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 The direct-drive permanent magnet synchronous generator (D-PMSG) is a highly nonlinear 
dynamic system. This paper aims to explore the complex chaotic motions or prominent chaotic 
features (e.g. the limit cycle) of the D-PMSG under certain parameter conditions and external 
inputs. Specifically, the mathematical model of the PMSG in d-q reference frame was 
converted into a dimensionless Loren chaotic equation through affine transform and timescale 
transform. Then, the Lyapunov stability theory was introduced to explore the eigenvalues of 
the Jacobian matrix corresponding to each equilibrium point under different inputs. On this 
basis, the author discussed how the D-PMSG shifts from equilibrium state to chaotic motions, 
and derived the conditions for the generation of the limit cycle. Finally, the chaotic features of 
the system were simulated with the aid of three-phase diagram, bifurcation map and the 
Lyapunov exponent (LE) spectrum. The simulation results show that the chaotic attractor will 
appear in the system, when system parameters change or the wind speed varies, posing a 
serious threat to the stable operation of the D-PMSG. 
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1. INTRODUCTION 
 

Wind power is one of the fastest growing clean energy 
sources [1]. The largescale wind turbines at home and abroad 
either use doubly-fed asynchronous generator (DFAG) or 
permanent magnet synchronous generator (PMSG). Compared 
with the DFAG [2, 3], the PMSG [4, 5] boasts a simple 
structure and a high efficiency, eliminating the need for rotor 
excitation or drawing draw reactive power from the grid.  

With the rapid development of offshore wind power, the 
direct-drive PMSG (D-PMSG) [6, 7] has become the new 
trend for wind power generation, because it adopts the direct-
drive mode without the gearbox, induces a limited 
transmission loss, requires a low maintenance cost, and 
achieves a high reliability. As its name suggests, the D-PMSG 
is obviously centering on the PMSG. 

The PMSG faces chaotic phenomena like the intermittent 
oscillations of torque and speed and the instability of control 
effect, when its parameters fall within specific intervals [8, 9]. 
To date, many domestic and foreign scholars have explored 
deep into the chaotic features of the PMSG, yielding fruitful 
results. For example, Hemate [10] set up a PMSG model, and 
analyzed the conditions for the model to produce bifurcation 
and chaos. Li et al. [11] introduced the Lyapunov theory to the 
mathematical model of the PMSG, and derived the parameter 
conditions for three dynamic features of the PMSG, namely, 
steady state, limit cycle and chaos. Based on the nonlinear 
electrotechnical coupling model for the PMSG, Chen et al. [12] 
provided the analytical criteria for different parameter 
conditions by the Melnikov method, and demonstrated that the 
PMSG may suffer from bifurcation, chaos, etc. when the 
system parameters fall into certain intervals; the demonstration 

was carried out by the Poincaré map and the bifurcation theory. 
Xue et al. [13] analyzed the chaotic features of the fractional 
PMSG model, using phase diagram, bifurcation diagram and 
Lyapunov exponent. Chang et al. [14] designed a nonsingular 
fast terminal sliding mode controller with extended state 
observer, which effectively suppresses the chaos in PMSG 
chaotic systems with uncertain disturbances.  

Like the PMSG, the D-PMSG also faces chaotic motions 
under certain parameter values or working conditions. During 
power generation, the chaotic motions bring about intermittent 
oscillations in torque, speed and output power, resulting in 
unstable control and irregular electromagnetic noises. In this 
case, the D-PMSG will have substantial oscillations and 
fluctuations in its output power, exerting a huge impact on the 
grid. Yang and Li [15] was the first to discover the complex 
chaotic motions in the D-PMSG, and developed a sliding 
mode variable structure controller that effectively curbs the 
chaos. Wang et al. [16] discussed the chaotic phenomenon 
when all the inputs are zeros, and controlled the chaotic 
motions only on the PMSG model. Chen et al. [17] proposed 
a sliding mode extreme search algorithm based on chaotic 
particle swarm optimization (PSO), aiming to track the 
maximum power point (MPP) of wind power systems. Cao et 
al. [18] studied the chaotic features of wind power systems 
under changing wind speeds. Despite the above studies, there 
are relatively few in-depth reports on the chaotic phenomenon 
of the D-PMSG and the relevant control methods. In a wind 
power system, the emergence of a chaotic attractor will 
seriously affect the stable operation and grid connection of the 
system. 

