternative 
method.

3 THE USE OF THE SIMPLEX APPROACH IN ANALYSIS OF SEMI-INFINITE  
AND FINITE SOUND BARRIERS

3.1 About finite and infinite sound barriers

The use of a finite sound barrier is a possible solution especially along intercity roads and 
railways, where most of the highway length passes near rural areas. While usually buildings’ 
height in the vicinity does not exceed two floors, it is necessary to protect residents near the 
local segments of the lanes.

Thus, planning finite sound barriers (sometimes combined with specific topographic 
 conditions) can be useful locally even when covering a relatively small horizontal view 
angle α, yielding the necessary noise reduction and acoustic protection, while the costly 
‘infinite’ barrier that covers 180 degrees is not needed along most of its length. It is possible 
to find the effect of the barrier’s view angle α on the amount of noise reduction by using the 
geometrical data of the problem – see Fig. 2. Sound barriers design applies the physics of 
sound diffraction radiated from a source towards a chosen control point, around barrier 
edges over a semi-infinite domain. Maekawa [13] backed his theory by experiments, Kirch-
hoff’s diffraction solution and added modifications. The result involved only geometry and 
Fresnel number.
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3.2 Introduction of the simplex method to calculation of sound barriers

Solving insertion loss (IL) caused by an infinite barrier necessitates location of a source 
point, control point and a point at the top of the barrier and a vertical plane that includes the 
sight line between the source and the control point. The three points constitute vertices of a 
triangle with dependent lengths and angles. Three of them are given and three are calculated. 
If the three sides of the triangle are measured, one can find its angles by calculation (in any 
case – three unknowns out of six variables). Different angles appear in solving IL for a finite 
sound barrier of vertical sides. Given the triangle sides lengths, the angles are calculated from 
the control point to the two ends of the finite barrier by introducing Heron’s formula [12], 
2009. It is needed, since the barrier’s location, dimensions and distances to the receiver and 
sources are given usually as linear dimensions and not directly by the angle α. The same can 
be done with the shadow zone angle. We show here (in sections 3.3 and 3.4), that this approach 
is useful in other environmental acoustics problems where sound barriers are involved.

3.3 The use of simplex theory in calculating insertion loss of sound barriers

We expanded here the solution method using the trigonometric properties of the triangle and 
the n-simplex which is 2-simplex for a triangle (following Maekawa’s mode [13] and Fig. 3) 
and irregular convex quadrilateral forms for calculation of wide barriers (following Pierce’s 
model [14]), as well as definition of shadow zones and other problems. Such shapes can 
apply vector analysis to define the desired unknowns from the given data.

The trigonometric simplification of the acoustic and optical theory of diffraction enables 
the use of triangles to analyze the insertion loss of straight finite and semi-infinite noise bar-
riers in 2-D and 3-D problems, see Fig. 1. Nevertheless, regularly only three of the six data 
that define the triangle are applied – there are three sides and three angles in each triangle and 
any three of them can define the others as well. The use of any of the sides and angles of the 
triangle can be useful in finding the effectivity of the sound barriers – for example, the shadow 
zone angle. Triangles and tetrahedrons are forms of simplices, defined as a finite collection of 
affinely independent vertices. The n simplex is a convex hull of a set of n+1 such points in an 
Euclidean space of dimension n or more. Examples of simplices are shown in Fig. 4.

The simplex method solves problems in linear programming. It is highly mathematical and 
historically it was developed by Clifford (1845–1879) [15], describing the triangle and the 
tetrahedron as simplest forms of confine of area and volume. It is one of the most influ-
ential algorithms. The mathematician Pieter Hendrik Schoute (1846–1923) coined the word 
simplex in 1902 (written by him in Latin as ‘simplest’). Dantzig (1914–2005) [16] created 
the simplex algorithm for linear programming that solves problems for many applications in 
science, engineering and the arts.

