
Construction and Optimization of a File Distribution Model for All-to-All Comparison of Big

Dataset

Leixiao Li1,2,3,4, Jing Gao3,4*, Hui Wang1,2, Dan Deng1,2, Hao Lin1,2

1 College of Data Science and Application, Inner Mongolia University of Technology, Hohhot 010080, China
2 Inner Mongolia Autonomous Region Engineering & Technology Research Center of Big Data Based Software Service,

Hohhot 010080, China
3 College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
4 Inner Mongolia Autonomous Region Key Laboratory of big data research and application for agriculture and animal

husbandry, Hohhot 010018, China

Corresponding Author Email: gaojing@imau.edu.cn

https://doi.org/10.18280/isi.240314 ABSTRACT

Received: 5 March 2019

Accepted: 10 May 2019

This paper probes into the all-to-all comparison of large dataset, and gives a formal

mathematical description of the problem. Then, a multi-objective file distribution model was

constructed based on the LP, aiming to localize the data, balance node storage and loads,

minimize the storage occupation, and control the occupied storage within the storage limit of

each node. To save storage space, the established model was further optimized, and the file

distribution algorithm was designed for the distributed environment. Experimental results

show that our model and algorithm successfully balanced the storage occupation and loads

between computing nodes, and minimized the occupation of node storage.

Keywords:

distributed system, all-to-all comparison

problem, file distribution, linear

programming (LP), model optimization

1. INTRODUCTION

All-to-all comparison of big dataset, a commonplace in

bioinformatics, biometrics and data mining, is a special

computing problem that compares and computes any two files

in a dataset [1]. Distributed computing with distributed storage

is often adopted to solve the problem, due to its high efficiency,

reliability and scalability. This method breaks down a large

problem into multiple small ones, and processes each of them

at separate nodes in the distributed system [2]. The effect of

distributed computing depends heavily on the strategies of

data distribution, task decomposition and task scheduling. The

computing performance may not be desirable if the

comparison task faces the following problems: the data are

distributed irrationally, the data are not highly localized, and

the loads are imbalanced in the distributed system [3].

The existing solutions to all-to-all comparison of big dataset

fall into two categories: the centralized computing and

distributed computing with centralized storage [4]. The latter

often encounters problems like task delay, owing to the limited

storage and the wait for data transfer [5]. Therefore, some

scholars have applied distributed computing with distributed

storage in all-to-all comparison of big dataset. This method

offers two data allocation strategies: assigning each input file

to a computing node, and distributing several duplicates of

each input file randomly to system nodes (the Hadoop

distribution strategy) [6-8]. The first strategy has similar

problems with centralized computing, which also stores all

input files on every system node [9]. Under the Hadoop

distribution strategy [10], the huge amount of data exchange

between the nodes will drag down computing efficiency. After

all, the Hadoop distribution strategy is an all-purpose

framework, not specifically designed for all-to-all comparison

[11-13].

To solve the problems in the solutions to all-to-all

comparison of big dataset, this paper formally describes the

problem of all-to-all comparison of big dataset, sets up a

constrained optimization model for file distribution, and

designs a file distribution algorithm based on linear

programming (LP). Next, the proposed model and algorithm

were verified through experiments under the constraints on

data localization and node storage in distributed system. The

experimental results show that our model and algorithm

successfully balanced the loads between computing nodes,

minimized the occupation of node storage, and minimized the

load in a cluster environment. The research findings greatly

improve the overall performance of the distributed cluster

environment, giving full play to the advantages of distributed

system.

2. FORMAL DESCRIPTION OF ALL-TO-ALL

COMPARISON OF BIG DATASET

All-to-all comparison refers to the pairwise comparison

between all items in the target dataset. Let A={A1, A2, A3,,

Am} be the target dataset, C be the comparison function that

computes the items in the dataset, and M be the similarity

matrix of the results. Then, the all-to-all comparison can be

described as:

i j
M =C(,) C(,), , 1, 2,,

i j j i
A A A A i j m (1)

where Ai is the i-th item in A; Mij is an element of M, i.e. the

result of the comparison between Ai and Ai; m is the number of

items in A.