To pinpoint the chaotic features of the D-PMSG, this paper 
converts the mathematical model of the system into a 
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dimensionless Lorenz model through linear affine transform 
and timescale transform. Then, the Lyapunov theory was 
applied to investigate the generation of limit cycle and chaotic 
motions of the D-PMSG under two different inputs, which 
theoretically proves the existence of chaotic motions in the 
system under certain conditions. Through simulation, it is 
confirmed that, under different inputs, the D-PMSG will enter 
the chaotic state when some parameters are changed or the 
wind speed varies, posing a serious threat to the stable 
operation of the direct-drive wind turbine. 

 
 

2. MATHEMATICAL MODEL OF THE D-PMSG 
 

2.1 Model of wind turbine 
 

Judging by its aerodynamics, the torque of the wind wheel 
can be expressed as [19, 20]: 

 
𝑇𝑇𝑟𝑟 = 1

2
𝜌𝜌𝜌𝜌𝜌𝜌𝑣𝑣2𝐶𝐶𝑞𝑞(𝜆𝜆,𝛽𝛽)                          (1) 

 
𝜆𝜆 = 𝜔𝜔𝑟𝑟𝑟𝑟

𝑣𝑣
                                        (2) 

 
where, 𝑇𝑇𝑟𝑟 is the aerodynamic torque of the wind wheel (𝑁𝑁 · 𝑚𝑚); 
𝜌𝜌 is air density (𝑘𝑘𝑘𝑘

𝑚𝑚3); 𝜌𝜌 = 𝜋𝜋𝜌𝜌2 is the area of the wind wheel 
(𝑚𝑚2); 𝜆𝜆 is the tip-speed ratio; 𝛽𝛽 is the pitch angle (°); 𝜔𝜔𝑟𝑟 is the 
angular velocity of the wind wheel (𝜌𝜌𝑟𝑟𝑟𝑟/𝑠𝑠); 𝐶𝐶𝑞𝑞 = 𝐶𝐶𝑞𝑞(𝜆𝜆,𝛽𝛽) is 
the torque coefficient, a nonlinear function of 𝜆𝜆 and 𝛽𝛽; 𝜌𝜌 is the 
radius of the wind wheel (𝑚𝑚); 𝑣𝑣 is the wind speed (𝑚𝑚

𝑠𝑠
). 

 
2.2 Model of the PMSG 
 

The PMSG uses three-phase symmetrical windings. Here, 
the saturation eddy current at the motor core and the hysteresis 
loss are ignored, while the d-axis and q-axis components (𝑖𝑖𝑑𝑑 
and 𝑖𝑖𝑞𝑞) of the stator current, plus the angular velocity of the 
rotor 𝜔𝜔𝑘𝑘, are taken as state variables. On this basis, the surface-
mounted PMSG with uniform air gaps can be modelled as [21]: 
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where, ux and ix are the generator-end voltage and stator 
current at axis x (x= d, q), respectively; 𝑅𝑅𝑠𝑠  is the winding 
resistance of the stator; 𝑛𝑛𝑝𝑝 is the number of pole pairs of the 
generator; 𝜔𝜔𝑘𝑘 ≈ 𝜔𝜔𝑟𝑟  is the angular velocity of the rotor; 𝐽𝐽𝑒𝑒𝑞𝑞  is 
the equivalent moment of inertia of the generator; 𝜓𝜓𝑓𝑓 is the 
flux linkage of the permanent magnet; 𝐵𝐵𝑚𝑚  is the rotational 
viscosity of the generator; 𝑇𝑇𝐿𝐿 = 𝑇𝑇𝑟𝑟  is the load torque. 

