
Method and Apparatus for Querying Relational and XML Database Using French Language

Hanane Bais*, Mustapha Machkour

Information Systems and Vision Laboratory, Department Computer Sciences, Faculty of Sciences, Ibn Zohr University, Agadir

80000, Morocco

Corresponding Author Email: hanane.bais@edu.uiz.ac.ma

https://doi.org/10.18280/ria.330601 ABSTRACT

Received: 29 August 2019

Accepted: 5 November 2019

The extraction of the information from database systems requires the formulation of queries

using database query languages, such as Structured Query Language (SQL). This formulation

needs the knowledge of the model and the structure of the database. However, non-expert users

cannot write such queries. This is why a lot of works have been developed to request the

database in natural language. Historically, most of these works were carried out for English

language and they were designed for a specific database model. Some of them function

independently of database domain. For the French language, all existing contributions are

dependent on database domain and model. The aim of this paper is to present a model of an

intelligent interface to query databases using the French language. A simulation model was

established through the using of linguistic operations and machine learning. The results

indicate that the proposed interface functions independently of the database domain and model

(relational and XML) and it can translate a very important number of French natural language

query into a database query. The findings of this research may serve to improve the interaction

between non-expert French users and databases.

Keywords:

intelligent interface, natural language

processing, Backus-Naur form, machine

learning, linguistic operations

1. INTRODUCTION

In the modern world of computing, several platforms have

been designed to allow humans to interact with computers by

using natural languages, such as recognition systems, question

answering systems and Natural Language Interfaces to

Databases (NLIDB). The primary objective of NLIDB

systems is to allow users to communicate with the database in

the same way they communicate with each other, without the

need to memorize commands and complex procedures. Hence,

non-expert users don't need to learn any artificial language to

query database, only natural language is enough [1, 2].

Traditionally, these users are used to work with forms, but

their anticipations strongly depend on the capabilities of these

forms. However, the using of NLIDB offers a uniform, simple

and unlimited access to data without having skills in the field

of databases.

Building an NLIDB for a specific domain is fairly easy and

more robust. However, the specificity of NLIDB's field of

application prevents its use outside the field for which it was

developed. To overcome this limit, several methods have been

proposed. These methods assure NLIDBs to move from one

domain to another, without using new resources while

preserving its performance.

Generally, most of the NLIDBs proposed so far operate

independently of domain. However, all these NLIDBs are

designated for a specific database model.

In this work we propose a generic NLIDB which functions

independently at the same time of domain and model of

databases. The proposed interface translates French Natural

Language Query (FNLQ) into Database Query (DBQ). The

translation process is based on linguistic operations. These

operations assist us in extracting from the FNLQ the

significant information which adequately represents what the

user is looking for.

Due to the difficulties encountered during the direct

transformation of the FNLQ towards in DBQ, our system uses

an approach based on the intermediate representation of the

language. The idea of this approach is to first map the FNLQ

to an intermediate logical query that represents an

unambiguous interpretation of the FNLQ. The logical query

obtained is then translated into a DBQ to be evaluated by the

database system to display the expected result.

The remainder of this paper is organized as follows. First,

we give an overview of related work, followed by the detailed

architecture of the system that we have developed. Then, we

show a list of FNLQs that are successfully translated and

executed by our system with comments on the results of the

experiment. Finally, we present the conclusions and some

possible perspectives of this work.

2. RELATED WORK

The majority of NLIDB contributions in the nineties

focused on querying relational databases through the use of

natural language instead of SQL. However, these systems are

designed for a specific application domain.

Androutsopoulos et al. developed an extended version of

the MASQUE system [3], called MASQUE/ SQL [4]. This

system can interface all commercial databases that support the

SQL language. MASQUE/ SQL answer user's questions in

English by generating SQL. MASQUE/ SQL can interface any

database system that supports SQL code.

One of the intelligent tutoring systems designed to relational

database is named SQL-Tutor [5, 6]. Smart tutoring systems

Revue d'Intelligence Artificielle
Vol. 33, No. 6, December, 2019, pp. 393-401

Journal homepage: http://iieta.org/journals/ria

393

are computer programs that attempt to give students new skills.

They are called intelligent because they try to help students as

a human guardian [7].

