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 This work is devoted to the study of heat transfer in a cubic chamber partially filled with a 

porous material by a single fluid. The mathematical model used is that of Darcy - Brinkman - 

Forchheimer. The modeled equations of continuity, motion, energy and mass are numerically 

solved by the finite volume method. The influence of permeability and other parameters on 

heat transfer has been studied. The results obtained show that Nusselt numbers increase with 

increasing permeability for different Darcy numbers, and decrease with increasing porous 

thickness. The numerical results of our study are in good agreement with those found in the 

literature. 
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1. INTRODUCTION 

 

The effect of permeability on transfers in saturated porous 

media has been the subject of numerous theoretical and 

experimental studies. Because of their importance in many 

natural areas such as the movement of water in aquifers and 

technological like drying. The heat transfer in the porous 

media takes place essentially in two modes: conduction 

through the entire porous medium under the effect of 

temperature gradients; and the convection in the fluid that 

allows the transfer of the thermal energy it contains. The 

convective heat transfer is designated, according to the flow 

regime of the fluid, by free convection, forced convection or 

by mixed convection. A review of the literature shows that 

there is a large number of numerical and theoretical work 

devoted to the study of convection (forced, natural) in a 

porous layer. We can cite the following works: 

- In 2005, Sami Ben Amara did a work on natural 

convection flows and heat transfer in macro-porous food 

environments: application to refrigerators. The approach is 

both experimental and numerical [1]. 

- Yacine Ould-Amer et al. are interested in natural 

convection in a porous multilayer square cavity. Each layer 

of porous medium is considered homogeneous, isotropic and 

saturated by a single fluid [2]. 

- For a numerical and analytical study of heat transfer by 

natural convection in porous layers to optimize the effect of 

the drag Darcy form R. Rebhi et al. have proposed the 

following model:  

a horizontal rectangular cavity subjected to Vertical 

thermal gradient with transition flow governing a single-cell 

or multi-cell convective flux [3]. 

- Bouriche et al. also gave a numerical and analytical study 

on the influence of the Soret effect of natural convection 

developed within a porous Darcy enclosure subjected to a 

uniform heat flux in the presence of a magnetic field [4]. 

- Helel and Boukadida studied the transfer of heat and 

mass in an unsaturated porous medium subjected to laminar 

forced convection [5]. 

- F. Habbachi et al. are interested in the three-dimensional 

simulation of natural convection in a cubic cavity partially 

filled with porous media [6]. 

- F. Ouarhlent et al. are interested in thermal convection in 

a porous medium (partially porous cavity) [7]. 

Our study focuses on heat transfer caused by natural 

convection in a partially porous cavity [8]. It involves 

studying the effect of control parameters on the flow and heat 

transfer mechanisms. The vertical walls of the cavity are 

subjected to constant temperatures. The Darcy-Brinkman-

Forcheimer formulation in anisotropic saturated permeable 

porous medium has been retained in the present work [9-15]. 

 

 

2. MATHEMATICAL FORMULATION 

 

The studied physical model is represented by the following 

geometry: 

 

 
 

Figure 1. Geometry of the studied problem 
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A cubic cavity of geometric parameter (H '), partially 

filled with a porous layer of thickness 𝑒, and saturated by a 

single fluid. We call 𝜼 = 𝒆/𝑯 ′ the dimensionless thickness 

of the porous layer. Vertical surfaces are subjected to 

Dirichlet temperature conditions, while horizontal surfaces 

are adiabatic (Neumann conditions).For the modeling of the 

problem, we adopt the following hypotheses: The fluid is 

Newtonian, incompressible and satisfies the Boussinesq 

hypothesis; the flow of fluid within the cavity is laminar and 

three-dimensional; it is assumed that the porous matrix is 

isotropic, homogeneous and in thermodynamic equilibrium 

with the fluid; the thermo-physical properties of the fluid are 

constant in the temperature range studied; and we neglect the 

energy transfer by radiation and by conduction. In this study, 

we will therefore adopt the single-domain approach of 

writing a single equation for the whole domain (Navier 

Stokes including the term Darcy), and the transition from the 

porous medium to the fluid medium is done by a variation of 

permeability [5]; Navier Stokes' equation including the terms 

Darcy-Brinkman and Forchheimer. Given the assumptions 

made previously, the classical conservation equations are as 

follows: 

The continuity equation: 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+
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𝜕𝑧
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The amount of movement x following equation: 
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The amount of motion equation is following: 
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The amount of movement following equation z: 
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Energy equation in porous media: 

 

(𝜌𝑐)𝑚
𝜕𝑇

𝜕𝑡
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Or: 𝜌𝑓  =  𝜌0(1 − 𝛽𝛥𝑇) , β is the coefficient of thermal 

volume expansion of the fluid. 

The adimensional formatting of the conservation equations 

reveals dimensionless numbers characteristic of the problem. 