 
 

3. CHAOTIC FEATURES OF THE D-PMSG 
 

Through affine transform 𝑥𝑥 = 𝜍𝜍𝑥𝑥�  (𝑥𝑥 = [𝑖𝑖𝑑𝑑 , 𝑖𝑖𝑞𝑞 ,𝜔𝜔𝑘𝑘]𝑇𝑇 ; 𝑥𝑥� =
[𝚤𝚤�̃�𝑑, 𝚤𝚤̃𝑞𝑞 ,𝜔𝜔�𝑘𝑘]𝑇𝑇 ) and timescale transform 𝑡𝑡 = 𝜏𝜏�̃�𝑡 , the Lorenz 

chaotic model of the D-PMSG [22] can be established as: 
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                  (4) 
 

where, 𝜍𝜍1 = 𝜍𝜍2 = 𝐵𝐵𝑚𝑚
𝜏𝜏𝜓𝜓𝑓𝑓𝑛𝑛𝑝𝑝2

; 𝜍𝜍3 = 1
𝜏𝜏𝑛𝑛𝑝𝑝

; 𝜏𝜏 = 𝐿𝐿
𝑅𝑅𝑠𝑠

; 𝜎𝜎 = 𝜏𝜏𝐵𝐵𝑚𝑚
𝐽𝐽𝑒𝑒𝑒𝑒

; 𝛾𝛾 =
−(3𝜏𝜏𝑛𝑛𝑝𝑝2𝜓𝜓𝑓𝑓

2)

(2𝐵𝐵𝑚𝑚𝐿𝐿)
; 𝑢𝑢�𝑑𝑑 = 𝜏𝜏

𝜍𝜍1𝐿𝐿
𝑢𝑢𝑑𝑑; 𝑢𝑢�𝑞𝑞 = 𝜏𝜏

𝜍𝜍1𝐿𝐿
𝑢𝑢𝑞𝑞; 𝑇𝑇�𝑟𝑟 = 𝜏𝜏

𝜍𝜍3𝐽𝐽𝑒𝑒𝑒𝑒
𝑇𝑇𝑟𝑟; σ and γ are 

free numbers determined by system parameters. 
The equilibrium point of system (4) satisfies: 
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     (5) 

 
where, (𝚤𝚤�̃�𝑑𝑒𝑒 , 𝚤𝚤�̃�𝑞𝑒𝑒 , 𝜔𝜔�𝑘𝑘𝑒𝑒) is the equilibrium point of the system. 

The Jacobian matrix corresponding to the equilibrium point 
can be expressed as: 
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                            (6) 
 
Then, the characteristic equation of Eq. (6) can be expressed 

as: 
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                    (7) 
 
By studying the characteristic equation 𝐷𝐷(�̄�𝜆), it is possible 

to judge if the equilibrium point of system (4) is stable in the 
sense of Lyapunov, and then determine the conditions for its 
Hopf bifurcation. Then, the mathematical conditions for the D-
PMSG to evolve from the limit cycle to Hopf bifurcation and 
produce chaotic motions can be identified theoretically.  

 
Case 1: 𝑢𝑢�𝑞𝑞 = 𝑢𝑢�𝑑𝑑 = 𝑇𝑇�𝐿𝐿 = 0 
Here, 𝑢𝑢�𝑞𝑞 = 𝑢𝑢�𝑑𝑑 = 𝑇𝑇�𝐿𝐿 = 0 means the generator has no input 

voltage or load. Under this assumption, the author explored the 
transient process of the D-PMSG operation after stopping 
power generation. If 𝛾𝛾 > 1, the three equilibrium points of the 
system can be obtained as S0(0, 0, 0) and S1,2( 𝛾𝛾 −
1, ±�𝛾𝛾 − 1, ±�𝛾𝛾 − 1) by solving Eq. (5). Among them, S0 is 
the zero-solution equilibrium point, while S1,2 are nontrivial 
equilibrium points. For S0, the characteristic polynomial 
corresponding to Eq. (7) can be expressed as: 
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3 2