For XML database, NALIX (Natural Language Interface for

an XML Database) [8] is a generic and interactive interface,

developed at the University of Michigan by Li et al. in 2006.

The database used for this system is an XML database

(Extensible Markup Language, with Schema-Free XQuery as

the DBLQ. This language is designed primarily to retrieve

information from XML databases. Its role in relation to XML

databases is similar to that of SQL to relational databases.

Generally English is the main language of many countries.

Also, it is the secondary language in most multilingual

countries. For this, the majority of existing ILNBDs respond

to requests written in English. However, other ILNBDs are

proposed to access the information stored in a database via the

formulation of requests in other languages, such as Spanish [9]

Urdu [10], Chinese [11, 12] and Hindi [13, 14] languages.

Furthermore, the most of the NLP projects done so far for

the French language were involved with many topics, such as

French word knowledge engineering [15] document auto-

indexing [16] and information extraction [17]. Only a few of

them have dealt with NLIDB.

 The first one is the Edite system [18]. Edite is a multi-

langue (Portuguese, French, English, and Spanish) natural

language interface to relational databases. It translates natural

language queries about tourism resources into SQL queries.

Edite functions independently of database domain. The second

system presents the semantic analysis of queries written in

French language and it dedicates for object-oriented database

[19].

In general, all the French NLIDB cited above is designed

for databases of a particular domain and they interface a

particular database model. Furthermore, there is no NLIDB

designed to the both of XML and relational database. In that,

the aim of this works is to design and implement a NLIDB for

querying relational and XML database using the French

language. The techniques used by the system help it to

function independently of both database domains. Also, it can

be easily extended to other models.

3. PROPOSED SYSTEM

Due to the difficulties of directly transform the FNLQ into

DBQ, the architecture of the proposed system is based on the

intermediate representation language approach. The idea of

this approach is to map the FNLQ firstly into a logical query,

written in XML. Then, translate this query into a DBQ and

submitted it to the database system. By expressing the logical

query in XML form, the proposed interface can function

independently of the database domain and model (Relational

and XML). Figure 1 shows the proposed architecture [20].

The proposed architecture is constituted of two units:

• Linguistic processor: in this later, the FNLQ is submitted

to many analyses operations (morphological, syntactic and

semantic). We obtain at the end of this procedure the logical

interpretation of the FNLQ.

• Database knowledge generator: it used to translate the

logical query resulted by the linguistic module into a DBQ.

The system generates SQL query for the relational database

and XPATH query for the XML database.

The separation of the linguistic processor and database

knowledge generator makes the proposed system can function

independently of database domains [21].

Figure 1. Proposed architecture

3.1 The linguistic processor

The linguistic processor is an important phase in the process

of translating the FNLQ into DBQ. In this part, the FNLQ is

submitted to many analyses operations: morphological,

syntactic and semantic.

3.1.1 Morphological analysis

The morphological analysis is in charge of reading the

FNLQ, dividing it into primitive elements called tokens and

returning information about each token. This process is

performed using the following functions:

(1) Ambiguity reduction: this function helps to reduce the

394

ambiguity in the FNLQ, by replacing several words or

symbols with canonical internal words, as presented in Table

1.

(2) Token analyzing: this function is used to divide the

FNLQ into primitive units called tokens. This later is

considered as a single logical unit in the FNLQ.

(3) Spelling checker: by using this function, we ensure that

each token is in the dictionary used by the interface if this is

not the case, the spell checking is performed or a new word is

added to the system vocabulary.

(4) Part-of-Speech Tagging: this function determines the

grammatical category of each token.

(5) Morpheme: this operation is used to determine the

morpheme or the radical of each token.

In Figure 2, we present an example of using the above

functions. The FNLQ in this example contents some spelling

errors to the impact of spelling checker.

Figure 2. Example of using morphological analysis functions.

3.1.2 Parser

Figure 3. Graphical representation of BNF

395

The parser or syntactic analysis creates the syntactic

structure of the FNLQ, which is a parse tree [22]. It shows how

words in the FNLQ relate to each other.