Ingénierie des Systèmes d’Information
Vol. 24, No. 3, June, 2019, pp. 337-342

Journal homepage: http://iieta.org/journals/isi

337

Figure 1 presents a typical all-to-all comparison problem, in

which each item should be compared with all the other items.

In the matrix shown in Figure 1, the pairwise comparisons, e.g.

C(Ai, Aj)=C(Aj, Ai), are all unordered. Since the matrix is

symmetric, only the upper triangular elements need to be

considered in the typical all-to-all comparison problem.

Figure 1. A typical problem of all-to-all comparison

In a distributed cluster environment, the all-to-all

comparison of a big dataset means the pairwise comparison

between all the data files in the dataset. Before pairwise

comparison, all the data files should be distributed to the

computing nodes of the distributed system. The file

distribution should give full consideration of how system

computing performance is affected by the following factors:

file localization, load balance, mean load of nodes, node

storage, data transmission and network bandwidth.

The file distribution must satisfy the following conditions

to ensure the overall computing performance of the distributed

system:

(1) The data files should be localized for comparison, i.e.

the two files to be compared on a node must be saved on that

node.

(2) The comparison tasks should be assigned unevenly

across the computing nodes.

(3) The data distributed to each node should be balanced,

within the storage limit of the node and occupy the least

possible storage.

3. FILE DISTRIBUTION MODELLING

The above description shows that the all-to-all comparison

problem is a typical constraint optimization problem. In this

paper, the optimization aims to balance the comparison tasks

of the computing nodes, under the constraints of data

localization, balanced data distribution and minimal

occupation of node storage, thereby speeding up comparison

speed and overall system performance.

Constrained optimization problem attempts to maximize or

minimize the value of the objective function under multiple

constraints. The most effective solution to constrained

optimization is the LP, which requires that objective function

and all constraints are linear [14, 15]. The main goal of the LP

is to find the control sequence that minimizes the value of the

objective function under all constraints. The LP can also

effectively solve control and planning problems, thanks to its

strong modelling abilities [16].

Taking the balancing of node loads as the objective, the file

distribution of the all-to-all comparison problem was modeled

under the constraints of the problem and the constraints on

node storage. The constraints were expressed as equality or

inequality.

Let m be the number of genetic sequence files and n be the

number of nodes in a distributed system. These data files need

to be distributed to the nodes for pairwise comparison. The

node loads should be balanced under two constraints: the data

should be localized, and the size of the distributed file should

not exceed the node storage.

As shown in Figure 2, the total number of pairwise

comparisons for the m data files can be obtained as:

2 (1)
C

2m

m m
 (2)

Let si (i=1, 2, ⋯, m) be the size of each data file. Then, the

total size of the two files in each pairwise comparison can be

computed as:

(, 1, 2, , ,)
ij i j
w s s i j m i j (3)

The load of the pairwise comparison between files i and j

can be computed as:

(, 1, 2, , ,)
ij
c i j m i j (4)

Thus, the total number of pairwise comparisons between the

m data files can be described as:

m

1 1

m

ij
i j i

c (5)

If the pairwise comparison tasks are distributed equally to n

nodes, then the theoretical mean number of tasks allocated to

each node can be expressed as:

1 1

m m

ij
i j i

c

n

 (6)

Then,
(1)

(1,2, , , 1,2, ,)
2kt

m m
x k t n was

introduced to specify the k-th pairwise comparison task is

allocated to node n:

，
(1)

0 1 1,2, , , 1,2, ,
2kt

m m
x or k t n (7)

Since each task can only be allocated to one node, we have:

1

(1)
1, 1, 2, ,

2

n

kt
t

m m
x k (8)