2

( ) (2 ) (1 2 ) (1 )
=( +1)[ ( 1) (1 )]
D λ λ σ λ σ σγ λ σ γ

λ λ σ λ σ γ

= + + + + − + −

+ + + −  (8) 
 
Then, the eigenvalue corresponding to S0 can be obtained as 

�̄�𝜆1 = −1, �̄�𝜆2,3 = −(𝜎𝜎+1)±�(𝜎𝜎+1)2−4𝜎𝜎(1−𝛾𝛾)
2

, where eigenvalue �̄�𝜆2 
is a positive root. In this case, S0 is an unstable equilibrium 
point (saddle point). For S1,2, the polynomial of the 
corresponding Jacobian matrix can be expressed as: 

 
𝐷𝐷(�̄�𝜆) = �̄�𝜆3 + (2 + 𝜎𝜎)�̄�𝜆2 + (𝜎𝜎 + 𝛾𝛾)�̄�𝜆 + 2𝜎𝜎(𝛾𝛾 − 1)      (9) 

 
According to Eq. (9), if 𝛾𝛾 = 𝛾𝛾ℎ = 𝜎𝜎(𝜎𝜎+4)

𝜎𝜎−2
(𝜎𝜎 > 2) , the 

eigenvalue corresponding to S1,2 can be expressed as: 
 

1 2,3
2 ( 1)( 2),

2
j σ σλ σ λ

σ
+

= − + = ±
−

               (10) 

 
The following can be proved by advanced mathematical 

knowledge: If 𝛾𝛾 < 𝛾𝛾ℎ , then 𝑅𝑅𝑅𝑅( �̄�𝜆2,3) < 0 ; if 𝛾𝛾 = 𝛾𝛾ℎ , then 
𝑅𝑅𝑅𝑅( �̄�𝜆2,3) = 0; if 𝛾𝛾 > 𝛾𝛾ℎ , then 𝑅𝑅𝑅𝑅( �̄�𝜆2,3) > 0. Therefore, the 
relationship of characteristics Eq. (7) can be obtained as: if 
𝛾𝛾 < 𝛾𝛾ℎ, S0 is an unstable saddle point, while S1,2 are stable foci; 
if 𝛾𝛾 = 𝛾𝛾ℎ, system (4) is in the critical state of Hopf bifurcation, 
showing a limit cycle; if 𝛾𝛾 > 𝛾𝛾ℎ, S1,2 are unstable foci and the 
system has chaotic solution. 

If 𝛾𝛾 < 1, the system has only one equilibrium point S0 (0, 
0,0) according to Eq. (5). In this case, the real part of the 
eigenvalue obtained by Eq. (7) 𝑅𝑅𝑅𝑅( 𝜆𝜆1,2,3) < 0 . Hence, the 
equilibrium point is stable, and the system is in the equilibrium 
state. 

According to the above mathematical model, the 
coefficients 𝜎𝜎  and 𝛾𝛾  only depend on the parameters of the 
PMSG, making it difficult to satisfy 𝛾𝛾 ≥ 𝛾𝛾ℎ . Hence, it is 
concluded that: when the system parameters are constant, the 
system will not face Hpof bifurcation and will lose stability. 

Case 2: 𝑢𝑢�𝑑𝑑 ≠ 𝑢𝑢�𝑞𝑞 ≠ 𝑇𝑇�𝐿𝐿 ≠ 0 
In this case, the PMSG operates under general conditions. 