Figure 2: Finite sound barrier, a point source and an observation point.
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3.4 Pierce’s insertion loss analysis for wide barriers by irregular convex quadrilateral 
formulation and Maekawa’s approach

Two different methods for estimating IL were published in the literature: that of Maekawa 
[13] and that of Pierce [14], with difference in ∆x – see eqn (5) and Fig. 3:
Maekawa’s Formula reads:

 

∆
∆

∆
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Figure 3:  Insertion loss by a thin semi-infinite sound barrier using Kirchhoff’s theory, 
Redfearn’s theory, and Maekawa’s formula and experiments.

Figure 4: Examples of simplices.
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where N – Fresnel number, P – control point, R – the length of the sight line, SP, rs – the 
distance between the source and the top of the barrier, 2-D analysis, m; rr – the distance 
between the control point and the top of the barrier, 2-D analysis, m; S – sound source point, 
l – source sound wave length, m; ∆Lp – reduction of sound level by the screen, at the control 
point, dBA, see Figs. 3 & 5.

 
∆x Maekawa S B( ) = ’

1 1 + B P1
’  - S P1  (6)

 
∆x Pierce S B B B( ) = +1 2 1 2 + B P2  - S P1 ; (7)

Data for Maekawa triangle:

S B m B P m S P1 1 1 15 0 5 4’ ’. ; . ;= =  = 9.00 m;

∆x Maekawa( )  = 5 + 5.4 – 9 =1.4 m.

For Pierce quadrilateral:

S B m B B m B P m S P m1 2 1 2 2 14 4 1 4 4 6 9 00= = = =. ; . ; . ; . .

∆x Pierce S B B B( ) = +1 2 1 2 + B P2  - S P1  = 4.4 + 1.4 + 4.6–9 = 1.1 m.

Now, for calculation of the insertion loss (IL) of the barrier of ‘infinite length’ eqn. (5) can 
be used, which for λ = 1 m is: IL lg x= − +( )10 3 4010 ∆ . Thus:

IL Maekawa dB IL Pierce dB( ) = − ( ) = −17 7 16 3. ; . ,

and the difference between the two becomes -1.4 dB. This difference might be much higher 
if each of the source S and the control P will be closer to the wall. All the difference, 
∆ ∆x B B B B B B( )= + −1 2 2 1 , between Maekawa and Pierce models is in the triangle, B1B2B. If 
the distance between S and the barrier and P and the barrier ≫λ, the difference is small and 
so is the difference in IL. If those distances tend to zero, the difference tends to infinity. In the 
last case, Pierce’s formulation is the more logical one.

A more complicated example is shown in [12].

Figure 5: Maekawa – Pierce triangle.
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4 FROM PRIMARY NUMBERS TO QRD
Motto: Leopold Kronecker (7 December 1823 – 29 December 1891) was a German mathe-
matician who worked on number theory and algebra. He was quoted by Weber (1893) as 
having said, “Die ganzen Zahlen hat der lieber Gott gemacht, alles andere ist Menschenw-
erk” (traditionally rendered: “God made natural numbers; all else is the work of man”; note 
that he says “integers”, not “natürlichen Zahlen”.

4.1 Observation of scattering in nature

Leonardo da Vinci perceived, around 1500 CE, scattering of sunlight by wood smoke, against 
dark background. Rayleigh confirmed this effect theoretically in 1871, and it was termed ‘Ray-
leigh scattering’. John Tyndall discovered in 1869 particle scattering in a solution, which makes 
a light beam visible from the side. He suggested that the blue color of the sky is due to more 
scattering of the shorter wavelength of blue light by the colloidal particles of dust and water vapor 
in the atmosphere, beyond which the space is black. This effect is the ‘Tyndall scattering’.

Specular reflections and scattering occur in nature and can be artificial. In addition, prime 
numbers can be found in nature. As an example of prime numbers in nature, consider the 
insect Magicicada that avoids meeting many of its predators (such as mammals, birds etc.) 
when they (the Magicicada) emerge in large numbers. A meeting with the predators could in 
turn lead to their decimation. However, Magicicada predators have 2 or 4 years hunting 
cycles, whereas the Magicicada use periods of 13 and 17 years’ emergence cycles (prime 
numbers), which largely cancels the danger of their extinction. Prime numbers can be used 
also for effective design of a certain type of room acoustic diffusers.