Let uj (j=1, 2, ⋯, n) be the storage limit of node n and

Wkt=wijt be the total size of the files i and j in the k-th task

distributed to node t. Then, the constraint that the the total size

of the files distributed to each node in the distributed system

should not exceed the storage limit of that node can be

expressed as:

338

(1)

2

1

W , 1,2, ,

m m

kt kt t
k

x u t n (9)

Let Ckt=cijt be the load of the k-th task between files i and j

allocated to node t. Then, the load of the task distributed to a

node in the distributed system can be expressed as:

(1)

2

1

C

m m

kt kt
k

x (10)

Then, the sum of the absolute difference between the actual

and theoretical mean loads of the task distributed to each node

in the distributed system can be described as:

m

(1)

2
1 1

1 1

| (C) |

m
m m

ijn
i j i

kt kt
t k

c

x
n

 (11)

Taking (6)~(8) as the constraints, the file distribution model

can be established to minimize the value of Eq. (12):

，

m
(1)

2
1 1

1 1

1
(1)

2

1

min | (C) |

(1)
1, 1,2, ,

2

. . W , 1,2, ,

(1)
0 1 1,2, , , 1,2, ,

2

m
m m

ijn
i j i

kt kt
t k
n

kt
t
m m

kt kt t
k

kt

c

x
n
m m

x k

s t x u t n

m m
x or k t n

 (12)

If the objective function in Eq. (12) contains nonlinear terms,

then established model is a nonlinear programming model. In

this case, new decision variables
t
d and

t
d were introduced

to transform Equation (12) into a linear model. The two

variables are both numbers greater than or equal to zero. The

former means the load allocated to node t exceeds the

theoretical mean load, and the latter has the exactly opposite

meaning. In the former case, the excess load
t
d should be

removed from the node, changing the objective into searching

for the minimum value of ()
t t
d d for each node. In the

latter case, the insufficient load
t
d should be added to the

node.

With the addition of the new decision variables, Equation

(12) can be transformed into the LP model below:

，

1

1
(1)

2

1
m

(1)

2
1 1

1

min ()

(1)
1, 1,2, ,

2

W , 1,2, ,

. . ((C)) 0, 1,2, ,

(1)
0 1 1,2, , , 1,2, ,

2
, 0, 1,2, ,

n

t t
t
n

kt
t
m m

kt kt t
k

m
m m

ij
i j i

kt kt t t
k

kt

t t

d d

m m
x k

x u t n

c

s t x d d t n
n

m m
x or k t n

d d t n

 (13)

Since neither
t
d and

t
d are integers, Eq. (13) is a mixed

integer linear programming (MILP) model.

4. MODEL OPTIMIZATION

By the MILP model, the node loads in the distributed

environment can be basically balanced, but the files allocated

to each node still take up much of the node storage (Section 6).

The node storage of the model should be further reduced.

The load allocated to each node in the cluster environment

can be computed by the MILP model. It is assumed that the

cumulative load of each node obtained by the MILP is:

(1, 2, ,)
j
C j n (14)

Assuming that Cmax=max{C1, C2, ..., Cn}, two decision

variables were introduced, namely, yrt(r=1, 2, ..., m, t=1, 2, ...,

n) and xkt. The former specifies if the r-th file to be compared

is stored in node t, and the latter specifies if the files of the k-

th pairwise comparison are stored in node t.

If xkt=1, both files of the k-th pairwise comparison are be

stored in node t. Then, the total storage of each node in the

distributed environment can be expressed as:

1 1

m n

r rt
r t

s y (15)

The relationship between the two decision variables can be

described as:

(1,2, , , 1,2, ,)
r

kt rt
k U

x ny r m t n (16)

where Ur is the set of all sequence number k containing the r-

th file. Obviously, yrt=1 if at least one element of ()
kt r
x k U

equals 1.