The function of the syntactic analysis is based on a set of

syntactic rules having the form S → {E 1 ... En}, in which the

sequence of expressions {E 1 ... En} can be replaced

(rewritten), when analysis, by a new unique identifier S. These

rules describe the possible grammar structures of the FNLQ

and constitute a formal grammar named Backus-Naur Form

(BNF) defined by:

BNF = (N, T, R, and S) where:

(1) N: a set of non-terminal symbols.

(2) T: is a set of terminal symbols.

(3) R: is a set of context-free productions.

(4) S: is the start symbol used to represent the FNLQ.

The BNF is graphically schematized in Figure 3. The

elements of this grammar include:

(1) S: sentence;

(2) NP: noun phrase;

(3) PP: prepositional phrase;

(4) DET: determiner

The implementation of the grammar was done by a Prolog

Knowledge Base (KB) as a defined logic program. The

defined word means that the KB consists of only defined

clauses. A defined clause is a rule that represents each of the

rules of the BNF used.

Generally, the BNF used has two types of rules:

• Domain independent rules: these rules have non-terminal

symbols on the right side. The following rule is an example:

S → OBJECTS [CONDITION] [ORDER] [CON S]

• Domain-dependent rules: only have terminal symbols on

the right side. The following rule is an example:

NOUN → Client

Using rules that are domain dependent requires these rules

to be generated whenever the proposed system interfaces with

a new domain. For this purpose, we use an Automatic

Producer of Syntax Rules (APSR). The operation of APSR is

based on machine learning approach which consists in

automatically producing all new rules necessary to parse the

FNLQ [23]. It has two roles:

• Verification: it verifies if all the syntax rules necessary to

analyze the FNLQ exist in the KB.

• Learning: it detects, creates, and adds missing rules to the

KB. This process is outlined in the next algorithm.

Algorithm APSR

Input:

FNLQ an French Natural Language Query

Output

A set of syntactic rules SR= {(Ri), 1≤ i≤ n};

Begin

Split the FNLQ into a set of tokens W = {(tj: GCj), 1≤ j ≤m}

where GCj is Grammatical Category of the token tj;

 For each token (tj: GCj) W loop

Create the syntactic rule Ri correspond to the token tj ;

If Ri KB

add Ri to KB;

End if

End loop

 Return SR ;

End APSR

The use of the APSR enables the system to improve its KB

automatically through experience and adapt it with user's

requests.

Figure 4 shows the parse tree corresponds to the following

FNLQ:

“Affiche moi tous les noms et les adresses et les sexes des

clients dont l’âge >= 25”

Figure 4. Example of parse tree

3.1.3 Semantic interpreter

The purpose of the semantic interpreter is to assign

meaning to the parse tree created by the parser. This is done

through the application of a set of semantic rules and is

accomplished in two steps. In the first step, the system filters

the parse tree to obtain an abstract parse tree. This latter does

not represent all the details appearing in the parse tree, but it

keeps the necessary parts for the production of the logical

query.

Filtering involves removing superfluous nodes that don’t

add meaning to the parse tree, such as linking elements (such

as "et"), separators (such as commas), and parentheses. Figure

5 presents the abstract parse tree produced from the parse tree

shown in Figure 5.

Figure 5. Example of abstract parse tree

After filtering the parse tree and obtaining the abstract parse

tree, the semantic interpreter uses other semantic rules to

generate the logical interpretation of FNLQ, which we call

XLQ (XML Logical Query). We decide to express the logical

query in XML for the reason that:

• XML is an inter-tool language that ensures the reuse and

verification of models.

• XML does not depend on any language; the logical query

can be easily translated to different DBQs (SQL, XPATH,

396

etc.).

• The logical query in XML displays information about

attributes and their values.

In XML, we define the structure of XLQ by the following

XML schema (Figure 6):

Figure 6. XML schema of XLQ

The following XLQ represents the logical interpretation of

the FNLQ:

“Affiche moi tous les noms et les adresses et les sexes des

clients dont l’âge >= 25”:

<QUERY>

 <SELECT>

 <OBJECT>

 <NAME> client </NAME>

 <ATTRIBUT>

 <NAME> noms </NAME>

 </ATTRIBUT>

 <ATTRIBUT>

 <NAME> adresses </NAME>

 </ATTRIBUT>

 <ATTRIBUT>

 <NAME> sexes </NAME>

 </ATTRIBUT>

 </OBJECT>

 </SELECT>

 < CONDITION>

 <OBJECT>

 <ATTRIBUT>

 <NAME> âge </NAME>

 </ATTRIBUT>

 </OBJECT>

 <SYMBOL> >= </SYMBOL>

 <VALUE> 25 </VALUE>

 </ CONDITION >

 </ QUERY>

The XLQ is the final result of the linguistic processor. It will

be used by the Database Knowledge Generator to generate the

DBQ. This operation will be detailed in the following

paragraph.

