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This paper probes into the all-to-all comparison of large dataset, and gives a formal 

mathematical description of the problem. Then, a multi-objective file distribution model was 

constructed based on the LP, aiming to localize the data, balance node storage and loads, 

minimize the storage occupation, and control the occupied storage within the storage limit of 

each node. To save storage space, the established model was further optimized, and the file 

distribution algorithm was designed for the distributed environment. Experimental results 

show that our model and algorithm successfully balanced the storage occupation and loads 

between computing nodes, and minimized the occupation of node storage. 
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1. INTRODUCTION

All-to-all comparison of big dataset, a commonplace in 

bioinformatics, biometrics and data mining, is a special 

computing problem that compares and computes any two files 

in a dataset [1]. Distributed computing with distributed storage 

is often adopted to solve the problem, due to its high efficiency, 

reliability and scalability. This method breaks down a large 

problem into multiple small ones, and processes each of them 

at separate nodes in the distributed system [2]. The effect of 

distributed computing depends heavily on the strategies of 

data distribution, task decomposition and task scheduling. The 

computing performance may not be desirable if the 

comparison task faces the following problems: the data are 

distributed irrationally, the data are not highly localized, and 

the loads are imbalanced in the distributed system [3]. 

The existing solutions to all-to-all comparison of big dataset 

fall into two categories: the centralized computing and 

distributed computing with centralized storage [4]. The latter 

often encounters problems like task delay, owing to the limited 

storage and the wait for data transfer [5]. Therefore, some 

scholars have applied distributed computing with distributed 

storage in all-to-all comparison of big dataset. This method 

offers two data allocation strategies: assigning each input file 

to a computing node, and distributing several duplicates of 

each input file randomly to system nodes (the Hadoop 

distribution strategy) [6-8]. The first strategy has similar 

problems with centralized computing, which also stores all 

input files on every system node [9]. Under the Hadoop 

distribution strategy [10], the huge amount of data exchange 

between the nodes will drag down computing efficiency. After 

all, the Hadoop distribution strategy is an all-purpose 

framework, not specifically designed for all-to-all comparison 

[11-13]. 

To solve the problems in the solutions to all-to-all 

comparison of big dataset, this paper formally describes the 

problem of all-to-all comparison of big dataset, sets up a 

constrained optimization model for file distribution, and 

designs a file distribution algorithm based on linear 

programming (LP). Next, the proposed model and algorithm 

were verified through experiments under the constraints on 

data localization and node storage in distributed system. The 

experimental results show that our model and algorithm 

successfully balanced the loads between computing nodes, 

minimized the occupation of node storage, and minimized the 

load in a cluster environment. The research findings greatly 

improve the overall performance of the distributed cluster 

environment, giving full play to the advantages of distributed 

system. 

2. FORMAL DESCRIPTION OF ALL-TO-ALL 

COMPARISON OF BIG DATASET

All-to-all comparison refers to the pairwise comparison 

between all items in the target dataset. Let A={A1, A2, A3, ......, 

Am} be the target dataset, C be the comparison function that 

computes the items in the dataset, and M be the similarity 

matrix of the results. Then, the all-to-all comparison can be 

described as: 

i j
M =C( , ) C( , ), , 1, 2, ......,

i j j i
A A A A i j m      (1) 

where Ai is the i-th item in A; Mij is an element of M, i.e. the 

result of the comparison between Ai and Ai; m is the number of 

items in A. 
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Figure 1 presents a typical all-to-all comparison problem, in 

which each item should be compared with all the other items. 

In the matrix shown in Figure 1, the pairwise comparisons, e.g. 

C(Ai, Aj)=C(Aj, Ai), are all unordered. Since the matrix is 

symmetric, only the upper triangular elements need to be 

considered in the typical all-to-all comparison problem. 

 

 

 

Figure 1. A typical problem of all-to-all comparison 

 

In a distributed cluster environment, the all-to-all 

comparison of a big dataset means the pairwise comparison 

between all the data files in the dataset. Before pairwise 

comparison, all the data files should be distributed to the 

computing nodes of the distributed system. The file 

distribution should give full consideration of how system 

computing performance is affected by the following factors: 

file localization, load balance, mean load of nodes, node 

storage, data transmission and network bandwidth. 

The file distribution must satisfy the following conditions 

to ensure the overall computing performance of the distributed 

system: 

(1) The data files should be localized for comparison, i.e. 

the two files to be compared on a node must be saved on that 

node. 

