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In present work, exponential law based grading of composition is considered for high speed 

rotating disks and Young’s modulus is calculated for two cases namely; temperature 

dependent and temperature independent applications. In temperature dependent 

applications, Young’s modulus is assumed to vary with temperature as well throughout the 

spatial coordinates of the disk. The effective Young’s modulus of FGM is then calculated 

using modified rule of mixture. Limit elastic analysis is performed by using variational 

principle. Results show the effect of temperature over stresses and obtained limit elastic 

speed. It is observed that limit speed first increases with an increase in aspect ratio and 

starts decreasing after reaching a critical value. Limit speed also increases with increase in 

grading index. Effective yield stress of FGM is computed and plotted along with other 

stresses to identify location of yielding.
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1. INTRODUCTION

Since functional grading of materials opens new horizons 

in manufacturing and applications of high strength 

component at low weight, material tailoring plays a 

significant role in achieving desired material properties. In 

applications of high speed rotating disks, such as engine 

rotors, brake disks, impellers, flywheel etc., stresses in a disk 

can be optimized by either changing disks profile or by 

material grading i.e. by changing material composition. 

Depending upon the grading index (n) variation in FGM, it is 

named as L-FGM (linear functionally graded material) or P-

FGM (power law functionally graded material). When 

material grading is exponential it is known as E-FGM and S-

FGM is the abbreviation coined for sigmoid law based 

material grading. Kordkheili and Naghdabadi [1] examined 

stresses and displacement in FG disks under the influence of 

centrifugal force and uniform thermal load was investigated 

by changing volume fraction as power law for different 

grading indices (n) and disk responses for thermal loading on 

stresses were reported. For similar grading indices Bayat et al. 

[2] studied varying disk profiles in which concave disk

profile is found to be the most light-weight disk followed by

linear, convex, and uniform thickness disk. It is reported that

convergent disks have lesser induced stresses compared to

uniform thickness disk followed by divergent disk profiles.

Nie and Batra [3] performed material tailoring to keep hoop

stress or the sum of radial and hoop stress as constant is

reported for arbitrary variation of the shear modulus with

radius of the disk. Nejad et al. [4] performed elasto-plastic

analysis of FGM disk based on power law variation of

Young’s modulus, density and yield limit is reported,

wherein the stresses and deformations of three different

plastic regions were presented using Tresca’s yield condition.

Çallıoğlu et al. [5] described similar variation in mechanical

properties for different angular velocity based on von Mises 

yield condition. It is observed that yielding region expands 

throughout the outer surface of the disk for non-work 

hardening case under increasing angular speed.  

Bhowmick et al. [6] performed limit elastic analysis of 

externally loaded rotating solid disk i.e. disks carrying 

attached masses at different locations using variational 

formulation method for different disk profiles and loading 

parameters. In another work Bhowmick et al. [7], the yield 

front propagation of exponential and parabolic profile 

annular disk and later for solid disk in Bhowmick et al. [8] 

under elasto-plastic regime using von Mises yield criterion 

for linear strain hardening material behaviour is reported 

using variational formulation based on Galerkin’s error 

minimization principle. Nayak and Saha [9] defines similar 

variational formulation method to study stress distribution 

and limit analysis for both solid and annular disk under 

thermo-mechanical loading for different disk geometries and 

temperature distributions. Zheng et al. [10], assumed similar 

property variation like in Kordkheili and Naghdabadi [1] and 

substituted volume fraction power law variation in the rule of 

mixture and identified the effect of the angular acceleration 

on FG rotating disks of same mass with non-uniform 

thickness on the stress distributions using von Mises stress 

theory.  