The three solutions to 𝜔𝜔�𝑘𝑘𝑒𝑒 in the third equation of (5) can be 
obtained by the common way to solve cubic equations [23]: 
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          (11) 
 

where, 𝜉𝜉 = −1+√3𝑗𝑗
2

; 𝛥𝛥 = �𝑞𝑞
2
�
2

+ �𝑝𝑝
3
�
3

; 𝑞𝑞 = 2(𝑇𝑇�𝐿𝐿/𝜎𝜎)3/27 −
[(𝑇𝑇�𝐿𝐿/𝜎𝜎)(𝑈𝑈�𝑑𝑑 − 𝛾𝛾 + 1)]/3 + (𝑇𝑇�𝐿𝐿/𝜎𝜎) − 𝑈𝑈�𝑞𝑞 , 𝑝𝑝 = 𝑈𝑈�𝑑𝑑 − 𝛾𝛾 + 1 −
(𝑇𝑇�𝐿𝐿/𝜎𝜎)3/3. 

 
Substituting the above equation into the equilibrium state 

Eq. (5), the solutions to the other two state variables 𝚤𝚤̃𝑑𝑑𝑒𝑒  and 𝚤𝚤̃𝑞𝑞𝑒𝑒  
in the equilibrium state can be obtained. 

When 𝛥𝛥 > 0, the equation has a real root and a pair of 
conjugate imaginary roots. Then, the currents 𝚤𝚤�̃�𝑑𝑒𝑒  and 𝚤𝚤�̃�𝑞𝑒𝑒  have 
imaginary roots, which makes no sense.  

When 𝛥𝛥 = 0, there are three real roots; if 𝑝𝑝 = 𝑞𝑞 = 0, the 
three roots are all zeros, i.e. there exists an equilibrium point 
𝑆𝑆0 = (𝑢𝑢�𝑑𝑑, 𝑇𝑇

�𝐿𝐿
𝜎𝜎

, 0); if 𝑝𝑝, 𝑞𝑞 ≠ 0, two of the three real roots are 
equal, i.e. there are two equilibrium points.  

When 𝛥𝛥 < 0, there are three unequal equilibrium points. 
Therefore, it is only meaningful to consider the situation 

when 𝛥𝛥 ≤ 0. 
As analyzed above, the conditions for generating a pair of 

conjugate imaginary roots can be derived from the polynomial 
𝐷𝐷(�̄�𝜆) of the Jacobian matrix corresponding to each solution: 

 
2 2 22 4 ( )( ) 2( ) 2e e e e

q g d gi iσ ω σ σ σ γ ω σ= + + + − + + 

 

 (12) 
 

Eq. (12) is valid under three conditions: (1) the three inputs 
(𝑢𝑢�𝑑𝑑,𝑢𝑢�𝑞𝑞 ,𝑇𝑇�𝐿𝐿) are adjusted properly; (2) the system parameters 
are changed; (3) the wind speed varies. In any of the three 
conditions, the D-PMSG will witness a limit cycle and enter 
the chaotic state. 

To further verify the chaotic motions of the D-PMSG, the 
maximum Lyapunov exponent (LE) can be computed in 
system simulation by [24, 25]: 

 

10 0

1 ln( )
N

j

jN

d
LE

t t d=

=
− ∑

                         (13) 
 
where, 𝑟𝑟1 ⋅⋅⋅ 𝑟𝑟𝑁𝑁 are calculated by the process in Figure 1. As 
shown in Figure 1, another trajectory is selected near the state 
trajectory 𝑥𝑥(𝑡𝑡); the distance at 𝑡𝑡0  is denoted as 𝑟𝑟0 , and the 
distance after 𝛥𝛥𝑡𝑡 is denoted as 𝑟𝑟1. During the simulation, the 
number of iterations N was set to 1,000 and 𝛥𝛥𝑡𝑡 = 1𝑚𝑚𝑠𝑠. 
 