(2) The comparison tasks should be assigned unevenly 

across the computing nodes. 

(3) The data distributed to each node should be balanced, 

within the storage limit of the node and occupy the least 

possible storage. 

 

 

3. FILE DISTRIBUTION MODELLING 

 

The above description shows that the all-to-all comparison 

problem is a typical constraint optimization problem. In this 

paper, the optimization aims to balance the comparison tasks 

of the computing nodes, under the constraints of data 

localization, balanced data distribution and minimal 

occupation of node storage, thereby speeding up comparison 

speed and overall system performance. 

Constrained optimization problem attempts to maximize or 

minimize the value of the objective function under multiple 

constraints. The most effective solution to constrained 

optimization is the LP, which requires that objective function 

and all constraints are linear [14, 15]. The main goal of the LP 

is to find the control sequence that minimizes the value of the 

objective function under all constraints. The LP can also 

effectively solve control and planning problems, thanks to its 

strong modelling abilities [16]. 

Taking the balancing of node loads as the objective, the file 

distribution of the all-to-all comparison problem was modeled 

under the constraints of the problem and the constraints on 

node storage. The constraints were expressed as equality or 

inequality. 

Let m be the number of genetic sequence files and n be the 

number of nodes in a distributed system. These data files need 

to be distributed to the nodes for pairwise comparison. The 

node loads should be balanced under two constraints: the data 

should be localized, and the size of the distributed file should 

not exceed the node storage. 

As shown in Figure 2, the total number of pairwise 

comparisons for the m data files can be obtained as: 

 

2 ( 1)
C

2m

m m
                              (2) 

 

Let si (i=1, 2, ⋯, m) be the size of each data file. Then, the 

total size of the two files in each pairwise comparison can be 

computed as: 

 

( , 1, 2, , , )
ij i j
w s s i j m i j               (3) 

 

The load of the pairwise comparison between files i and j 

can be computed as: 

 

( , 1, 2, , , )
ij
c i j m i j                        (4) 

 

Thus, the total number of pairwise comparisons between the 

m data files can be described as: 

 
m

1 1

m

ij
i j i

c                                   (5) 

 

If the pairwise comparison tasks are distributed equally to n 

nodes, then the theoretical mean number of tasks allocated to 

each node can be expressed as: 

 

1 1

m m

ij
i j i

c

n

                                (6) 

 

Then, 
( 1)

( 1,2, , , 1,2, , )
2kt

m m
x k t n  was 

introduced to specify the k-th pairwise comparison task is 

allocated to node n: 

 

，
( 1)

0 1 1,2, , , 1,2, ,
2kt

m m
x or k t n  (7) 

 

Since each task can only be allocated to one node, we have: 

 

1

( 1)
1, 1, 2, ,

2

n

kt
t

m m
x k                 (8) 

 

Let uj (j=1, 2, ⋯, n) be the storage limit of node n and 

Wkt=wijt be the total size of the files i and j in the k-th task 

distributed to node t. Then, the constraint that the the total size 

of the files distributed to each node in the distributed system 

should not exceed the storage limit of that node can be 

expressed as: 
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( 1)

2

1

W , 1,2, ,

m m

kt kt t
k

x u t n                      (9) 

 

Let Ckt=cijt be the load of the k-th task between files i and j 

allocated to node t. Then, the load of the task distributed to a 

node in the distributed system can be expressed as: 

 
( 1)

2

1

C

m m

kt kt
k

x                                   (10) 

 

Then, the sum of the absolute difference between the actual 

and theoretical mean loads of the task distributed to each node 

in the distributed system can be described as:  

 
m

( 1)

2
1 1

1 1

| ( C ) |

m
m m

ijn
i j i

kt kt
t k

c

x
n

                  (11) 

 

Taking (6)~(8) as the constraints, the file distribution model 

can be established to minimize the value of Eq. (12): 
 

，

m
( 1)

2
1 1

1 1

1
( 1)

2

1

min | ( C ) |

( 1)
1, 1,2, ,

2

. . W , 1,2, ,

( 1)
0  1 1,2, , , 1,2, ,

2

m
m m

ijn
i j i

kt kt
t k
n

kt
t
m m

kt kt t
k

kt

c

x
n
m m

x k

s t x u t n

m m
x or k t n

 (12) 

 

If the objective function in Eq. (12) contains nonlinear terms, 

then established model is a nonlinear programming model. In 

this case, new decision variables 
t
d  and 

t
d  were introduced 

to transform Equation (12) into a linear model. The two 

variables are both numbers greater than or equal to zero. The 

former means the load allocated to node t exceeds the 

theoretical mean load, and the latter has the exactly opposite 

meaning. In the former case, the excess load 
t
d should be 

removed from the node, changing the objective into searching 

for the minimum value of ( )
t t
d d  for each node. In the 

latter case, the insufficient load 
t
d  should be added to the 

node.  