Nakamura et al. [11] defines an empirical relation for 

finding Young’s modulus and yield stress variation  but the 

parameter associated stress-strain transfer ratio (q) was not 

known which restrict its application, later in Bhattacharyya et 

al. [12] performed experiments for different Al/SiC 

compositions to calculate Young’s modulus and identified 

stress to strain transfer ratio with Nakamura et al. [11] 

formulation. Cho and Ha [13] investigated parameter (q) 

numerically using three different averaging methods, the 

linear rule of mixture, MROM and the Wakashima-
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Tsukamoto estimate, and compared results with the finite-

element discretization approach and reported (q) value as 500 

GPa for Ni-Al2O3, later Cho and Ha et al. [14] considered 

same value of q and performed volume fraction optimization 

to minimize thermal stresses using penalty-function and 

golden section method. 

Javaheri, R and Eslami [15] investigated thermal buckling 

analysis on functionally graded rectangular plate, for one 

dimensional non-linear temperature variation by solving a 

steady-state heat transfer equation. Bayat et al. [16] reported 

high temperature stresses by taking temperature dependent 

and temperature independent Young’s modulus and thermal 

expansion and uses rule of mixture for different disk profiles 

and found concave thickness disk performs better than other 

profiles. Sondhi et al [17] performed limit elastic analysis of 

FG disk for different aspect ratio taking exponential variation 

of Young’s modulus and density for different grading index 

where an existence of critical grading parameter is shown. 

Madan et al. [18] investigated limit elastic analysis of L-

FGM using modified rule of mixture and later in Madan et al. 

[19] performed similar analysis for temperature dependent 

mechanical properties. Madan et al. [20] studied the effect of 

sigmoid graded disk on limit analysis and yielding locations. 

Zohra et al. [21] investigated power law grading effects on 

natural frequency on FG beams and Belhadj [22] performed 

free vibration for MWCNT using differential quadrature 

method (DQM). 

In present work, to improve disk performance, limit elastic 

analysis was performed for temperature dependent (TD) and 

temperature independent (TID) mechanical properties for E-

FGM rotating disks of different aspect ratio and grading 

indices (n). Firstly, temperature variation with radial 

coordinate is formulated and based on these variations, 

Young’s modulus of metal and ceramic were calculated. 

Equivalent Young’s modulus for FGM was calculated using 

modified rule of mixture. Effective yield stress variation for 

FG disk is then calculated based on temperature dependent 

and temperature independent Young’s modulus. The von 

Mises stress thus obtained is compared with yield stress to 

calculate the limit elastic speed of the disk. Yield stress 

variation is plotted along with other stresses to identify 

location of yielding, the knowledge of which helps in further 

tailoring or reinforcement of FG disks.  
 

 

2. MATERIAL GRADING 

 

2.1 Volume fraction  

 

For exponential FG disk (E-FGM), the volume fraction of 

metal (Vm) and ceramic (Vc) were calculated using Eq. (1) for 

different values of n, as shown in Figure 1. The exponential 

gradation considered is as follows:  
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where, n is the grading index. 

 

2.2 Temperature variation 

 

Conductivity (K) of FG disk is assumed to vary along 

radial direction as given by Eq. (2). For Ni and Al2O3, 

conductivity is taken as Km=187.66 W/mk and Kc=30 W/mk.  
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Figure 1. Volume composition of metal and ceramic with 

radius 

     

The steady state heat conduction equation is given by Eq. 

(3) 
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Thermal boundary conditions are taken as: at disk root, 

r=a, T=Tm =25℃ and at disk tip, r=b, T=Tc=500℃. The 

study is first validated for this temperature range for metal 

(Aluminium) and ceramic (Zirconia) with Reddy and Chin 

[23] and is then extended for materials, Nickel and 

Aluminium oxide under the same boundary condition. 

Temperature variation in radial direction was computed by 

substituting Eq. (2) in Eq. (3) for different aspect ratios with 

first seven polynomial series terms, as given by Eq. (4) and is 

shown in Figure 2. 
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2.3 Young’s modulus of metal and ceramic 

 

Temperature dependency of Young’s modulus of metal 

and ceramic were computed using Eq. (5). The different 

coefficients were taken from Table1. Em=223.95 GPa and 

Ec=349.55 GPa were considered as base values for metal and 

ceramic modulus. 