3.2 Database knowledge generator

The Database Knowledge Generator is used to generate the

final DBQ. This is done by mapping each part of the XLQ to

its corresponding clause in the DBQ.

The process of the DBQ generation has three phases. Each

one of them manipulates a particular part of the XLQ. In the

first phase, the system deals with the part that corresponds to

the names of the attribute in XLQ to build the SELECT clause.

In the second phase, it produces the FROM clause by selecting

the part of the XLQ that represents to the table name or a group

of table names. Finally, it extracts the conditions to build the

WHERE clause.

By concatenating the results of the previous phases, the

system constructs the DBQ. A test function follows each phase

to verify if the name of tables and attributes, extracted from

the XLQ, exists in database dictionary. If it is not the case, the

system uses a domain specific dictionary called mapping table.

This table stores synonyms of names of tables and attributes.

The using of mapping table helps the user to put its FNLQ with

different ways without the need to know the exact name of

tables and attributes. Once the DBQ is generated, the DBQ

executor sends it to the Database Management System (DBMS)

and displays the returned responses in tabular format for SQL

queries and in hierarchical format for XPATH queries.

397

4. SYSTEM RESULTS

The interface in Figure 7 displays the result of translating of

the FNLQ:

“Affiche moi tous les noms et les adresses et les sexes des

clients dont l’âge >= 25”:

Figure 7. System interface

Table 1. Queries without projection and selection

FNLQ SQL XPATH

Affiche les clients

Affiche tous les clients

Affiche-moi nos clients

Affiche-moi tous les clients

Affiche-moi les clients

Affiche nos clients

Affiche-moi tous nos clients

Affiche tous nos clients

Clients?

SELECT * FROM

client

*/client/

*

Liste tous nos salariés

Liste tous nos employés

SELECT * FROM

salarié

/*/

salarié /*

Montre-moi tous nos clients

et projets

SELECT * FROM

client

/*/client/

*

SELECT * FRO

projet

/*/projet/

*

In the following tables, we present several types of FNLQs

that have been translated and successfully executed by the

system. These queries cover different areas of databases. We

have classified these requests into four categories.

The first category concerns queries without projection and

selection. These queries don’t contain any attribute or

selection condition specification. Table 1 shows examples of

queries in this category.

Table 2 presents examples of the second category of FNLQs.

These queries use only projection where we specify certain

attributes without any conditions.

The third category of FNLQs deals with requests with

projection and selection. In these queries, we specify attributes

and conditions. Table 3 shows some examples of these queries.

Table 4 illustrates the last category of FNLQs. These

queries contain aggregation functions.

Table 2. FNLQS with projection and without selection

FNLQ SQL XPATH

Donne-moi les

noms des

étudiants

Select étudiant.nom

from étudiant
/*/ étudiants /nom

Montre-moi

tous les noms,

âges et adresses

des employées

Select salarié.nom,

salarié.âge,

salarié.adresse from

salarié

/*/ employées /nom

|/*/ employées /âge

|/*/ employées

/adresse

Quels sont tous

les noms et les

adresses des

clients

Select client.nom,

client.adresse from

client

/*/client/nom

|/*/client/adresse

Cherche tous les

noms des

employés et des

clients

Select client.nom

from client

Select salarié.nom

from salarié

/*/client/nom

/*/employé/nom

Trouve les noms

des clients et les

montants des

factures

Select client.nom

from client

Select

facture.montant from

facture

/*/client/nom

/*/facture/montant

398

Table 3. FNLQS with projection and selection

FNLQ SQL XPATH

Montre tous les

étudiants dont le

nom est "hanane"

Select * from étudiant

where étudiant.nom =

'hanane'

/*/ étudiant

[nom =

“hanane”] /*

Tous les clients dont

le nom est "hanane"

ou "Fatima"

Select* client from

client where

client.nom

in(‘mustapha’,

‘hanane’)

/*/client [nom =

“hanane”]/*|

/*/client

[nom=”Mustaph

a”]/*

Montre tous les

enseignants avec

l’âge est entre 28 et

40

Select * from

enseignant where

enseignant.âge

between 28 and 40

/*/ enseignant

[âge > 28]

[âge<40]/*

Quels sont les noms

des employées dont

l’adresse est

"Agadir dakhla"?