 
 

Figure 1. Calculation of the maximum LE 
 
 

4. ANALYSIS OF THE CHAOTIC FEATURES OF THE 
D-PMSG 
 

The actual parameters of the D-PMSG are as follows: the 
rated power PN=2.1KW, rated voltage UN=220V, rated 
frequency 𝑓𝑓 = 50Hz, sweep area of wind wheel 𝜌𝜌 = 4𝑚𝑚2, air 
density 𝜌𝜌 = 1.225𝑘𝑘𝑘𝑘/𝑚𝑚3 , number of pole pairs 𝑛𝑛𝑝𝑝 = 17 , 
equivalent moment of inertia 𝐽𝐽𝑒𝑒𝑞𝑞 ≈ 0.0013𝑘𝑘𝑘𝑘 ⋅ 𝑚𝑚2 , 𝐿𝐿 =
2.7𝑚𝑚𝑚𝑚, resistance of stator 𝑅𝑅𝑠𝑠 = 1.14𝛺𝛺, flux linkage of the 
permanent magnet 𝜓𝜓𝑓𝑓 = 212𝑚𝑚𝑚𝑚, rotational viscosity of the 
generator 𝐵𝐵𝑚𝑚 = 8.65𝑁𝑁 ⋅ 𝑚𝑚 ⋅ (𝜌𝜌𝑟𝑟𝑟𝑟/𝑠𝑠)−1 , optimal tip-speed 
ratio 𝜆𝜆𝑜𝑜𝑝𝑝𝑜𝑜 = 0.9, and maximum wind power utilization factor 
𝐶𝐶𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝. According to these parameters, it can be obtained that 
𝜎𝜎 = 16 and 𝛾𝛾 = 45.92. 

Case 1: 𝑢𝑢�𝑞𝑞 = 𝑢𝑢�𝑑𝑑 = 𝑇𝑇�𝐿𝐿 = 0 
As shown in Figure 2(a), if 𝛾𝛾 < 1, the system always tended 

to the equilibrium point (0, 0, 0), whichever the initial 
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condition, indicating that the system motions are stable under 
this condition. As shown in Figure 2(b), if 𝛾𝛾 < 𝛾𝛾ℎ, there were 
two stable foci in the system, meaning that the system is table. 
As shown in Figure 2(c), if 𝛾𝛾 ≈ 𝛾𝛾ℎ, the limit cycle appeared in 
system operation, revealing that the system is in the critical 

state of Hopt bifurcation and that the stability of the 
equilibrium points is about to change. As shown in Figure 2(d), 
if 𝛾𝛾 > 𝛾𝛾ℎ , none of the three equilibrium points were stable, 
showing that the system has entered the chaotic state. 

  

   
(a) 𝛾𝛾 < 1                                                                                     (b) 𝛾𝛾 = 9.85 

 
(c) 𝛾𝛾 ≈ 𝛾𝛾ℎ                                                                              (d) 𝛾𝛾 = 45.92 

 
Figure 2. Three-phase diagram of system state variables 

 

 
(a) Bifurcation map                                                          (b) LE spectrum 

 
Figure 3. Bifurcation map and LE spectrum of the system 

 
Figure 3(a) is the bifurcation diagram of the system under 

the initial conditions of (20,0.1,−5） , with 𝛾𝛾  as the 
bifurcation parameter and 𝑖𝑖𝑞𝑞  as the state variable. It can be 
seen that, when 𝛾𝛾 < 1 , the system had only one stable 
equilibrium point; when 1 < 𝛾𝛾 < 𝛾𝛾ℎ , there were two stable 
foci in the system, and the system stability depends on the 
initial value; when 𝛾𝛾 > 𝛾𝛾ℎ , the system’s equilibrium points 
mutated, and the system entered the chaotic state. As shown in 
Figure 3(b), when 𝛾𝛾 = 18.83, the three LEs were (0.15, 0, -

18.13), i.e. the system had positive LEs; in this case, 
bifurcation appeared and the system belonged to the chaotic 
state. When 𝛾𝛾 = 86, the three LEs were (0, -0.11, -17.9), and 
the system returned to regular motions, but ended up in chaotic 
state.  