 

 
 

Figure 2. Temperature distribution along disk radius for 

different aspect ratios 
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Table 1. Young’s modulus coefficients in Pa [20] 

 
Material P0 P-1 P1 P2 P3 

Ni 

(Metal) 

2.2395E

+11 
0 -0.00028 3.998E-09 0 

Al203 

(Ceramic) 

3.4956E

+11 
0 -0.00039 4.027E-07 

-1.67E-

10 

 

2.4 Effective Young’s modulus of FG disk 

 

Depending upon the loading conditions, rule of mixture is 

classified in two types. In first case, when load is applied in 

the direction of fibre then the strains occurring is the sum of 

strain in fibre and matrix as given by Voigt model. Secondly, 

when a composite is loaded traverse to the fibre direction 

then the stresses occurring is the sum of stress in fibre and 

matrix as given by Reuss model. In case of particulate 

composite neither Reuss nor Voigt can be used as both gives 

inaccurate results, a comparison of the same is given in 

Bhattacharyya et al. [12], hence, to identify modulus 

effectively both are combined to obtain modified rule of 

mixture. A detailed derivation of the same is given in Madan 

et al. [18]. To identify the effective Young’s modulus of TD 

and TID mechanical properties, modified rule of mixture 

(MROM) given by Eq. (6) and Eq. (7) were used.  
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2.5 Mass density of FG disk 

 

For density calculation, rule of mixture was used and is 

given by Eq. (8). The density values for nickel and 

aluminium oxide were taken as 8912 Kg/m3 and 3690 Kg/m3. 
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2.6 Effective yield stress of FG disk 

 

Yield stress distribution was calculated using Eq. (9) and 

Eq. (10) along radius correspond to volume fraction variation. 

The base value of yield stress (σym or σyo) is taken as 55 MPa. 

The yield stress obtained is a function of TD and TID 

Young’s modulus and composition 

 

Temperature independent yield stress: 









+=

RE

VE
V

m

cc
myoyf 

       (9) 

 

Temperature dependent yield stress: 
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In case of FGM material, yield stress also varies in the 

direction of grading. In earlier literatures, as in Sondhi et al. 

[17], either yield stress of the FGM disk is taken constant or, 

if at all variation is considered, then it is assumed to vary 

identically to the variation of other properties. Nakamura et 

al. [11] proposed an empirical relation for Young’s modulus 

and yield stress variation in FGM, which is used in present 

study. The benefit of this formulation is that it consists of 

only one unknown i.e. stress to strain ratio (q) whose value if 

known can be implemented easily in estimation of material 

property effectively.   

 

 

3. MATHEMATICAL FORMULATION 

 

A uniform thickness disk of thickness (h0) of inner and 

outer radius (a) and (b) is considered as shown in Figure 3. 

Disk rotates with an angular speed of ω. Assuming plane 

stress condition, centrifugal loading produces radial and 

tangential stresses and the resulting strain energy and 

external work done is given by Eq. (11) and Eq. (12).  

 

( ) ( )
V V

θ θ r r
1 1

U = σε dv= σ ε +σ ε dv
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2W =- uω rdm                     (12) 

 

For small displacements the total potential of the system 

remains unchanged, hence, 
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(U +W)= 0                 (13) 

 

Using constitutive and strain displacement relations, from 

Eq. (11), Eq. (12) and Eq. (13), we get; 
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Substituting normalized coordinate as ξ=(r-a)/(b-a), in Eq. 