According to (12), (14) and (15), the optimized MILP

model can be established to minimize the total storage of all

nodes in the distributed environment:

，

，

1 1

1
(1)

2

max
1

min

(1)
1, 1,2, ,

2

, 1,2, ,

. . (1,2, , , 1,2, ,)

(1)
0 1 1,2, , , 1,2, ,

2
0 1 1,2, , , 1,2, ,

r

m n

r rt
r t
n

kt
t
m m

kt kt
k

kt rt
k U

kt

rt

s y

m m
x k

c x C t n

s t x ny r m t n

m m
x or k t n

y or r m t n

(17)

5. DESIGN OF FILE DISTRIBUTION ALGORITHM

The optimized MILP model is divided into two phases:

computing the matrix of file distribution results, and

339

minimizing the total storage of all nodes under load balancing.

The flow chart of the algorithm is shown in Figure 2.

Figure 2. Flow chart of file distribution algorithm

6. EXPERIMENTAL VERIFICATION AND RESULTS

ANALYSIS

To validate the established model and algorithm, the

following four file distribution experiments were conducted

on Matlab 2018a.

6.1 Same file size and equal distribution of tasks

Ten genetic sequence files of the same size (1MB) were

distributed to five nodes for sequence alignment. As shown in

Figure 3, the nodes were given the same task load, a sign of

full load balancing.

Figure 3. Load distribution in the first experiment

Figure 4 shows the variation in the node storage required to

store the distributed files through model optimization. It can

be seen that, due to the model optimization, 4M storage was

saved on node 1, 4M on node 2, 3M on node 3, 2M on node 4,

and 3M more was occupied on node 5. Overall, the five nodes

in total saved 10M of storage, and the node storages were

basically balanced after the optimization.

Figure 4. The variation in the node storage required to store

the distributed files through model optimization in the first

experiment

6.2 Same file size and unequal distribution of tasks

Ten genetic sequence files of the same size (1MB) were

distributed to four nodes for sequence alignment. Since m=10

and n=4 and the files are of the same size, we have

(1)%(2*) 0m m n− , that is, the nodes cannot achieve

complete load balance. As shown in Figure 5, three of the four

nodes were respectively given 22 tasks, and the remaining one

was given 24 tasks. The nodes basically achieved load balance.

Figure 6 shows the variation in the node storage required to

store the distributed files through model optimization. It can

be seen that, due to the model optimization, 2M storage was

saved on node 1, 1M on node 2, 1M on node 3, and 3M on

node 4. Overall, the four nodes in total saved 7M in storage

and the node storages were basically balanced after the

optimization.

Figure 5. Load distribution in the second experiment

18 18 18 18 18

0

5

10

15

20

1 2 3 4 5

T
o

ta
l

ta
sk

 c
al

cu
la

ti
o

n
al

 c
o

st

Number of node

Total task calculational cost

10
9

8
7

5
6

5 5 5

8

0

2

4

6

8

10

12

0 1 2 3 4 5 6

S
to

ra
g
e

lo
ad

Number of node

Unoptimized storage capacity

Optimized storage capacity

22 22 22
24

6
8

10
12
14
16
18
20
22
24
26

1 2 3 4

T
o

ta
l

ta
sk

 c
al

cu
la

ti
o

n
al

 c
o

st

Number of node

Total task calculational cost

340

Figure 6. The variation in the node storage required to store

the distributed files through model optimization in the second

experiment

6.3 Different file sizes and equal distribution of tasks

Eight genetic sequence files of different sizes (15MB;

12MB; 5MB; 7MB; 1MB; 6MB; 35MB; 27MB) were

allocated to four nodes for sequence alignment. Since m=8 and

n=4, we have (1)%(2*) 0m m n− = . However, the nodes

may not be able to achieve complete load balance, owing to

the difference in file size. As shown in Figure 7, the four nodes

were each given 189 tasks, reaching complete load balance.