4.2 Application of absorption, reflections and scattering in interiors acoustics

Two acoustic methods for weakening disturbing echoes in rooms are available:
One way is by converting the sound energy into a different kind of energy – usually heat. 

It means acoustic energy absorption. However, such a change might involve the cost of losing 
part of the desired sound level – say, in the hall.

The second method is based on ‘breaking’ specular and resonant reflections into distributed 
radiation, as uniform as possible, and lower amplitudes. It is defined as acoustic scattering.

As an example of interiors acoustics, scatterers are used to diffuse specular reflections. 
Specular reflections, combined with interiors and wall shaping, are used to form better acous-
tics for audience and visitors, see Fig. 6. Yet, they are less efficient than mathematically 
designed scatterers. The result of such scatterers is that instead of an echo, the interior can 
become reverberant and of higher quality.

The special kind of scatterers illustrated here is based on principles of the mathematical 
theory of numbers – see for example, Hardy and Wright [17]. The practical outcome of this 
theory and application is a variety of products and many patents. Still, there is much room for 
better physical modelling and engineering innovations.

4.3 Prime numbers, residues and quadratic residues

4.3.1 Prime numbers – basic definition.
A prime number is a natural number greater than 1 that has no positive divisions other than 1 
and itself.
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Some notes: (1) Zero is not a primary number. (2) The number 1 is not a primary num-
ber in spite of the fact that the definition suits the number. It is because this number is 
counted twice. (3) The only even prime is 2, since all the other even numbers are multi-
plied by 2.

4.3.2 Euclid’s contribution
Euclid of Alexandria (about 325 BC to about 265 BC) residues:

Theorem: The number of primes is infinite.
If we assume that there are p1, p2, p3, ….pn primes, then the number N = p1∙p2∙ p3∙ ….∙pn∙+ 1 

is not divisible by any of the existing primes. Thus N is either a new prime number, or a prod-
uct of two new primes so that it can be written in the form of the base theorem:

The base theorem of the number theory: Every number that differs from 0, 1, -1 can be 
written as a product of irreducible numbers. This factorization is unique, regardless of the 
numbers 1, -1 and the rank of the factors. But this is only possible if either N is a new prime, 
or it is a product that includes a new prime.

Euclidean Algorithm: Dividend equals divisor times quotient remainder (R).
R= n2mod(N) = n2 modulu(N)=Remainder in a maximum length sequence. As an example, 

the quadrature residue 152 mod(13) equals R(4), see Table 3.

4.3.3 Gauss’ contribution
In the 18th century, Gauss discovered the quadratic residuals and quadratic reciprocity as a 
pure mathematical issue and the link to acoustic diffusers came later through physics.

4.4 The basic contribution of physics

The basic contribution of physics to the design of acoustic diffusers begun with X-ray 
research. In 1895 Wilhelm Röntgen discovered X-rays, which could pass through his 

Figure 6:  Specular reflection from the back wall of a stage (top), an absorbent back wall of a 
stage (middle) and scattering back wall of a stage (bottom).
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hand, casting the bone shadow on a fluorescent screen. In 1901, he won the Nobel Prize 
for this.

Von Laue (1879–1960) discovered the diffraction of X-rays by crystals as the starting point 
to crystallography. For this, he won the Nobel Prize in 1914.

William Henry Bragg (1862–1942) and William Lawrence Bragg (1890–1971) determined 
crystals structure by use of x-ray diffraction. Their law shows the wavelength relation to the 
angle of constructive diffraction of reflections. Both of them were Nobel Prize laureates in 
1915, see [25–27].

Some x-ray applications today include crystallography, biotechnology, forensic science, 
DNA double helix, industrial nondestructive testing (NDT), and Medicine.

