based on multi-sensor fusion using an extended dempster-shafer method. Measurement Science and Technology, 24(5): 801-818. http://dx.doi.org/10.1088/0957-0233/24/5/055801

- [35] Djeha, M., Sbargoud, F., Guiatni, M., Fellah, K., Ababou, N. (2017). A combined EEG and EOG signals based wheelchair control in virtual environment. In 5th International Conference on Electrical Engineering -Boumerdes (ICEE-B), pp. 1-6. http://dx.doi.org/10.1109/ICEE-B.2017.8192087
- [36] Mallat, S.G. (1989). A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7): 674-693. http://dx.doi.org/10.1109/34.192463
- [37] Gargour, C., Gabrea, M., Ramachandran, V., Lina, J.M. (2009). A short introduction to wavelets and their applications. IEEE Circuits and Systems Magazine, 9(2): 57-68. http://dx.doi.org/10.1109/MCAS.2009.932556
- [38] Blanco, S., Figliola, A., Quiroga, R.Q., Rosso, O., Serrano, E. (1998). Time frequency analysis of electroencephalogram series. iii. Wavelet packets and information cost function. Physical Review E, 57(1): 932. http://dx.doi.org/10.1103/ PhysRev E.57.932
- [39] Subasi, A. (2012). Classification of EMG signals using combined features and soft computing techniques. Applied Soft Computing, 12(8): 2188-2198. http://dx.doi.org/10.1016/j.asoc.2012.03.035
- [40] Akansu, A.N., Haddad, P.A., Haddad, R.A., Haddad, P.R. (2001). Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets.
- [41] Wali, M.K., Muruagappan, M., Ahmad, R. (2013). Wavelet packet transform based driver distraction level classification using EEG. Mathematical Problems in Engineering, 2013: 1-10. http://dx.doi.org/10.1155/2013/297587
- [42] Rosenblatt, F. (1961). Principles of neurodynamics. perceptrons and the theory of brain mechanisms. Cornell Aeronautical Lab Inc Buffalo NY, Tech. Rep. AD0256582.
- [43] Dempster, A.P. (2008). A generalization of bayesian inference. in Classic works of the dempster-shafer theory of belief functions. Journal of the Royal Statistical Society. Series B (Methodological), 30(2): 73-104. http://dx.doi.org/10.1007/978-3-540-44792-4_4
- [44] Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press, 42.
- [45] Lefebvre, E. (2007). Advances and Challenges in Multisensor Data and Information Processing. IOS Press, 8.
- [46] Dempster, A.P. (2008). Upper and lower probabilities induced by a multivalued mapping. Classic Works of the Dempster-Shafer Theory of Belief Functions. Springer, 57-72. http://dx.doi.org/10.1007/978-3-540-44792-4_3
- [47] Smets, P. (2000). Data fusion in the transferable belief model. In Information Fusion, FUSION 2000. Proceedings of the Third International Conference on. IEEE, pp. PS21-PS33. http://dx.doi.org/10.1109/IFIC.2000.862713
- [48] Yager, R.R. (1987). On the dempster-shafer framework and new combination rules. Information Sciences, 41(2): 93-137. http://dx.doi.org/10.1016/0020-0255(87)90007-7
- [49] Dubois, D., Fargier, H., Prade, H., Perny, P. (2002).

Qualitative decision theory. Journal of the ACM, 49(4): 455-495. http://dx.doi.org/10.1145/581771.581772

- [50] Scholte, K.A., van Norden, W.L. (2009). Applying the PCR6 rule of combination in real time classification systems. In Information Fusion, FUSION'09. 12th International Conference on. IEEE, pp. 1665-1672.
- [51] Sebbak, F., Benhammadi, F. Chibani, A., Amirat, Y., Mokhtari, A. (2013). New evidence combination rules for activity recognition in smart home. In Information Fusion (FUSION), 16th International Conference on. IEEE, pp. 46-52.
- [52] Smets, P., Kennes, R. (1994). The transferable belief model. Artificial Intelligence, 66(2): 191-234. http://dx.doi.org/10.1016/0004-3702(94)90026-4
- [53] Smets, P. (1990). Constructing the pignistic probability function in a context of uncertainty. Uncertainty in Artificial Intelligence, (89): 29-40. http://dx.doi.org/10.1016/B978-0-444-88738-2.50010-5

NOMENCLATURE

a	dimensionless scale factor
A, B, C	dimensionless elements of 2^{Θ}
b	time shift, s
bet	pignistic probability
Cr	credibility
$d_{n_{node},n_{level}}(k)$	k^{th} coefficient of a node at n_{node}, n_{level}
E	energy, J
Fmeasure	dimensionless weighted harmonic mean of
	precision and recall
J	dimensionless constant
k	dimensionless conflict factor
m	dimensionless belief mass
Nai	dimensionless number of vectors assigned
	to the class i
Ncai	dimensionless number of vectors correctly
	assigned to the class i
Ni	dimensionless number of vectors of the
	class i
n _{level}	dimensionless level of wavelet
	decomposition
n _{node}	dimensionless node position at the
	<i>n_{level}</i> th level
n _{coef}	dimensionless number of coefficients of the
)	n_{level} th level
s(t)	finite energy signal, volt
Pl	plausibility
S	source
S _{EMG}	threshold of EMG signal, volt
t	time, s
W_S	wavelet transform applied to a finite energy
	signal $s(t)$
x	observation

Greek symbols

- μ mean of envelope, volt
- σ standard deviation of envelope, volt
- φ empty set
- ψ mother wavelet
- Θ discernment framework
- θ_i Singleton