Figure 7. Load distribution in the third experiment

Figure 8. The variation in the node storage required to store

the distributed files through model optimization in the third

experiment

Figure 8 shows the variation in the node storage required to

store the distributed files through model optimization. It can

be seen that, due to the model optimization, 8M more storage

was occupied on node 1, 44M storage was saved on node 2,

35M on node 3, and 16M on node 4. Overall, the four nodes in

total saved 87M in storage and the node storages were

basically balanced after the optimization.

6.4 Different file sizes and unequal distribution of tasks

Eleven genetic sequence files of different sizes (2MB; 1MB;

1MB; 5MB; 4MB; 2MB; 5MB; 1MB; 3MB; 2MB; 4MB) were

allocated to four nodes for sequence alignment. As shown in

Figure 9, the four nodes were each given 75 tasks, reaching

complete load balance.

Figure 10 shows the variation in the node storage required

to store the distributed files through model optimization. It can

be seen that, due to the model optimization, 6M more storage

was occupied on node 1, 6M storage was saved on node 2, 7M

on node 3, and 3M on node 4. Overall, the four nodes in total

saved 16M in storage and the node storages were basically

balanced after the optimization.

Figure 9. Load distribution in the fourth experiment

Figure 10. The variation in the node storage required to store

the distributed files through model optimization in the fourth

experiment

The four experiments demonstrate that, if load balance is

theoretically possible, the node loads were always fully

balanced, whether the file sizes are the same or not, under the

following two constraints: the data are fully localized, and the

files distributed to a node do not surpass the storage limit of

9 9 9
10

7
8 8

7

0

2

4

6

8

10

12

0 1 2 3 4 5

S
to

ra
g
e

lo
ad

Number of node

Unoptimized storage capacity

Optimized storage capacity

189 189 189 189

0

50

100

150

200

1 2 3 4

T
o

ta
l

ta
sk

 c
al

cu
la

ti
o

n
al

 c
o

st

Number of node

Total task calculational cost

73

107 101

7681
63 66 60

0

20

40

60

80

100

120

0 1 2 3 4 5

S
to

ra
g
e

lo
ad

Number of node

Unoptimized storage capacity

Optimized storage capacity

75 75 75 75

0

20

40

60

80

1 2 3 4

T
o

ta
l

ta
sk

 c
al

cu
la

ti
o

n
al

 c
o

st

Number of node

Total task calculational cost

27
30

26
23

21
24 25

20

0

5

10

15

20

25

30

35

0 1 2 3 4 5

S
to

ra
g
e

lo
ad

Number of node

Unoptimized storage capacity

Optimized storage capacity

341

that node. Even if load balance is theoretically impossible, our

model and algorithm could minimize the load difference

between nodes and achieve basically the load balance.

The optimized model further reduced the overall storage

pressure. According to the variation in the node storage

observed in each experiment, the model optimization greatly

lowered the node storage required to save the distributed files.

7. CONCLUSIONS

This paper probes into the all-to-all comparison of large

dataset, and gives a formal mathematical description of the

problem. Then, a multi-objective file distribution model was

constructed based on the LP, aiming to localize the data,

balance node storage and loads, minimize the storage

occupation, and control the occupied storage within the

storage limit of each node. To save storage space, the

established model was further optimized, and the file

distribution algorithm was designed for the distributed

environment. Finally, our model and algorithm were proved

valid through several experiments.

ACKNOWLEDGMENT

The work is funded in part by the National Natural Science

Foundation of China (NSFC) under Grant No. 61462070, the

Doctoral research fund project of Inner Mongolia Agricultural

University under Grant No. BJ09-44 and the Inner Mongolia

Autonomous Region Key Laboratory of big data research and

application for agriculture and animal husbandry.

REFERENCES

[1] Zhang, Y.F., Tian, Y.C., Kelly, W., Fidge, C., Gao, J.