4.5 Schroeder’s breakthrough and the QRD

Various types of surfaces are used in general as sound diffusers, and there is no single specific 
solution. An example is a concave surface that radiates sound in directions that differ from 
mirror reflections. In this paper, we show one type of diffusers – the QRD. These diffusers are 
based on wave interference because of reflections sequence from surfaces of different dis-
tances, yielding phase differences. The mathematical basis, which explains the response of 
such surfaces and the shape of different reflections, is based on the method shown by 
Schroeder and applied to acoustics of halls and other interiors.

QRD is a sequence of periodic grooves (slits, wells) of different depths, d(x), but equal 
width, w, separated by thin, rigid partitions. d(x) was refined by Schroeder, using mathemat-
ical sequences.

A common use of QRD is in the design of ‘an ideal’ concert hall of smooth reverberation 
response, by weakening resonance, specular and standing waves effects. Theoretically, such 
a response at all frequencies for a typical geometry of a hall is impossible. However, it is 
possible to improve its reverberation response by different methods. Of special importance is 
a well-diffused and uniform sound field within the hall and in the satisfaction of all the audi-
ences. This is just as daylight: it is not a specular reflection typical to mirror reflection 
or a narrow scattering products.

Quadratic residue diffusers (QRD) are a certain type of scatterers that distributes the spec-
ular wave that hits a rough surface in a very wide angle (when the angle is narrow, and centers 
along the specular reflection line, it is defined as a scattered wave). Both diffusion and 

Table 3: Quadratic residues.
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scattering appear both in nature and intentional design. It is in contrast to specular reflected 
(acoustic) energy from a plane, smooth surface, in a narrow beam.

During the 70s, Schroeder proposed a design method for surfaces that can diffuse effi-
ciently reflections of specular waves, based on sequences of maximal length (Schroeder [18]) 
and sequences of quadratic residues diffusers (Schroeder [19]). He found that by introducing 
phase shift to the sound that is reflected from certain regions of the scatterer’s surface, an 
ideal diffuser will be obtained. This phase shift is defined as the reflection factor.

Such panels have been applied in the design of concert halls and recording studios, as a 
first experiment on phase grating scatterers.

A scatter diagram from a surface with reflection coefficients alternating in x direction is 
according to one period of maximum-length sequence such as ( – + + – + – + + + + – - – + – ) 
(see Fig. 1, ref. [19]). Such results were obtained in model experiments with electromagnetic 
microwaves.

4.5.1 An estimate of the Schroeder diffuser
This is obtained using

 
Well Depth n mod N

N
= 2

2

l
 (8)

Let n be the well number (1, 2, 3, …). N – a primary number that defines the total number 
of wells (5, 11, 13, ….), λ – the design wavelength. With such data, Schroeder diffusers have 
an effective bandwidth that ranges from half an octave below fo up to the frequency defined 
by the width of the wells. Schroeder recommended the width of the well to be the design 
wavelength multiplied by 0.137 λo.

The efficiency of the Schroeder diffuser is much improved, if each well is isolated from its 
neighbors by a thin partition. However, such diffusers have a lower frequency limit, below 
which they are practically ineffective. This limit is defined as the Schroeder frequency.

This kind of diffusers revolutionized the diffusion quality that could be achieved, leading 
use them more in modern concert halls. Two examples are the Carnegie Hall in NY and 
Michael Fowler Centre in New Zealand.

4.5.2 A calculated example
The sequence of depths is defined from the sequence of quadrature residues (QR), for the 
maximum length sequence, MLS. The sequence is mathematical, and it is based on the prime 
number, N, say, N = 13. The Nth term is given by n2 mod N.

For example, see the following QRD calculation of the work frequency:
For a sequence of quadratic residuals sn, the depth of the well is:

d
s

N

s c

Nf
cT

c

f
d

fn
n n

n= = = =
×

× ×
l

l0

0
0 0

0 02 2

12 340

2 13
; .  If dn=150 mm,

In addition, the work frequency is: f0
12 340

2 13 0 15

4080

3 9
=

×
× ×

=
. .