With the addition of the new decision variables, Equation 

(12) can be transformed into the LP model below: 

 

，

1

1
( 1)

2

1
m

( 1)

2
1 1

1

min ( )

( 1)
1, 1,2, ,

2

W , 1,2, ,

. . (( C ) ) 0, 1,2, ,

( 1)
0  1 1,2, , , 1,2, ,

2
, 0, 1,2, ,

n

t t
t
n

kt
t
m m

kt kt t
k

m
m m

ij
i j i

kt kt t t
k

kt

t t

d d

m m
x k

x u t n

c

s t x d d t n
n

m m
x or k t n

d d t n

 (13) 

Since neither 
t
d  and 

t
d  are integers, Eq. (13) is a mixed 

integer linear programming (MILP) model. 

 

 

4. MODEL OPTIMIZATION 

 

By the MILP model, the node loads in the distributed 

environment can be basically balanced, but the files allocated 

to each node still take up much of the node storage (Section 6). 

The node storage of the model should be further reduced. 

The load allocated to each node in the cluster environment 

can be computed by the MILP model. It is assumed that the 

cumulative load of each node obtained by the MILP is: 

 

( 1, 2, , )
j
C j n                             (14) 

 

Assuming that Cmax=max{C1, C2, ..., Cn}, two decision 

variables were introduced, namely, yrt(r=1, 2, ..., m, t=1, 2, ..., 

n) and xkt. The former specifies if the r-th file to be compared 

is stored in node t, and the latter specifies if the files of the k-

th pairwise comparison are stored in node t. 

If xkt=1, both files of the k-th pairwise comparison are be 

stored in node t. Then, the total storage of each node in the 

distributed environment can be expressed as: 

 

1 1

m n

r rt
r t

s y                               (15) 

 

The relationship between the two decision variables can be 

described as: 

 

( 1,2, , , 1,2, , )
r

kt rt
k U

x ny r m t n         (16) 

 

where Ur is the set of all sequence number k containing the r-

th file. Obviously, yrt=1 if at least one element of ( )
kt r
x k U  

equals 1. 

According to (12), (14) and (15), the optimized MILP 

model can be established to minimize the total storage of all 

nodes in the distributed environment: 

 

，

，

1 1

1
( 1)

2

max
1

min

( 1)
1, 1,2, ,

2

, 1,2, ,

. . ( 1,2, , , 1,2, , )

( 1)
0  1 1,2, , , 1,2, ,

2
0  1 1,2, , , 1,2, ,

r

m n

r rt
r t
n

kt
t
m m

kt kt
k

kt rt
k U

kt

rt

s y

m m
x k

c x C t n

s t x ny r m t n

m m
x or k t n

y or r m t n

(17) 

 

 

5. DESIGN OF FILE DISTRIBUTION ALGORITHM 

 

The optimized MILP model is divided into two phases: 

computing the matrix of file distribution results, and 
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minimizing the total storage of all nodes under load balancing. 

The flow chart of the algorithm is shown in Figure 2. 

 

 

 

Figure 2. Flow chart of file distribution algorithm 

 

 

6. EXPERIMENTAL VERIFICATION AND RESULTS 

ANALYSIS 

 

To validate the established model and algorithm, the 

following four file distribution experiments were conducted 

on Matlab 2018a.  

 

6.1 Same file size and equal distribution of tasks 

 

Ten genetic sequence files of the same size (1MB) were 

distributed to five nodes for sequence alignment. As shown in 

Figure 3, the nodes were given the same task load, a sign of 

full load balancing. 

 

 
 

Figure 3. Load distribution in the first experiment 

 

Figure 4 shows the variation in the node storage required to 

store the distributed files through model optimization. It can 

be seen that, due to the model optimization, 4M storage was 

saved on node 1, 4M on node 2, 3M on node 3, 2M on node 4, 

and 3M more was occupied on node 5. Overall, the five nodes 

in total saved 10M of storage, and the node storages were 

basically balanced after the optimization. 