These parameters are: 

Prandtl: 𝑃𝑟 =
𝜈

𝑎
; Grashof: 𝐺𝑟 =

𝑔𝛽∆𝑇𝐿3

𝜈2 ; Rayleigh: 𝑅𝑎 =

𝑔𝛽∆𝑇𝐿3

𝜈𝑎
=𝐺𝑟. 𝑃𝑟.; Darcy: 𝐷𝑎 =

𝐾

𝑒2; the thickness of the porous 

thickness: 𝜂 =
𝑒

𝐻
 . 

Finally, we express the heat transfer on active surfaces by 

the adimensional number of Nusselt (Nu) defined by:  

 

𝑁𝑢̅̅ ̅̅ = ℎ. 𝐿
𝐾𝑓

⁄ = −(𝑎(𝐾𝑒𝑓𝑓 − 1) + 1)
𝜕𝑇

𝜕𝑥
             (6) 

 

The initial and boundary conditions for this problem are: 

 

 

 

Table 1. Terms of speed and temperature 

 
Condition Speed Temperature 

Surface H U=V= W=0 
𝜕𝑇

𝜕𝑌
= 0, 

𝜕𝑇

𝜕𝑧
= 0 

Surface B U=V= W=0 
𝜕𝑇

𝜕𝑌
= 0, 

𝜕𝑇

𝜕𝑧
= 0 

Surface S U=V= W=0 
𝜕𝑇

𝜕𝑌
= 0, 

𝜕𝑇

𝜕𝑧
= 0 

Surface N U=V= W=0 
𝜕𝑇

𝜕𝑌
= 0, 

𝜕𝑇

𝜕𝑧
= 0 

Surface W U=V= W=0 0.5 

Surface E U=V= W=0 -0.5 

 

 

3. RESULTS AND DISCUSSIONS 

 

In this section, we focus on the consequences of the 

penetration of the flow in the porous layer, as well as on heat 

transfer. We have placed ourselves in a porous layer in the 

center of the cavity, where we have varied the permeability of 

this layer once through the dimensionless thickness of the 

porous layer, which varies between 0.1 m ≤ η ≤ 0.9 m with a 

number Darcy's fixed, and another time through the variation 

of Darcy's number. The choice of an optimal mesh is not 

random. The independence of the mesh is a simulation test 

carried out with an increasingly refined mesh until the 

solution no longer varies with the refinement of the mesh. 

The geometry used is shown in Figure (2). 

 

 
 

Figure 2. Hybrid mesh of tetrahedral form 

 

 
 

Figure 3. Mesh test 

 

The mesh test was performed on the calculation of the 

fields of velocities and temperatures in Figure (3). The mesh 

of 15625 meshes seems the optimal mesh beyond which the 

results are stable. 
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3.1 The effect of the porous layer 

 

From Figure 4: It is found that for low permeability’s 

(𝐷𝑎 = 10−6 ), the porous layer behaves like a solid zone 

where the flow is confined in this zone. The introduction of a 

porous layer of low permeability, causes a steep drop in the 

maximum velocity in the fluid zone, while in the porous zone, 

the velocity remains almost zero whatever η, which shows 

that transfers are essentially conductive in this area. 

The temperature slopes in this zone indicate an increase in 

the thermal field. The temperature profiles show a good 

agreement between the present results and those of F. 

Habbechi Figure (5). 

 

 

 
 

Figure 4. The velocity profiles as a function of the 𝑦 position 

and for different values of η 

 

 
(a)                                                       (b) 

 

Figure 5. The temperature profiles as a function of the 𝑦 position and for different values of η. (a): Present study, (b): F.habbechi 

[6] 

 

3.2 The effect of Darcy 

 

To frame and optimize the effect of permeability on a 

variable Darcy number, we present numerical results, by the 

profiles of fluid flow and heat transfer. Along the range of the 

Darcy number for 𝜂 = 20 %, we note that the profiles are 

consistent (identical and similar), because the porous layer is 

minimal but if it believes (η≥75 %) it fills the cavity, and in 

this case, we can say that: 

- For low Darcy value (10-6 ≤ Da ≤ 10-4): the effect of the 

solid matrix is dominant with respect to the geometric 

complement (poral space). The porous medium behaves like 

a solid, which is shown in velocity trajectory at η=80 % in 

Figure (6-a). 

-For the Darcy values (10-3 ≤ Da ≤ 1): the effect of the 

geometric complement (poral space) is dominant with respect 

to the solid matrix. The porous medium behaves like a fluid 

medium, which also shows the trajectory of the speed at 

η=80 % in Figure (6-b).  