=1046 Hz

4.5.3 Review of some theoretical aspects of reflections from rough surfaces and QRD
Problems of scattering and diffusion involve integrations, basically, and the break-through 
paper by Schroeder [18] belongs to this mathematical approach, as well as others that deal 
with scattering and diffusion from rough surfaces. See also regulations ISO 17497-1-2004 
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[21] and ISO 17497-2:2012 [22] for sound scattering in rooms that are important in  
this context.

Schroeder [18] summarized the relation of the spatial relation between the spatial distribu-
tion of reflected coefficient r(x) along a wall and its scattering amplitude S(α): 

S r x jx dx( ) ( ) exp sin sin /a p a a l= ∫ −( ) { }2 1 , and α as the scattering angle with respect to 

the normal to the wall. αi is the angle of incidence and λ is the wave length of the incident 
wave. Thus, S(α) is the Fourier transform of the reflection coefficient, r(x), along the wall, but 
with a change by a variable. Then, the relation between α and the wave number, k, becomes:

 
k = −( )2 1p a a lsin sin / , or its inverse. (9)

For normal incidence, αi=0, and scattered energy up to αmax= ±900, the highest k of r(x) 
Fourier transform becomes: kmax /= 2p l. If the reflection coefficient r(x) is designed accord-

ing to the max-length sequence σn, then r x rect
x
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equals 1 between ±0.5 and zero elsewhere. The power spectrum of r(x) is:
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l is any integer but zero or multiples of the sequence length, N. For normal incidence:

l
Nsin di= ( )a

l , thus, the energy only in discrete directions is: a l
i

l
Nd= ( )arcsin . Now, in 

terms of intensities:
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4.5.4 Schroeder frequency [18] – The crossover frequency
The crossover frequency, or Schroeder frequency, is the transition of lower frequency that 
room behavior is allowing special application in room acoustics. Schroeder frequency [23, 
24] is approximately:

 
f

T

Vc = √



  (12)

where V is the volume of the room (m3), T is the reverberation time (s).

4.6 Planning hypotheses based on the design equation of the QRD

The design equation of QRD results in maximum diffusion at the design frequency, fo and 
wavelength, λo. The maximum diffusion is also obtained at multiples of fo by integer numbers, 
n: nfo. fo is often chosen as the lowest frequency, below which the diffuser is not efficient.

Following interference theory, if the wells of the QRD are very flat, the roughness of the 
surface area almost diminishes as compared with λ: λ/2>>d and the wave will not be affected 
by the roughness – which eventually ends with specular reflection. If the width of the wells 
is very narrow, the wave skips the grooves.
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The low cutoff frequency is often chosen as: l / ,2 = dmax  but actually, the limit frequency 
is lower by about one octave from this value. Yet, dmax depends on the room dimensions. The 
side lobes of the acoustic radiation are crucial in periodic diffusers, since they increase the 
diffusion, except where the diffuser’s period is larger than λ, and no side lobes appear.

The condition for upper frequency limit is that <
l
2

, but in spite of the fact that the design 

presents this limit of plane wave, the limit functions also above this region. Too narrow wells 
are difficult to perform and they are involved with viscous damping and boundary layers. 
Thus, the width of the well is practically 2.5 to 5 cm. An example of design of a 2-D scatterer, 
S r rn m

n m
, = +( )  is given in [20].

5 SUMMARY
Many areas in acoustic engineering design methods apply calculations and standards that 
yield simplified formulation. However, in many cases, this approach is over-simplified.

Thus, the current paper introduced three cases. The author has originally published the 
first two, and the third one scans about 2130 years of top mathematical and physical 
development, with the final link to acoustic technology in 1975, which has created a com-
mercial product.

The bottom line concluded in the present paper is that basic science supports all existing 
and future technologies, and when investment in science is either diminished or stopped, the 
quality of engineering R&D regresses and deteriorates. Sometimes it is useful to dig ancient 
observations and theoretical ideas from the past in order to improve modern technologies.
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