 
Case 2: 𝑢𝑢�𝑑𝑑 ≠ 𝑢𝑢�𝑞𝑞 ≠ 𝑇𝑇�𝐿𝐿 ≠ 0 
Figure 4(a) presents the three-phase diagram at 𝑢𝑢�𝑑𝑑 =

−0.542, 𝑢𝑢�𝑞𝑞 = 0.824 and the wind speed of 𝑣𝑣 = 7.6𝑚𝑚/𝑠𝑠. It 
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can be seen that the motion trajectory of the system converged 
to the stable equilibrium point slowly, but the system steadily 
entered the stable operation state after a period of time. When 
the wind speed gradually increased to 𝑣𝑣 = 10.2𝑚𝑚/𝑠𝑠, the limit 
cycle appeared (Figure 4(b)), and the system belonged to the 
critical stability state. When the wind speed further rose to 𝑣𝑣 =
13𝑚𝑚/𝑠𝑠, the motion trajectory of the system is shown in Figure 
4(c). Obviously, the three equilibrium states were all unstable, 

and the chaotic attractor appeared, indicating that the system 
entered the chaotic state. Hence, if 𝑢𝑢�𝑑𝑑 , 𝑢𝑢�𝑞𝑞 and system 
parameters are constant, the variation in wind speed will cause 
changes to the torque of the turbine 𝑇𝑇𝑟𝑟. Then, the 𝑇𝑇�𝑟𝑟 obtained 
through affine transform and timescale transform also changes. 
As a result, the system moves from the equilibrium state to 
chaotic state. 

 

                          
(a) Three-phase diagram of the system at 𝑣𝑣 = 7.6𝑚𝑚/𝑠𝑠          (b) Three-phase diagram of the system at 𝑣𝑣 = 10.2𝑚𝑚/𝑠𝑠 

 
(c) Three-phase diagram of the system at 𝑣𝑣 = 13𝑚𝑚/𝑠𝑠 

 
Figure 4. Three-phase diagrams of the system at different wind speeds 

 
Figure 5 provides the three-phase diagrams with wind speed 

𝑣𝑣 as the bifurcation parameter and 𝑖𝑖𝑞𝑞  as the state variable. As 
shown in Figure 5, when 𝑣𝑣 ≤ 10.5𝑚𝑚/𝑠𝑠, the system operated 
in a stable manner; when the wind speed increased to 𝑣𝑣 =
10.5𝑚𝑚/𝑠𝑠, the bifurcation occurred and the system entered the 
chaotic state. 

 

 
 

Figure 5. Bifurcation map of the system at different wind 
speeds v 

 
 

Figure 6. The LE spectrum of the system with 𝜎𝜎 as the 
variable 

 
Figure 6 shows the LE spectrum with 𝜎𝜎 as the variable. It 

can be seen that, if 𝜎𝜎 ∈ [4.1,13.6), the three LEs are LE1>0, 
LE2=0, and LE3<0, i.e. the system had positive LEs; in this 
case, bifurcation appeared and the system belonged to the 
chaotic state. Therefore, the system becomes chaotic, if the 
parameter 𝜎𝜎 changes or falls in a certain interval. This finding 
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echoes with the theoretical result in the preceding section. In 
other words, the simulation results agree with the theoretical 
derivation. For a D-PMSG, the system will lose stability facing 
changes in system parameters or wind speed. This conclusion 
has practical significance in actual engineering. 

 
 

5. CONCLUSIONS 
 

This paper drives the chaotic model of the D-PMSG through 
affine transform and timescale transform. In addition, the 
Lyapunov stability theory was introduced to analyze the 
parameter conditions for the D-PMSG to move from 
equilibrium state, the limit cycle state to the chaotic state under 
different inputs. The analysis proves the existence of chaotic 
attractor under certain conditions. In addition, the chaotic 
features of the D-PMSG were simulated, using three-phase 
diagram, bifurcation diagram and the LE spectrum. The 
simulation results show that the chaotic attractor will appear 
in the D-PMSG, when there are changes to system parameters 
or the wind speed, which severe affects the stable operation of 
the D-PMSG. For actual wind power systems, the stable 
operation conditions, parameter uncertainty and wind speed 
disturbance are even more complex. Therefore, the future 
research will probe deeper into the chaotic motions and chaotic 
control of the D-PMSG. 
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