Select salarié.nom,

salarié.âge from

salarié where

salarié.adresse =‘Hay

dakhla Agadir’

/*/employée

[adresse = "tan

tan hay ljadid"]

/nom|/*/employ

ée [adresse =

"tan tan hay

ljadid"] /âge

Cherche les

adresses des clients

avec âge est

supérieure ou égale

à 26 et le nom est

"hanane"

Select client.adresse

from client where

client.âge <= 26 and

client.nom = 'hanane'

/*/client [âge <=

26] [nom =

"hanane"]

/adresse

Table 4. FNLQS with aggregate function

FNLQ SQL XPATH

Donne-moi le

nombre des

fournisseurs dont le

nom est "Hanane"

Select count (*) as

NB_fournisseur from

fournisseur where

fournisseur.nom

=‘hanane’

/*/count

(fournisseur

[nom =

"hanane"])

Montre-moi la

moyenne des âges

des clients

Select avg (client.âge)

as avg_client_age from

client

Avg

(/*/client/âge)

Donne-moi le

minimum âge des

étudiants

Select min

(étudiant.âge) as min_

étudiant _age from

étudiant

Min

(/*/étudiant

/âge)

Affiche le

maximum âge des

clients dont l’âge est

inférieur ou égale à

40

Select max

(client.âge)as

min_client_age from

client where client.âge

< 40

Max (/*/client

[âge < 1000]

/âge)

Quels sont les

employés avec le

maximum âge?

Select * from employée

where employée.âge in

(select max

(employée.âge) from

employée

/*/ employée

[âge=max

(/*/employée

/âge)]/*

In order to evaluate the performance of the proposed system

and make the necessary corrections to improve it, we have

carried out experiments.

The first experiment is to check the number of FNLQs for

which the system generates a response. To do this, we tested

1300 FNLQs. The results obtained by this experiment are

presented in Figure 8 below.

According to Figure 8, from 1300 FNLQs the system

generated SQL queries for 1223 FNLQs, a percentage of

94.07%, and XPath queries for 1205 FNLQs, a percentage of

92.69%. However, some of these responses are not correctly

generated, implying that a query is correctly generated if it is

syntactically correct.

Figure 8. Answered\Unanswered FNLQs

In order to evaluate the number of correctly generated

queries, we performed a second experiment. This latter is

based on the different queries for which we have answers in

the first experiment. The different results obtained are

presented in Figure 9 below.

Figure 9. DBQ correctly / incorrectly generated

As shown in Figure 9, 1223, 1118 of the FNLQs are

correctly converted to SQL queries, and 1147 of these queries

are correctly translated to XPATH queries.

To locate errors responsible for unanswered queries and

those that are incorrectly generated, we examined the outputs

of these queries and constructed Figure 10.

Figure 10. The result of errors explanation

399

From Figure 10 the errors found are committed at the level

of the FNLQs analysis and the generation of the DBQ request.

We classified them in four categories:

• Errors due to morphological analysis: From figure 10, we

see that the morphological analysis is the cause of 6.66% of

FNLQs that don’t have SQL query and 12.06% of SQL queries

generated incorrectly. This is also the cause of 6.64% of

XPATH queries that are incorrectly generated. One of the

main sources of these errors is that in some FNLQs the tagger

function does not affect some tokens their correct grammatical

function.

• Errors due to Parser: This review also shows that the

Parser is the cause of 32.46% of the FNLQs that don’t have

SQL queries and 28.57% of the SQL queries generated

incorrectly. In addition, this parser is responsible for 53.44%

of incorrectly generated XPATH requests and 26.31% of

FNLQs that don’t have XPATH requests. Generally, one of

the sources of these errors is that the parser generates parser

trees that don’t reflect the interactions between the different

words constituting the natural language query.