 

 
 

Figure 4. The variation in the node storage required to store 

the distributed files through model optimization in the first 

experiment 

 

6.2 Same file size and unequal distribution of tasks 

 

Ten genetic sequence files of the same size (1MB) were 

distributed to four nodes for sequence alignment. Since m=10 

and n=4 and the files are of the same size, we have 

( 1)%(2* ) 0m m n−  , that is, the nodes cannot achieve 

complete load balance. As shown in Figure 5, three of the four 

nodes were respectively given 22 tasks, and the remaining one 

was given 24 tasks. The nodes basically achieved load balance. 

Figure 6 shows the variation in the node storage required to 

store the distributed files through model optimization. It can 

be seen that, due to the model optimization, 2M storage was 

saved on node 1, 1M on node 2, 1M on node 3, and 3M on 

node 4. Overall, the four nodes in total saved 7M in storage 

and the node storages were basically balanced after the 

optimization. 

 

 
 

Figure 5. Load distribution in the second experiment 
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Figure 6. The variation in the node storage required to store 

the distributed files through model optimization in the second 

experiment 

 

6.3 Different file sizes and equal distribution of tasks 

 

Eight genetic sequence files of different sizes (15MB; 

12MB; 5MB; 7MB; 1MB; 6MB; 35MB; 27MB) were 

allocated to four nodes for sequence alignment. Since m=8 and 

n=4, we have ( 1)%(2* ) 0m m n− = . However, the nodes 

may not be able to achieve complete load balance, owing to 

the difference in file size. As shown in Figure 7, the four nodes 

were each given 189 tasks, reaching complete load balance. 

 

 
 

Figure 7. Load distribution in the third experiment 

 

 
 

Figure 8. The variation in the node storage required to store 

the distributed files through model optimization in the third 

experiment 

Figure 8 shows the variation in the node storage required to 

store the distributed files through model optimization. It can 

be seen that, due to the model optimization, 8M more storage 

was occupied on node 1, 44M storage was saved on node 2, 

35M on node 3, and 16M on node 4. Overall, the four nodes in 

total saved 87M in storage and the node storages were 

basically balanced after the optimization. 

 

6.4 Different file sizes and unequal distribution of tasks 

 

Eleven genetic sequence files of different sizes (2MB; 1MB; 

1MB; 5MB; 4MB; 2MB; 5MB; 1MB; 3MB; 2MB; 4MB) were 

allocated to four nodes for sequence alignment. As shown in 

Figure 9, the four nodes were each given 75 tasks, reaching 

complete load balance. 

Figure 10 shows the variation in the node storage required 

to store the distributed files through model optimization. It can 

be seen that, due to the model optimization, 6M more storage 

was occupied on node 1, 6M storage was saved on node 2, 7M 

on node 3, and 3M on node 4. Overall, the four nodes in total 

saved 16M in storage and the node storages were basically 

balanced after the optimization. 

 

 
 

Figure 9. Load distribution in the fourth experiment 

 

 
 

Figure 10. The variation in the node storage required to store 

the distributed files through model optimization in the fourth 

experiment 

 

The four experiments demonstrate that, if load balance is 

theoretically possible, the node loads were always fully 

balanced, whether the file sizes are the same or not, under the 

following two constraints: the data are fully localized, and the 

files distributed to a node do not surpass the storage limit of 
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that node. Even if load balance is theoretically impossible, our 

model and algorithm could minimize the load difference 

between nodes and achieve basically the load balance. 

The optimized model further reduced the overall storage 

pressure. According to the variation in the node storage 

observed in each experiment, the model optimization greatly 

lowered the node storage required to save the distributed files. 

 

 

7. CONCLUSIONS 

 

This paper probes into the all-to-all comparison of large 

dataset, and gives a formal mathematical description of the 

problem. Then, a multi-objective file distribution model was 

constructed based on the LP, aiming to localize the data, 

balance node storage and loads, minimize the storage 

occupation, and control the occupied storage within the 

storage limit of each node. To save storage space, the 

established model was further optimized, and the file 

distribution algorithm was designed for the distributed 

environment. Finally, our model and algorithm were proved 

valid through several experiments. 
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