(2015). Application of simulated annealing to data

distribution for all-to-all comparison problems in

homogeneous systems. International Conference on

Neural Information Processing, Springer, Cham, 683-

691. https://doi.org/10.1007/978-3-319-26555-1_77

[2] Baert, Q., Caron, A.C., Morge, M., Routier, J.C. (2018).

Fair task allocation for large data sets analysis. Revue

d'Intelligence Artificielle, 31(4): 401-426.

https://doi.org/10.3166/RIA.31.401-426

[3] Zhang, Y.F., Tian, Y.C., Kelly, W., Fidge, C. (2014). A

distributed computing framework for all to all

comparison problems. Proceedings of IECON’14.

Washington D. C, USA: IEEE Press, 2499-2505.

https://doi.org/10.1109/IECON.2014.7048857

[4] Li, L.X., Gao, J., Mu, R. (2019). Optimal data file

allocation for all-to-all comparison in distributed system:

A case study on genetic sequence comparison.

International Journal of Computers, Communications &

Control, 14(2): 199-211.

https://doi.org/10.15837/ijccc.2019.2.3526

[5] Shen, X., Choudhary, A. (2003). A distributed multi-

storage resource architecture and I/O performance

prediction for scientific computing. Cluster Computing,

6(3): 189-200.

https://doi.org/10.1109/HPDC.2000.868631

[6] Song, A., Zhao, M., Xue, Y., Luo, J. (2016). MHDFS: A

memory-based hadoop framework for large data storage.

Scientific Programming, 2016: 1808396.

http://dx.doi.org/10.1155/2016/1808396

[7] Chen, F., Liu, J., Zhu, Y. (2017). A real-time scheduling

strategy based on processing framework of hadoop. 2017

IEEE International Congress on Big Data (BigData

Congress), 2017: 321-328.

https://doi.org/10.1109/BigDataCongress.2017.48

[8] Lin, W. (2012). An improved data placement strategy for

Hadoop. Journal of South China University of

Technology (Natural Science Edition), 40(1): 152-158.

[9] Li, X., Zhang, H., Hu, Q., Huang, X. (2017). Research on

power customer segmentation based on big data of

intelligent city. 2017 29th Chinese Control and Decision

Conference (CCDC), 3207-3211.

http://dx.doi.org/10.1109/CCDC.2017.7979059

[10] Ghemawat, S., Gobioff, H., Leung, S.T. (2003). The

google file system.

[11] Lin, X., Lin, P., Huang, P., Chen, L., Fan, Z., Huang, P.

(2015). Modeling the task of google mapreduce

workload. 2015 15th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing,

1229-1232. https://doi.org/10.1109/CCGrid.2015.104

[12] Guo, Y., Rao, J., Cheng, D., Zhou, X. (2016). iShuffle:

Improving hadoop performance with shuffle-on-write.

IEEE Transactions on Parallel and Distributed Systems,

28(6): 1649-1662.

https://doi.org/10.1109/TPDS.2016.2587645

[13] Jiao, X., Mu, J., He, Y.C., Chen, C. (2017). Efficient

ADMM decoding of LDPC codes using lookup tables.

IEEE Transactions on Communications, 65(4): 1425-

1437. https://doi.org/10.1109/TCOMM.2017.2659733

[14] Qin, Z., Liu, X., Cao, B. (2016). Multi-level linear

programming subject to max-product fuzzy relation

equalities. International workshop on Mathematics and

Decision Science, Springer, Cham, 220-226.

https://doi.org/10.1007/978-3-319-66514-6_23

[15] Sinha, S.B., Sinha, S. (2004). A linear programming

approach for linear multi-level programming problems.

Journal of the Operational Research Society, 55(3): 312-

316. https://doi.org/10.1057/palgrave.jors.2601701

[16] El-Bakry, M. (2010). Using linear programming models

for minimizing harmonics values in cascaded multilevel

inverters. 2010 IEEE/ASME International Conference

on Advanced Intelligent Mechatronics, 696-702.

https://doi.org/10.1109/AIM.2010.5695713

342