• Errors due to semantic Interpreter: The errors produced by

the semantic Interpreter are 64.76% of the incorrectly

generated SQL queries and 19.94% of the FNLQs that don’t

have an XPATH query. The source of these errors is that

semantic Interpreter does not correctly convert the parser tree

to the exact XLQ.

• Errors due to the generation of DBQ: The errors due to the

generation of DBQ are 34.48% of FNLQs that don’t have

XPATH requests.

The evaluation of some DBQ that are correctly generated

shows us that these queries don’t always correspond to the

FNLQ. The object of the last experiment is to show the number

of DBQ that match and don’t match the FNLQs. This is the

subject of the following Figure 11.

Figure 11. DBQ matches\ don't matches FNLQ

Figure 12. Summary of the results obtained

The graph in Figure 12 shows a summary of the results

obtained.

5. CONCLUSION

The ultimate objective of this study is to propose a generic

model of Natural Language Interfaces for querying databases

using the French language. The function of this interface is

based essentially on linguistic operations. Applying these

operations help the proposed interface to extract the linguistic

information needed to translate the FNLQ to a DBQ.

The main advantages of this interface are that it operates

independently of database model and domain and that it is able

to automatically extend its Knowledge Base through

experience.

As future works, we will continue to test the capacity of our

system with other database models: relational object, object

oriented, NoSQL. Also, we attend to increase the level of

human-computer interaction by allowing our system to access

a database via voice requests; Furthermore, we want to use

agents to improve the system knowledge base.

REFERENCES

[1] Agrawal, A.J., Kakde, O.G. (2013). Semantic analysis of

natural language queries using domain ontology for

information access from database. International Journal

of Intelligent Systems and Applications, 5(12): 81-90.

http://dx.doi.org/10.5815/ijisa.2013.12.07

[2] Shah, A., Pareek, J., Patel, H., Panchal, N. (2013).

NLKBIDB-natural language and keyword based

interface to database. In 2013 International Conference

on Advances in Computing, Communications and

Informatics (ICACCI), Mysore, India.

http://dx.doi.org/10.1109/ICACCI.2013.6637414

[3] Auxerre, P. (1986). MASQUE modular answering

system for queries in English-programmer's manual.

Technical Report AIAI/SR/11, Artificial Intelligence

Applications Institute, University of Edinburgh.

[4] Moore, R.C. (1981). Problems in logical form. Sri

International Menlo Park Ca Artificial Intelligence

Center, 19th Annual Meeting of the Association for

Computational Linguistics, Stanford, California, USA,

pp. 117-124. http://dx.doi.org/10.3115/981923.981957

[5] Mitrovic, A., Ohlsson, S. (2016). Implementing CBM:

SQL-tutor after fifteen years. International Journal of

Artificial Intelligence in Education, 26(1): 150-159.

http://dx.doi.org/10.1007/s40593-015-0049-9

[6] Mitrovic, A., Martin, B. (2000). Evaluating the

effectiveness of feedback in SQL-tutor. In Proceedings

International Workshop on Advanced Learning

Technologies. IWALT 2000. Advanced Learning

Technology: Design and Development Issues,

Palmerston North, New Zealand, New Zealand, pp. 143-

144. http://dx.doi.org/10.1109/IWALT.2000.890591

[7] Knowles, S. (1999). A natural language database

interface for SQL-tutor.

[8] Li, Y.Y., Yang, H.H., Jagadish, H.V. (2005). NaLIX: An

interactive natural language interface for querying XML.

In Proceedings of the 2005 ACM SIGMOD International

Conference on Management of Data, pp. 900-902.

http://dx.doi.org/10.1145/1066157.1066281

400

https://doi.org/10.1109/ICACCI.2013.6637414
http://dx.doi.org/10.3115/981923.981957
http://dx.doi.org/10.1109/IWALT.2000.890591
http://dx.doi.org/10.1145/1066157.1066281

[9] Range, R.A.P., Gelbukh, A., Barbosa, J.J.G., Ruiz, E.A.,

Mejía, A.M., Sánchez, A.P.D. (2002). Spanish natural

language interface for a relational database querying

system. In International Conference on Text, Speech and

Dialogue, 2448: 123-130. https://doi.org/10.1007/3-540-

46154-X_16

[10] Ahmad, R., Khan, M.A., Ali, R. (2009). Efficient

transformation of a natural language query to SQL for

Urdu. In Proceedings of the Conference on Language &

Technology, pp. 53-60.