(14) and taking r = (b-a), the following is obtained.  
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Linear polynomial function is assumed for displacement 

(u); 

 

i i fu(ξ)= c φ ,  i = 1,2,3,.........,n                  (16) 

 

Gram-Schmidt scheme is employed to identify higher 

order orthogonal functions φi are the set of orthogonal 

polynomials. The start functions obtained satisfies the 

traction boundary condition of radial stress, 
 r aσ | = 0 and 

 r bσ | =0. The start function thus obtained can be written as; 
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Putting Eq. (17) in Eq. (16) the algebraic integral form 

thus becomes: 
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In Eq. (18), the variational operator (δ) is replaced by 
𝛿

δc𝑗
, j = 1,2,3,4. . . . 𝑛𝑓 .  Using Galerkin’s error minimization 

principle; the algebraic equation obtained is as follows: 
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Eq. (19) can be expressed in matrix form and the solution 

of unknown coefficients is obtained numerically from {c} = 

[K]-1{R} using standard IMSL subroutines and an in-house 

FORTRAN code. A detailed derivation and solution 

algorithm of same is given in Madan et al. [20]. 

 

 
 

Figure 3. Uniform thickness FG rotating disk 

 

 

4. RESULTS AND DISCUSSIONS 

 

Following normalized variables are used:  
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Here, Eo, ρo, σyo are the elasticity modulus, density and 

yield stress at base and Ef, ρf, σyf, are the respective 

properties at any radius r. 

 

4.1 Case-1: n 1 

 

In this case, the limit elastic results for TD and TID 

analysis is compared for grading indices n=1/2, 2/3 and 1. In 

Figure 4, the variation of normalized limit elastic speed with 

aspect ratio of the disk is plotted. It is observed from Figure 4 

that the limit elastic speed is higher for TID case than TD 

case as under TD cases the thermal stresses induced add up to 

the equivalent induced stress at any given speed. Also, the 

limit elastic speed increases as grading indices increases. The 

plots also reveal the existence of a critical aspect ratio 

(a/b=0.3) at which the limit elastic speed attains the 

maximum value. Beyond this, increase in aspect ratio does 

not yield any advantage in terms of increasing the operating 

range of rotational speed. 

 

4.2 Case n>1 

 

Similar plots are reported in Figure 5 where in the 

variation of limit elastic speed is reported against aspect ratio 

for grading indices greater unity.  

The grading indices (n) considered are 1.5 and 2. From 

Figure 5, it can be seen that in this case also the maximum 

limit elastic speed is obtained for (a/b=0.3). Since, for TD 

and TID cases, the critical aspect ratio is obtained as 0.3, the 

stress plots along the disk radius are presented in Figure 6 

and Figure 7 for TD and TID cases for a/b=0.3. Further, in 

these plots, the yield stress variation along the disk radius 

(using Eq. (9) and Eq. (10)) of the E-FGM disk is also plotted. 

The radial coordinate where the induced von Mises stress 

equals the yield stress defines the location of yielding, ξy. ξy 

=0 shows that yielding occurs at the root of the disk. 
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Figure 4. Limit elastic speed for n 1 for different aspect 

ratios 

 

 
 

Figure 5. Limit elastic speed for n>1 for different aspect 

ratios 

 

 

 
 

Figure 6. Stresses plots for TD case at different index and a/b=0.3 
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Figure 7. Stresses plots for TID case at different index and a/b=0.3 

 

 

5. CONCLUSION  

 

Increasing the grading indices by keeping aspect ratio as 

constant, shows decrease in radial stress and increase in 

tangential stresses. The location of yielding defined by the 

intersection of equivalent stress induced in the disk and yield 

stress depends upon disk profile and material grading. For 

uniform E-FGM disk, the yielding of the disk occurs at the 

root for all aspect ratios. Further knowing the yielding 

location, a material can be reinforced to improve its 

performance further. In both the cases, i.e. TID and TD, for 

exponential variation of Ni-Al2O3, limit elastic speed 

increases as grading indices increase. The existence of a 

critical aspect ratio (a/b = 0.3) is also reveled in the study. 

The present work reports the effect of temperature on 

mechanical properties like modulus and yield strength of E-

FGM disk which has an impact on disk performance. As the 

working temperature increases, the strength of component to 

overcome induced stresses decreases thus resulting in lower 

limit elastic speeds compared to the limit elastic speeds of 

disks rotating in temperature independent environment. 
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