 

 
(a): 𝜂 = 20% 
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(b): 𝜂 = 80%  

 

Figure 6. Velocity and temperature profiles in the range 10−6 < 𝐷𝑎 < 1 and 𝜂 =  20%  and 𝜂 =  80 % 

 

3.3 The effect of thermal transfer Nu as a function of η 

and Da 

 

From Figure 6, it is concluded that the Nusselt number 

tends to a constant value, when the thickness of the porous 

layer approaches zero corresponding to pure natural 

convection. Similarly, as the thickness of the porous media 

approaches unity, the flow tends to a purely conductive 

situation. The porous layer has a weak effect on the natural 

convection flow, whose size is close to the size of the central 

core. Indeed, the porous medium only has a small effect on 

the average Nusselt number up to almost η=65 %. 

Above this value of (η), the decrease is steeper and is 

mainly due to the suppression of the natural convection flow. 

Figure 6 shows three distinct zones: a first zone is purely 

conductive indicating a very low flow, a third zone with a 

convective flow for the most part indicating that the heat 

transfer is very important, and an intermediate zone 

characterized by a strong decrease in the number of Nusselt 

as a function of η according to the following correlation: 

𝑁𝑢𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = −17 ∗ 𝜂+14.71. 

If we notice the correlation of our study: 𝑁𝑢𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
−17 ∗ 𝜂 +14.71is close to that of F. Habbechi gived by 

𝑁𝑢𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = −17 ∗ 𝜂+ 15.95, with an error of 8 %. The 

latter is only a consequence of the computational accuracies 

(RESIDUAL), the nature of the mesh adopted along the study, 

and even the method of resolution with CFD (our study using 

a simple algorithm with a scheme of second order and that of 

Habbachi using a simple QUICK scheme algorithm). 

Examination of the heat transfer effect, on fluid flow and 

heat transfer is illustrated by the numerical results obtained 

for different Darcy number values, and Figure (8) shows the 

evolution of heat transfer, for a wide range of Da ranging 

from 10-6 to 1, in the case of η = 20%, 50% and Ra = 105. 

These results show that for low values of permeability 

(Da≥10-6), the Nusselt numbers remain practically constant; 

the porous medium in this Darcy range behaves as an 

impermeable area where flow is almost negligible. That is, 

conduction dominates over natural convection. For the Darcy 

values between: (10-6 ≤ Da ≤ 10-1), there is an increase of 

Nusselt, and in this zone the flow tends towards a purely 

convective situation through the body, and for the high values 

of the permeability (Da ≥10-1), the heat transfer increases 

further up to a certain value where the porous medium is 

considered as a fluid medium. If the porous layer increases (η 

≥75%), it fills the cavity, in this case the Nusselt number is 

almost constant along the range of 𝐷𝑎 (𝑁𝑢 =  1.1061197 at 

𝜂 =  80%). 

 

 
 

Figure 7. Nusselt profile for different values of η: a. Present study, b. F.habbechi [6]
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Figure 8. Nusselt profile for different values of 𝐷𝑎 

4. CONCLUSION

We have been interested in this work in the effects of 

permeability on flow and transfer in porous media. The 

variation of the thickness of the porous layer made it possible 

to go from a totally fluid domain to a completely porous 

domain and vice versa. In our simulations, we have varied the 

thickness of the porous layer and the Darcy number (𝐷𝑎). 

The dependence of the flow with the various parameters of 

the problem has been highlighted. The existence of a porous 

layer of low permeability results in an extremely significant 

drop in heat transfer. 

Finally, the influence of permeability of the porous layer 

on transfers was analysed. It has been found that the heat 

transfer coefficients increase with the permeability of the 

porous layer. 
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NOMENCLATURE 

Latin letter 

�⃗⃗� Darcy velocity or filtration velocity (m / s); 

P Averaged magnitude of the pressure (Pa) 

T Averaged magnitude of the temperature (s); 

𝑲𝒇 Thermal conductivity of the fluid medium (W / m.K); 

𝑲𝒔 Thermal conductivity of the solid matrix (w / m.k); 

𝑲𝒆𝒇𝒇 Effective thermal conductivity (w / m.k); 

g Gravitational acceleration (m / s2); 

𝐹 Empirical factor which depends on the porosity and 

microstructure of the porous medium(-) 

(X Y Z)  dimensionless coordinate system (-); 

(U, V, W) Component dimensionless speed (-);  

Greek symbols 

ε  Porosity of the porous medium (-); 

𝝆𝟎 Referential density (kg / m3); 

𝝆𝒇 Volumetric mass of the fluid (kg / m3); 

μ Dynamic viscosity of the fluid (kg / ms); 

𝝁𝒆𝒇𝒇 Dynamic viscosity of the porous medium (kg / ms); 
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σ  Report of specific heats of the equivalent medium 

and fluid (-); 

Ḱ  Thermal conductivity of equivalent medium (-); 

η  Thickness dimension without the porous layer (-); 

𝚯  Dimensionless temperature (-);  

∆𝑻  Variance of temperature (S); 

β  Coefficient of thermal volume expansion of the fluid 

(𝑘-1). 

 

Indices  

 

eff  Effective.  

𝑓   Fluid. 

S  Solid. 
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