[11] Li, Z.J., Li, J.K., Ning, W.X. (2015). Research on

Chinese natural language query interface to database

based on syntax and semantic. In Applied Mechanics and

Materials, 731: 237-241.

http://dx.doi.org/10.4028/www.scientific.net/AMM.731

.237

[12] Meng, X.F., Zhou, Y., Wang, S. (1999). Domain

knowledge extracting in a Chinese natural language

interface to databases: NChiql. In Pacific-Asia

Conference on Knowledge Discovery and Data Mining,

1574: 179-183. https://doi.org/10.1007/3-540-48912-

6_25

[13] Kataria, A., Nath, R. (2015). Natural language interface

for databases in Hindi based on karaka theory.

International Journal of Computer Applications, 122(7):

39-43. https://doi.org/10.5120/21716-4841

[14] Nanda, G., Dua, M., Singla, K. (2016). A Hindi question

answering system using machine learning approach. In

2016 International Conference on Computational

Techniques in Information and Communication

Technologies (ICCTICT), New Delhi, India, pp. 311-314.

http://dx.doi.org/10.1109/ICCTICT.2016.7514599

[15] Bourigault, D., Aussenac-Gilles, N., Charlet, J. (2004).

Construction de ressources terminologiques ou

ontologiques à partir de textes Un cadre unificateur pour

trois études de cas. Revue d'Intelligence Artificielle,

18(1): 87-110.

[16] Haddad, H. (2003). French noun phrase indexing and

mining for an information retrieval system. In

International Symposium on String Processing and

Information Retrieval, 2857: 277-286.

http://dx.doi.org/10.1007/978-3-540-39984-1_21

[17] Deléger, L., Grouin, C., Zweigenbaum, P. (2010).

Extracting medication information from French clinical

texts. In MedInfo, 160(Pt 2): 949-953.

[18] Reis, P., Matias, J., Mamede, N. (1997). Edite-A Natural

Language Interface to Databases A new dimension for an

old approach. In Information and Communication

Technologies in Tourism, pp. 317-326.

http://dx.doi.org/10.1007/978-3-7091-6848-6_33

[19] Hemerelain, B., Belbachir, H. (2010). Semantic analysis

of natural language queries for an object oriented

database. Journal of Software Engineering and

Applications, 3(11): 1047-1053.

http://dx.doi.org/10.4236/jsea.2010.311123

[20] Bais, H., Machkour, M., Koutti, L. (2016). A model of a

generic natural language interface for querying database.

International Journal of Intelligent Systems and

Applications, 8(2): 35-44.

http://dx.doi.org/10.5815/ijisa.2016.02.05

[21] Tari, L., Tu, P.H., Hakenberg, J., Chen, Y., Son, T.C.,

Gonzalez, G., Baral, C. (2010). Parse tree database for

information extraction. IEEE Transactions on

Knowledge & Data, Engineering.

[22] Essalmi, F., Ayed, L.J.B. (2006). Graphical UML view

from extended Backus-Naur form grammars. In Sixth

IEEE International Conference on Advanced Learning

Technologies (ICALT'06), Kerkrade, Netherlands, pp.

544-546.

http://dx.doi.org/10.1109/ICALT.2006.1652498

[23] Bais, H., Machkour, M., Koutti, L. (2016). Querying

database using a universal natural language interface

based on machine learning. In 2016 International

Conference on Information Technology for

Organizations Development (IT4OD), Fez, Morocco, pp.

1-6. http://dx.doi.org/10.1109/IT4OD.2016.7479304

401

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.5120%2F21716-4841
http://dx.doi.org/10.1109/ICCTICT.2016.7514599
http://dx.doi.org/10.1007/978-3-540-39984-1_21
http://dx.doi.org/10.1007/978-3-7091-6848-6_33

